Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (1): 58-66.DOI: 10.3969/j.issn.1004-1524.2023.01.07
• Horticultural Science • Previous Articles Next Articles
Received:
2021-09-06
Online:
2023-01-25
Published:
2023-02-21
CLC Number:
HE Xiuli, WANG Renmin. Effects of exogenous melatonin on active components content and antioxidase activity of Anoectochilus roxburghii[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 58-66.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.01.07
处理 | 株高 | 茎粗 | 叶长 | 叶宽 | 根长 | 根粗 | 单株鲜重 | 单株干重 | 折干率 |
---|---|---|---|---|---|---|---|---|---|
Treatment | Plant height/cm | Stem diameter/mm | Leaf length/cm | Leaf width/cm | Root length/cm | Root diameter/mm | Fresh weight per plant/g | Dry weight per plant/g | Drying rate/% |
CK | 4.99±0.28 a | 2.99±0.20 a | 3.38±0.02 bc | 2.73±0.05 a | 3.40±0.35 a | 1.18±0.07 b | 1.17±0.14 a | 0.11±0.01 a | 9.59±1.50 a |
M1 | 5.05±0.28 a | 3.01±0.22 a | 3.48±0.04 ab | 2.81±0.07 a | 3.40±0.19 a | 1.37±0.02 a | 1.18±0.03 a | 0.11±0.01 a | 9.52±0.23 a |
M2 | 5.07±0.10 a | 3.32±0.19 a | 3.44±0.09 ab | 2.75±0.04 a | 2.81±0.15 ab | 1.36±0.11 a | 1.22±0.05 a | 0.11±0.01 a | 9.36±0.59 a |
M3 | 5.08±0.18 a | 3.09±0.36 a | 3.29±0.04 c | 2.65±0.13 a | 2.69±0.18 b | 1.26±0.06 ab | 1.05±0.12 b | 0.10±0.01 a | 9.46±0.55 a |
Table 1 Effects of different concentrations of MT on seedling growth and yield of A.roxburghii
处理 | 株高 | 茎粗 | 叶长 | 叶宽 | 根长 | 根粗 | 单株鲜重 | 单株干重 | 折干率 |
---|---|---|---|---|---|---|---|---|---|
Treatment | Plant height/cm | Stem diameter/mm | Leaf length/cm | Leaf width/cm | Root length/cm | Root diameter/mm | Fresh weight per plant/g | Dry weight per plant/g | Drying rate/% |
CK | 4.99±0.28 a | 2.99±0.20 a | 3.38±0.02 bc | 2.73±0.05 a | 3.40±0.35 a | 1.18±0.07 b | 1.17±0.14 a | 0.11±0.01 a | 9.59±1.50 a |
M1 | 5.05±0.28 a | 3.01±0.22 a | 3.48±0.04 ab | 2.81±0.07 a | 3.40±0.19 a | 1.37±0.02 a | 1.18±0.03 a | 0.11±0.01 a | 9.52±0.23 a |
M2 | 5.07±0.10 a | 3.32±0.19 a | 3.44±0.09 ab | 2.75±0.04 a | 2.81±0.15 ab | 1.36±0.11 a | 1.22±0.05 a | 0.11±0.01 a | 9.36±0.59 a |
M3 | 5.08±0.18 a | 3.09±0.36 a | 3.29±0.04 c | 2.65±0.13 a | 2.69±0.18 b | 1.26±0.06 ab | 1.05±0.12 b | 0.10±0.01 a | 9.46±0.55 a |
处理 | Δ株高 | Δ茎粗 | Δ叶长 | Δ叶宽 | Δ根长 | Δ根粗 | Δ单株鲜重 | Δ单株干重 | Δ折干率 |
---|---|---|---|---|---|---|---|---|---|
Treatment | ΔPlant height/cm | ΔStem diameter/mm | ΔLeaf length/cm | ΔLeaf width/cm | ΔRoot length/cm | ΔRoot diameter/mm | ΔFresh weight per plant/g | ΔDry weight per plant/g | ΔDrying rate/% |
CK | 0.66± 0.28 a | -0.08± 0.20a | 0.25± 0.02 ab | 0.27± 0.05 a | 1.00± 0.35 a | -0.02± 0.07b | 0.26± 0.14 a | 0.03± 0.01 a | 0.86± 1.50 a |
M1 | 0.72± 0.28 a | -0.06± 0.22a | 0.35± 0.04 a | 0.35± 0.07 a | 1.00± 0.19 a | 0.17± 0.02 a | 0.27± 0.03 a | 0.03± 0.01 a | 0.79± 0.24 a |
M2 | 0.74± 0.10 a | 0.25± 0.19 a | 0.31± 0.09 a | 0.29± 0.04 a | 0.40± 0.15 b | 0.16± 0.11 a | 0.31± 0.05 a | 0.04± 0.01 a | 0.63± 0.59 a |
M3 | 0.75± 0.18 a | 0.02± 0.36 a | 0.16± 0.04 b | 0.19± 0.13 a | 0.29± 0.18 b | 0.06± 0.06ab | 0.14± 0.12 a | 0.02± 0.01 a | 0.73± 0.55 a |
Table 2 The increase of each growth index in 30 days of A.roxburghii
处理 | Δ株高 | Δ茎粗 | Δ叶长 | Δ叶宽 | Δ根长 | Δ根粗 | Δ单株鲜重 | Δ单株干重 | Δ折干率 |
---|---|---|---|---|---|---|---|---|---|
Treatment | ΔPlant height/cm | ΔStem diameter/mm | ΔLeaf length/cm | ΔLeaf width/cm | ΔRoot length/cm | ΔRoot diameter/mm | ΔFresh weight per plant/g | ΔDry weight per plant/g | ΔDrying rate/% |
CK | 0.66± 0.28 a | -0.08± 0.20a | 0.25± 0.02 ab | 0.27± 0.05 a | 1.00± 0.35 a | -0.02± 0.07b | 0.26± 0.14 a | 0.03± 0.01 a | 0.86± 1.50 a |
M1 | 0.72± 0.28 a | -0.06± 0.22a | 0.35± 0.04 a | 0.35± 0.07 a | 1.00± 0.19 a | 0.17± 0.02 a | 0.27± 0.03 a | 0.03± 0.01 a | 0.79± 0.24 a |
M2 | 0.74± 0.10 a | 0.25± 0.19 a | 0.31± 0.09 a | 0.29± 0.04 a | 0.40± 0.15 b | 0.16± 0.11 a | 0.31± 0.05 a | 0.04± 0.01 a | 0.63± 0.59 a |
M3 | 0.75± 0.18 a | 0.02± 0.36 a | 0.16± 0.04 b | 0.19± 0.13 a | 0.29± 0.18 b | 0.06± 0.06ab | 0.14± 0.12 a | 0.02± 0.01 a | 0.73± 0.55 a |
Fig.2 Effects of different concentrations of MT on metabolite accumulation of A.roxburghii Different lowercase letters above the bars represented statistically significant (P<0.05)differences among treatments. The same as below.
处理 | Δ总黄酮含量 | Δ多糖含量 | Δ总生物碱含量 | Δ总氨基酸含量 |
---|---|---|---|---|
Treatment | ΔTotal content of flavonoid/% | ΔThe content of polysaccharide/% | ΔThe content of alkaloid/% | ΔTotal content of amino acid/% |
CK | -0.28±0.01 b | -0.61±0.27 b | -0.29±0.08 a | 4.01±0.44 b |
M1 | 0.05±0.12 a | -0.40±0.08 b | -0.25±0.03 a | 5.83±0.27 a |
M2 | -0.35±0.16 b | 1.63±0.17 a | -0.17±0.22 a | 3.32±0.14 c |
M3 | 0.12±0.14 a | 2.42±0.61 a | -0.25±0.11 a | 1.96±0.02 d |
Table 3 The increase of metabolite content in 30 days of A.roxburghii
处理 | Δ总黄酮含量 | Δ多糖含量 | Δ总生物碱含量 | Δ总氨基酸含量 |
---|---|---|---|---|
Treatment | ΔTotal content of flavonoid/% | ΔThe content of polysaccharide/% | ΔThe content of alkaloid/% | ΔTotal content of amino acid/% |
CK | -0.28±0.01 b | -0.61±0.27 b | -0.29±0.08 a | 4.01±0.44 b |
M1 | 0.05±0.12 a | -0.40±0.08 b | -0.25±0.03 a | 5.83±0.27 a |
M2 | -0.35±0.16 b | 1.63±0.17 a | -0.17±0.22 a | 3.32±0.14 c |
M3 | 0.12±0.14 a | 2.42±0.61 a | -0.25±0.11 a | 1.96±0.02 d |
处理 | Δ叶绿素a | Δ叶绿素b | Δ叶绿素a+b | Δ类胡萝卜素a |
---|---|---|---|---|
Treatment | ΔChlorophyll a | ΔChlorophyll b | ΔChlorophyll a+b | ΔCarotenoid |
CK | 0.14±0.09 b | -0.08±0.03 b | 0.06±0.11 b | 0.39±0.07 b |
M1 | 0.37±0.04 a | 0.01±0.04 a | 0.38±0.08 a | 0.54±0.05 a |
M2 | 0.45±0.08 a | 0.04±0.01 a | 0.49±0.08 a | 0.59±0.03 a |
M3 | 0.37±0.12 a | 0.00±0.05 a | 0.38±0.17 a | 0.53±0.08 ab |
Table 4 The increase of photosynthetic pigment content in 30 days of A. roxburghii mg·g-1
处理 | Δ叶绿素a | Δ叶绿素b | Δ叶绿素a+b | Δ类胡萝卜素a |
---|---|---|---|---|
Treatment | ΔChlorophyll a | ΔChlorophyll b | ΔChlorophyll a+b | ΔCarotenoid |
CK | 0.14±0.09 b | -0.08±0.03 b | 0.06±0.11 b | 0.39±0.07 b |
M1 | 0.37±0.04 a | 0.01±0.04 a | 0.38±0.08 a | 0.54±0.05 a |
M2 | 0.45±0.08 a | 0.04±0.01 a | 0.49±0.08 a | 0.59±0.03 a |
M3 | 0.37±0.12 a | 0.00±0.05 a | 0.38±0.17 a | 0.53±0.08 ab |
[1] | 郎楷永. 中国植物志[M]. 北京: 科学出版社, 1999. |
[2] | 刘凯良. 珍稀植物: 金线兰[J]. 生物学教学, 2018, 43(11): 75-76, 82. |
LIU K L. Rare plant: Clematis roxburghii[J]. Biology Teaching, 2018, 43(11): 75-76, 82. (in Chinese) | |
[3] | 肖小华, 林彩霞, 吴序栎, 等. 金线莲的化学成分及生物活性研究进展[J]. 现代食品科技, 2018, 34(5): 267-275. |
XIAO X H, LIN C X, WU X L, et al. Research advance on chemical constituents and biological activities of Anoectochilus roxburghii[J]. Modern Food Science and Technology, 2018, 34(5): 267-275. (in Chinese with English abstract) | |
[4] | 许梦洁, 叶申怡, 吴梅, 等. 不同种质金线莲氨基酸和矿物质元素量的比较[J]. 中草药, 2017, 48(2): 368-372. |
XU M J, YE S Y, WU M, et al. Comparison on contents of mineral elements and amino acids in different germplasms of Anoectochilus roxburghii[J]. Chinese Traditional and Herbal Drugs, 2017, 48(2): 368-372. (in Chinese with English abstract) | |
[5] | 李荣峰, 粟杨盛. 金线莲组织培养研究进展[J]. 安徽农业科学, 2020, 48(3): 15-17. |
LI R F, SU Y S. Research progress of tissue culture in Anoectochilus roxburghii[J]. Journal of Anhui Agricultural Sciences, 2020, 48(3): 15-17. (in Chinese with English abstract) | |
[6] | 苏菲, 黄作喜. 金线莲繁殖及栽培技术研究进展[J]. 安徽农学通报, 2020, 26(14): 32-35. |
SU F, HUANG Z X. Research progress on propagation and cultivation techniques of Anoectochilus roxburghii[J]. Anhui Agricultural Science Bulletin, 2020, 26(14): 32-35. (in Chinese) | |
[7] | 俞晓玲, 姜文倩, 游晨, 等. 金线莲多糖的药理作用及其机制研究进展[J]. 药物评价研究, 2021, 44(5): 1117-1121. |
YU X L, JIANG W Q, YOU C, et al. Research progress on pharmacological action and mechanism of polysaccharides from Anoectochilus roxburghii[J]. Drug Evaluation Research, 2021, 44(5): 1117-1121. (in Chinese with English abstract) | |
[8] | 陈育青, 林艺华, 邹毅辉, 等. 金线莲生药鉴定、活性成分影响因素及药理作用研究进展[J]. 中成药, 2020, 42(8): 2141-2144. |
CHEN Y Q, LIN Y H, ZOU Y H, et al. Research progress on pharmacognosy identification, influencing factors of active components and pharmacological effects of Anoectochilus roxburghii[J]. Chinese Traditional Patent Medicine, 2020, 42(8): 2141-2144. (in Chinese) | |
[9] | 田雨菁, 胡雅琦. 外源褪黑素对非生物胁迫下植物生长发育的影响[J]. 生物化工, 2020, 6(4): 163-164. |
TIAN Y J, HU Y Q. Effects of exogenous melatonin on plant growth and development under abiotic stress[J]. Biological Chemical Engineering, 2020, 6(4): 163-164. (in Chinese with English abstract) | |
[10] |
BOSE S K, HOWLADER P. Melatonin plays multifunctional role in horticultural crops against environmental stresses: a review[J]. Environmental and Experimental Botany, 2020, 176: 104063.
DOI URL |
[11] |
张明聪, 何松榆, 秦彬, 等. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
DOI |
ZHANG M C, HE S Y, QIN B, et al. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress[J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. (in Chinese with English abstract) | |
[12] | 李冬, 申洪涛, 王艳芳, 等. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响[J]. 草业学报, 2021, 30(1): 130-139. |
LI D, SHEN H T, WANG Y F, et al. Effects of exogenous melatonin on photosynthetic carbon assimilation and endogenous hormones in tobacco seedlings under drought stress[J]. Acta Prataculturae Sinica, 2021, 30(1): 130-139. (in Chinese with English abstract) | |
[13] |
吴燕, 乔晓燕, 葛伟强, 等. 高温强光下外源褪黑素对栝楼雌花生理生化特性的影响[J]. 浙江农业学报, 2020, 32(3): 421-429.
DOI |
WU Y, QIAO X Y, GE W Q, et al. Effects of exogenous melatonin on physiological and biochemical characteristics in female flowers of Trichosanthes kirilowii under high temperature and strong light[J]. Acta Agriculturae Zhejiangensis, 2020, 32(3): 421-429. (in Chinese with English abstract) | |
[14] |
齐晓媛, 王文莉, 胡少卿, 等. 外源褪黑素对高温胁迫下菊花光合和生理特性的影响[J]. 应用生态学报, 2021, 32(7): 2496-2504.
DOI |
QI X Y, WANG W L, HU S Q, et al. Effects of exogenous melatonin on photosynthesis and physiological characteristics of Chrysanthemum seedlings under high temperature stress[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2496-2504. (in Chinese with English abstract) | |
[15] |
韩国民, 刘茜, 唐美玲, 等. 外源褪黑素对NaCl胁迫下5BB葡萄叶片生理特性的影响[J]. 浙江农业学报, 2019, 31(4): 556-564.
DOI |
HAN G M, LIU X, TANG M L, et al. Effects of exogenous melatonin on physiological characteristics of 5BB grape leaves under NaCl stress[J]. Acta Agriculturae Zhejiangensis, 2019, 31(4): 556-564. (in Chinese with English abstract)
DOI |
|
[16] |
李阳, 陈静, 刘绍东, 等. 外源褪黑素对盐胁迫下棉花幼苗生长及光合特性的影响[J]. 新疆农业科学, 2021, 58(8): 1418-1426.
DOI |
LI Y, CHEN J, LIU S D, et al. Effects of exogenous melatonin on growth and photosynthetic characteristics of cotton seedlings under salt stress[J]. Xinjiang Agricultural Sciences, 2021, 58(8): 1418-1426. (in Chinese with English abstract) | |
[17] | 向警, 黄倩, 鞠春燕, 等. 外源褪黑素对盐胁迫下水稻种子萌发与幼苗生长的影响[J]. 植物生理学报, 2021, 57(2): 393-401. |
XIANG J, HUANG Q, JU C Y, et al. Effect of exogenous melatonin on seed germination and seedling growth of rice under salt stress[J]. Plant Physiology Journal, 2021, 57(2): 393-401. (in Chinese with English abstract)
DOI URL |
|
[18] | 王芳, 刘燕, 王铁兵, 等. 外源褪黑素对玉米幼苗盐胁迫的缓解效应研究[J]. 中国草地学报, 2020, 42(5): 14-21. |
WANG F, LIU Y, WANG T B, et al. Mitigation effect and mechanism of exogenous melatonin on maize seedling under salt stress[J]. Chinese Journal of Grassland, 2020, 42(5): 14-21. (in Chinese with English abstract) | |
[19] |
BAJWA V S, SHUKLA M R, SHERIF S M, et al. Role of melatonin in alleviating cold stress in Arabidopsis thaliana[J]. Journal of Pineal Research, 2014, 56(3): 238-245.
DOI URL |
[20] | 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 3版. 北京: 高等教育出版社, 2015. |
[21] | 施满容, 龚林光, 陆志平, 等. 不同地区野生金线莲有效成分含量的比较[J]. 安徽农学通报, 2016, 22(24): 107-110. |
SHI M R, GONG L G, LU Z P, et al. The comparison of effective composition content in different localities of wild Anoectochilus roxburghii[J]. Anhui Agricultural Science Bulletin, 2016, 22(24): 107-110. (in Chinese with English abstract) | |
[22] | 王菲, 张艳珍, 毛海峰. 柠条花中总生物碱提取工艺研究[J]. 中国食物与营养, 2020, 26(4): 42-45. |
WANG F, ZHANG Y Z, MAO H F. The extraction technology of total alkaloids from Caragana[J]. Food and Nutrition in China, 2020, 26(4): 42-45. (in Chinese with English abstract) | |
[23] |
ZHANG N, SUN Q Q, LI H F, et al. Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage[J]. Frontiers in Plant Science, 2016, 7: 197.
DOI PMID |
[24] |
SU G X, AN Z F, ZHANG W H, et al. Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls[J]. Journal of Plant Physiology, 2005, 162(12): 1297-1303.
DOI URL |
[25] | 龚动庭. 硅与γ-氨基丁酸引发对低温胁迫下油菜种子萌发与幼苗生长的影响[D]. 杭州: 浙江大学, 2019. |
GONG D T. Effects of seed priming with silicon and γ-aminobutyric acid on seed germination and seedling growth of Brassica napus L.under chilling stress[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract) | |
[26] |
YANG L, SUN Q, WANG Y P, et al. Global transcriptomic network of melatonin regulated root growth in Arabidopsis[J]. Gene, 2021, 764: 145082.
DOI URL |
[27] |
CHEN Z P, GU Q, YU X L, et al. Hydrogen peroxide Acts downstream of melatonin to induce lateral root formation[J]. Annals of Botany, 2018, 121(6): 1127-1136.
DOI PMID |
[28] |
CHEN J, LI H, YANG K, et al. Melatonin facilitates lateral root development by coordinating PAO-derived hydrogen peroxide and RBOH-derived superoxide radical[J]. Free Radical Biology and Medicine, 2019, 143: 534-544.
DOI PMID |
[29] |
高帆, 夏惠, 袁雪侦, 等. 外源褪黑素对盐胁迫下猕猴桃幼苗酚类物质含量和抗氧化能力的影响[J]. 浙江农业学报, 2017, 29(7): 1144-1150.
DOI |
GAO F, XIA H, YUAN X Z, et al. Effects of exogenous melatonin on phenolic substance content and antioxidant ability of kiwifruit seedlings under salt stress[J]. Acta Agriculturae Zhejiangensis, 2017, 29(7): 1144-1150. (in Chinese with English abstract)
DOI |
|
[30] | 于江珊, 张苗苗, 施江, 等. 植物激素对类黄酮代谢调控机制研究进展[J]. 中国中药杂志, 2021, 46(15): 3806-3813. |
YU J S, ZHANG M M, SHI J, et al. Research progress on mechanism of phytohormones in regulating flavonoid metabolism[J]. China Journal of Chinese Materia Medica, 2021, 46(15): 3806-3813. (in Chinese with English abstract) | |
[31] | 杜卓, 侯雯, 王丽, 等. 外源褪黑素对干旱胁迫下玉米幼苗的影响[J]. 中国农学通报, 2020, 36(27): 14-19. |
DU Z, HOU W, WANG L, et al. Effects of exogenous melatonin on maize seedlings under drought stress[J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 14-19. (in Chinese with English abstract) | |
[32] | TAN X L, ZHAO Y T, SHAN W, et al. Melatonin delays leaf senescence of postharvest Chinese flowering cabbage through ROS homeostasis[J]. Food Research International (Ottawa, Ont ), 2020, 138(Pt B): 109790. |
[1] | FANG Mingya, YU Hongwei, WU Yaxian, HAN Wenyan, LI Xin, LIU Haihe. Effects of exogenous epigallocatechin gallate on resistance of melon seedlings to powdery mildew [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 138-145. |
[2] | SONG Tianhao, PANG Lianfeng, CHEN Lingshuang, DENG Huidan, XU Zhiwen, ZHU Ling, REN Zhihua, DENG Junliang. Evaluation of thymol activity against pseudorabies virus in vitro and its action mode [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 41-49. |
[3] | ZHAO Saisai, ZHANG Haojie, CAI Xiulei, WANG Lirong, SHEN Xiaoran, CAO Zhi, SHAN Hu. Study on antibacterial and quorum quenching activity of a Pseudoalteromonas sp. DL3 [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 50-57. |
[4] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
[5] | GU Xianbin, LU Linghong, SONG Genhua, XIAO Jinping, ZHANG Huiqin. Regulation effect of melatonin pretreatment on waterlogging tolerance in peach seedling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1911-1924. |
[6] | DING Dongxia, LI Nenghui, LI Jing, TANG Chaonan, WANG Cheng, NIU Tianhang, YANG Yan, YANG Haitao, XIE Jianming. Effects of exogenous melatonin on chlorophyll fluorescence and antioxidant system of pepper (Capsicum annuum L.) under low temperature and low light stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1935-1944. |
[7] | JIN Houding, ZHENG Chunying, HUA Bin, YU Chenliang, LI Keyu, YU Weiwu. Rooting anatomy and physiological enzyme activity of Torreya grandis cuttings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1955-1966. |
[8] | LI Xiang, ZHU Haixia. Isolation, identification and herbicidal potential of weed pathogenic strain GD-0221 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1967-1975. |
[9] | SHAO Yuchen, MU Honglei, CHEN Hangjun, YIN Junyi, FANG Xiangjun, WU Weijie, LIU Ruiling, HAN Yanchao, GAO Haiyan. Effects of intestinal conditions and particle size on in vitro digestion of processed Carya cathayensis Sarg. [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1734-1742. |
[10] | TANG Xiao, MA Ming. Antibacterial activity and stability of Extracts of four common rice dumplings leaves [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1287-1397. |
[11] | LI Yuting, LI Sha, CAO Jie, LI Jiaoyang, ZHANG Liang, XU Xiaofeng. Effects of microplastics on growth and antioxidant system of ectomycorrhizal fungi [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1049-1060. |
[12] | LIU Jing, HU Xiao, YANG Xianqing, CHEN Shengjun, WU Yanyan, LI Laihao, QI Bo, DENG Jianchao. Extraction and antioxidant activity of enzymolysis products of Gracilaria lemaneiformis protein [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1061-1072. |
[13] | CHAI Qinqin, ZENG Jian, ZHANG Xun. Identification of fake Anoectochilus roxburghii based on Bayesian optimized convolutional neural network [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 391-396. |
[14] | LU Linghong, MA Yuanyuan, GU Xianbin, XIAO Jinping, SONG Genhua, ZHANG Huiqin. Changes of polysaccharide content and pectin degradation related enzyme activities in cell wall during softening of kiwifruit [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2648-2658. |
[15] | GAO Zhiyuan, YANG Shuna, WANG Zhaoli, WANG Zhihao, XI Xinyan, HE Juan, JIA Huijuan. Effects of different fumigation on continuous cropping soil in peach orchard [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2251-2258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||