Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (2): 319-328.DOI: 10.3969/j.issn.1004-1524.2023.02.09
• Horticultural Science • Previous Articles Next Articles
LI Xiaojuan1,2(), ZHAO Wenju1,2, ZHAO Mengliang1,2, SHAO Dengkui1,2, MA Yidong1,2, REN Yanjing1,2,*(
)
Received:
2021-11-02
Online:
2023-02-25
Published:
2023-03-14
Contact:
REN Yanjing
CLC Number:
LI Xiaojuan, ZHAO Wenju, ZHAO Mengliang, SHAO Dengkui, MA Yidong, REN Yanjing. Development and application of SSR markers based on transcriptome sequencing of turnip (Brassica rapa ssp. rapa)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 319-328.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.02.09
编号No. | 名称Name | 产地Production area | 编号No. | 名称Name | 产地Production area |
---|---|---|---|---|---|
1 | 1401 | 青海Qinghai | 26 | W29 | 青海Qinghai |
2 | 1402 | 青海Qinghai | 27 | W30 | 青海Qinghai |
3 | 1403 | 西藏Tibet | 28 | W31 | 青海Qinghai |
4 | 1404 | 青海Qinghai | 29 | T1 | 河北Hebei |
5 | 1405 | 青海Qinghai | 30 | T2 | 河北Hebei |
6 | 1406 | 四川Sichuan | 31 | T4 | 黑龙江Heilongjiang |
7 | 1407 | 四川Sichuan | 32 | T5 | 内蒙古Inner Mongolia |
8 | 1408 | 新疆Xinjiang | 33 | T6 | 内蒙古Inner Mongolia |
9 | 1409 | 新疆Xinjiang | 34 | T11 | 日本Japan |
10 | 1410 | 青海Qinghai | 35 | T14 | 日本Japan |
11 | 1411 | 西藏Tibet | 36 | T15 | 日本Japan |
12 | 1412 | 云南Yunnan | 37 | T16 | 青海Qinghai |
13 | 1413 | 云南Yunnan | 38 | T17 | 青海Qinghai |
14 | G1 | 青海Qinghai | 39 | T18 | 甘肃Gansu |
15 | G2 | 青海Qinghai | 40 | IC9 | 国家种质资源库The National Germplasm Bank |
16 | G3 | 青海Qinghai | 41 | IC22 | 国家种质资源库The National Germplasm Bank |
17 | G4 | 青海Qinghai | 42 | IC23 | 国家种质资源库The National Germplasm Bank |
18 | W21 | 北京Beijing | 43 | IC28 | 国家种质资源库The National Germplasm Bank |
19 | W22 | 河南Henan | 44 | IC39 | 国家种质资源库The National Germplasm Bank |
20 | W23 | 河北Hebei | 45 | IC40 | 国家种质资源库The National Germplasm Bank |
21 | W24 | 河北Hebei | 46 | IC43 | 国家种质资源库The National Germplasm Bank |
22 | W25 | 河北Hebei | 47 | IC44 | 国家种质资源库The National Germplasm Bank |
23 | W26 | 内蒙古Inner Mongolia | 48 | BLK | 内蒙古Inner Mongolia |
24 | W27 | 北京Beijing | 49 | SK | 黑龙江Heilongjiang |
25 | W28 | 内蒙古Inner Mongolia | 50 | NS1 | 内蒙古Inner Mongolia |
Table 1 Information of materials tested
编号No. | 名称Name | 产地Production area | 编号No. | 名称Name | 产地Production area |
---|---|---|---|---|---|
1 | 1401 | 青海Qinghai | 26 | W29 | 青海Qinghai |
2 | 1402 | 青海Qinghai | 27 | W30 | 青海Qinghai |
3 | 1403 | 西藏Tibet | 28 | W31 | 青海Qinghai |
4 | 1404 | 青海Qinghai | 29 | T1 | 河北Hebei |
5 | 1405 | 青海Qinghai | 30 | T2 | 河北Hebei |
6 | 1406 | 四川Sichuan | 31 | T4 | 黑龙江Heilongjiang |
7 | 1407 | 四川Sichuan | 32 | T5 | 内蒙古Inner Mongolia |
8 | 1408 | 新疆Xinjiang | 33 | T6 | 内蒙古Inner Mongolia |
9 | 1409 | 新疆Xinjiang | 34 | T11 | 日本Japan |
10 | 1410 | 青海Qinghai | 35 | T14 | 日本Japan |
11 | 1411 | 西藏Tibet | 36 | T15 | 日本Japan |
12 | 1412 | 云南Yunnan | 37 | T16 | 青海Qinghai |
13 | 1413 | 云南Yunnan | 38 | T17 | 青海Qinghai |
14 | G1 | 青海Qinghai | 39 | T18 | 甘肃Gansu |
15 | G2 | 青海Qinghai | 40 | IC9 | 国家种质资源库The National Germplasm Bank |
16 | G3 | 青海Qinghai | 41 | IC22 | 国家种质资源库The National Germplasm Bank |
17 | G4 | 青海Qinghai | 42 | IC23 | 国家种质资源库The National Germplasm Bank |
18 | W21 | 北京Beijing | 43 | IC28 | 国家种质资源库The National Germplasm Bank |
19 | W22 | 河南Henan | 44 | IC39 | 国家种质资源库The National Germplasm Bank |
20 | W23 | 河北Hebei | 45 | IC40 | 国家种质资源库The National Germplasm Bank |
21 | W24 | 河北Hebei | 46 | IC43 | 国家种质资源库The National Germplasm Bank |
22 | W25 | 河北Hebei | 47 | IC44 | 国家种质资源库The National Germplasm Bank |
23 | W26 | 内蒙古Inner Mongolia | 48 | BLK | 内蒙古Inner Mongolia |
24 | W27 | 北京Beijing | 49 | SK | 黑龙江Heilongjiang |
25 | W28 | 内蒙古Inner Mongolia | 50 | NS1 | 内蒙古Inner Mongolia |
重复基元 Repeat motif length | 重复次数Repeat number | 合计 Total | 比例 Percentage/% | ||||||
---|---|---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | >10 | |||
单核苷酸Mononucleotide | 0 | 0 | 0 | 0 | 0 | 16 975 | 7 820 | 24 795 | 45.50 |
二核苷酸Dinucleotide | 0 | 6 174 | 3 311 | 2 421 | 1 550 | 0 | 0 | 13 456 | 24.70 |
三核苷酸Trinucleotide | 9 813 | 3 591 | 1 388 | 620 | 97 | 0 | 0 | 15 509 | 28.47 |
四核苷酸Tetranucleotide | 342 | 94 | 12 | 7 | 2 | 0 | 6 | 461 | 0.85 |
五核苷酸Pentanucleotide | 95 | 18 | 5 | 2 | 0 | 4 | 0 | 124 | 0.23 |
六核苷酸Hexanucleotide | 77 | 32 | 17 | 6 | 1 | 0 | 5 | 137 | 0.25 |
合计Total | 10 327 | 9 909 | 4 733 | 3 056 | 1 650 | 16 979 | 7 831 | 54 482 | 100 |
合计占比Total proportion/% | 18.95 | 18.19 | 8.69 | 5.61 | 3.03 | 31.16 | 14.37 |
Table 2 Number and ratio of SSR in turnip
重复基元 Repeat motif length | 重复次数Repeat number | 合计 Total | 比例 Percentage/% | ||||||
---|---|---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | >10 | |||
单核苷酸Mononucleotide | 0 | 0 | 0 | 0 | 0 | 16 975 | 7 820 | 24 795 | 45.50 |
二核苷酸Dinucleotide | 0 | 6 174 | 3 311 | 2 421 | 1 550 | 0 | 0 | 13 456 | 24.70 |
三核苷酸Trinucleotide | 9 813 | 3 591 | 1 388 | 620 | 97 | 0 | 0 | 15 509 | 28.47 |
四核苷酸Tetranucleotide | 342 | 94 | 12 | 7 | 2 | 0 | 6 | 461 | 0.85 |
五核苷酸Pentanucleotide | 95 | 18 | 5 | 2 | 0 | 4 | 0 | 124 | 0.23 |
六核苷酸Hexanucleotide | 77 | 32 | 17 | 6 | 1 | 0 | 5 | 137 | 0.25 |
合计Total | 10 327 | 9 909 | 4 733 | 3 056 | 1 650 | 16 979 | 7 831 | 54 482 | 100 |
合计占比Total proportion/% | 18.95 | 18.19 | 8.69 | 5.61 | 3.03 | 31.16 | 14.37 |
重复类型 Repeat type | 基序类型数 Number of motif type | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% |
---|---|---|---|---|---|---|---|
单核苷酸Mononucleotide | 2 | A/T | 24 649 | 45.24 | C/G | 146 | 0.27 |
二核苷酸Dinucleotide | 4 | AT/AT | 2 585 | 4.74 | AG/CT | 9 288 | 17.05 |
AC/GT | 1 551 | 2.85 | CG/CG | 32 | 0.06 | ||
三核苷酸Trinucleotide | 10 | AAT/ATT | 553 | 1.02 | ACC/GGT | 1 216 | 2.23 |
AAC/GTT | 1 535 | 2.82 | ACG/CGT | 517 | 0.95 | ||
AAG/CTT | 5 054 | 9.28 | AGC/GCT | 713 | 1.31 | ||
ATC/GAT | 1 381 | 2.53 | AGG/CCT | 2656 | 4.88 | ||
ATG/CAT | 1 511 | 2.77 | CCG/TCC | 464 | 0.85 | ||
四核苷酸Tetranucleotide | 26 | AAAC/GTTT | 96 | 0.18 | AAAG/CTTT | 112 | 0.21 |
AAAT/ATTT | 80 | 0.15 | 其他Others | 173 | 0.32 | ||
五核苷酸Pentanucleotide | 26 | AAAAT/ATTTT | 24 | 0.04 | AAAAG/CTTTT | 13 | 0.02 |
AACCA/TGGTT | 16 | 0.03 | 其他Others | 71 | 0.13 | ||
六核苷酸Hexanucleotide | 44 | GGCTGT/ACAGCC | 14 | 0.03 | CCAGCT/AGCTGG | 13 | 0.02 |
TTTTTG/CAAAAA | 11 | 0.02 | 其他Others | 99 | 0.18 |
Table 3 SSR repeat motifs, number and their ratio of turnip
重复类型 Repeat type | 基序类型数 Number of motif type | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% |
---|---|---|---|---|---|---|---|
单核苷酸Mononucleotide | 2 | A/T | 24 649 | 45.24 | C/G | 146 | 0.27 |
二核苷酸Dinucleotide | 4 | AT/AT | 2 585 | 4.74 | AG/CT | 9 288 | 17.05 |
AC/GT | 1 551 | 2.85 | CG/CG | 32 | 0.06 | ||
三核苷酸Trinucleotide | 10 | AAT/ATT | 553 | 1.02 | ACC/GGT | 1 216 | 2.23 |
AAC/GTT | 1 535 | 2.82 | ACG/CGT | 517 | 0.95 | ||
AAG/CTT | 5 054 | 9.28 | AGC/GCT | 713 | 1.31 | ||
ATC/GAT | 1 381 | 2.53 | AGG/CCT | 2656 | 4.88 | ||
ATG/CAT | 1 511 | 2.77 | CCG/TCC | 464 | 0.85 | ||
四核苷酸Tetranucleotide | 26 | AAAC/GTTT | 96 | 0.18 | AAAG/CTTT | 112 | 0.21 |
AAAT/ATTT | 80 | 0.15 | 其他Others | 173 | 0.32 | ||
五核苷酸Pentanucleotide | 26 | AAAAT/ATTTT | 24 | 0.04 | AAAAG/CTTTT | 13 | 0.02 |
AACCA/TGGTT | 16 | 0.03 | 其他Others | 71 | 0.13 | ||
六核苷酸Hexanucleotide | 44 | GGCTGT/ACAGCC | 14 | 0.03 | CCAGCT/AGCTGG | 13 | 0.02 |
TTTTTG/CAAAAA | 11 | 0.02 | 其他Others | 99 | 0.18 |
序号 No. | 引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 预期产物大小 Expected product size/bp | 退火温度 Annealing temperature/ ℃ | GC含量 GC content | 扩增条带数 Number of amplification bands | 多态性条带数 Number of polymorphism bands | 多态性比例 Percentage of polymorphism/ % |
---|---|---|---|---|---|---|---|---|
1 | Cluster-10000.0 | TTAATCGATCTCCGGTGGCG | 217 | 60.00 | 55.00 | 3 | 3 | 100 |
TCTACGTATGGGACCAGCCA | ||||||||
2 | Cluster-27140.0 | GACTGATGAGATGCCTCGGG | 209 | 59.97 | 60.00 | 3 | 3 | 100 |
CCGGAGATCCAATGTACCCG | ||||||||
3 | Cluster-30924.104122 | CGGTTGTCTCCCCGGTTTAA | 200 | 59.97 | 57.50 | 1 | 1 | 100 |
CCCAGTAGATTCTCGCGTCC | ||||||||
4 | Cluster-30924.109584 | GGACGCACCAATCTCCTTGA | 204 | 60.00 | 57.50 | 1 | 1 | 100 |
GCCCAATCTACCGAGTCGAG | ||||||||
5 | Cluster-30924.114983 | AAGGAGACGTCTTGCGAAGG | 208 | 60.04 | 52.50 | 6 | 6 | 100 |
ATGCCGTTCCGAGTTTCCAT | ||||||||
6 | Cluster-30924.120390 | CCTTGTGTTGCAAAGAGGGC | 211 | 59.97 | 55.00 | 1 | 1 | 100 |
CTGGTGCGCATTTATCTGCC | ||||||||
7 | Cluster-30924.126255 | TGATGATGATGGCTGGGCTG | 211 | 60.11 | 52.50 | 8 | 8 | 100 |
GCGCTAGGCTTTGCTTTTGT | ||||||||
8 | Cluster-30924.132245 | TCGGCATATGCTAGCTGGTG | 209 | 59.97 | 55.00 | 2 | 2 | 100 |
GACCACGCTCCTTCAGACAA | ||||||||
9 | Cluster-30924.138446 | TCCGTTTGAACCACACCCAA | 213 | 59.96 | 50.00 | 5 | 5 | 100 |
TAACAGCAACCTCGTTGGCT | ||||||||
10 | Cluster-30924.144894 | CGGAGCGGATGCAAGACTAT | 221 | 59.93 | 55.00 | 6 | 6 | 100 |
TCCCTCAGGACCAAAAGTGC | ||||||||
11 | Cluster-30924.151200 | AAGGAGGCTGCAAGAGTGAC | 221 | 59.96 | 57.50 | 6 | 6 | 100 |
CCAGTGGGTGTCTCAGGTTC | ||||||||
12 | Cluster-30924.157883 | CATTCGACCCGCTCTCTCTC | 206 | 59.97 | 60.00 | 2 | 2 | 100 |
CACCCGACAGTATACGTCCG | ||||||||
13 | Cluster-30924.164312 | GGAGACTGAGGGGATGAGGT | 219 | 60.03 | 57.50 | 4 | 4 | 100 |
AGAAATCGGACCCGGGTTTC | ||||||||
14 | Cluster-30924.171259 | TGTGAACCCAAGCTCCGTAC | 228 | 59.97 | 55.00 | 3 | 3 | 100 |
GCCGTCTTCATCACATTCGC | ||||||||
15 | Cluster-30924.22191 | TGGCTATCATCCCCTGTCCA | 207 | 60.03 | 55.00 | 1 | 1 | 100 |
GGGGATCAAGAAACGCCTGA | ||||||||
16 | Cluster-30924.28557 | TCTTCATGCGGCTTCCTCTG | 229 | 60.07 | 55.00 | 7 | 7 | 100 |
AGCAAAGCTCCCATCAGACC | ||||||||
17 | Cluster-30924.35340 | AGAGAGGCTATTGGCGCATC | 218 | 59.97 | 55.00 | 6 | 6 | 100 |
TCGGACAAGACACGGTGAAG | ||||||||
18 | Cluster-30924.41968 | CGCAGTTGGTTGTCACACAG | 203 | 59.97 | 55.00 | 3 | 3 | 100 |
CGTCTCACTCGGTGTTCCAA | ||||||||
19 | Cluster-30924.48364 | GAAGGGTGGAGTCGACAAGG | 206 | 59.97 | 60.00 | 1 | 1 | 100 |
GGTGGCTCTAATCGGTGGAG | ||||||||
20 | Cluster-30924.54426 | CTGCTTCTCCTCTTGCACCA | 257 | 59.97 | 55.00 | 3 | 3 | 100 |
TGTCGGAGGAGCTGAAACAC | ||||||||
21 | Cluster-30924.60140 | AGGTGGGGATAAGCACAAGC | 203 | 60.04 | 57.50 | 12 | 12 | 100 |
GTTCTCCACTGCCTCTGTCC | ||||||||
22 | Cluster-30924.65654 | GCCATCTCCGACTTCCCAAA | 224 | 60.04 | 55.00 | 2 | 2 | 100 |
GTCCAGTTCTCGCCATTCCA | ||||||||
23 | Cluster-30924.71367 | GCTGTCGGTGGTGTTCAAAC | 245 | 59.97 | 55.00 | 4 | 4 | 100 |
TAACAGGGACCGGCAAAGAC | ||||||||
24 | Cluster-30924.76636 | AGAGATGGCTGTGTTGGTGG | 203 | 60.00 | 55.00 | 13 | 13 | 100 |
ATGAGCGTCTTCCTCCTCCT | ||||||||
25 | Cluster-30924.82553 | ATTCGAGTTGGTGCCTGAGG | 241 | 60.04 | 55.00 | 2 | 2 | 100 |
AACGGAAAGCTCGAGGTCTG | ||||||||
26 | Cluster-30924.87846 | GAGCAATCGGTTCCCTGGAA | 217 | 60.03 | 55.00 | 2 | 2 | 100 |
TCATCTGGTACCTCGGAGCA | ||||||||
27 | Cluster-30924.93982 | CCAACTTGACGGTCGAAGGA | 218 | 60.00 | 55.00 | 1 | 1 | 100 |
TCAGATAACTCGAGGGGGC | ||||||||
28 | Cluster-30924.99449 | GCTCTGCCTGTTTTGGAAGC | 217 | 60.00 | 55.00 | 6 | 6 | 100 |
TGCTCTCTTCAACAGCCTGG | ||||||||
29 | Cluster-62597.0 | TGGACAAGGTGAAGTCTCCG | 212 | 59.57 | 55.00 | 6 | 6 | 100 |
ATTCGGAGAGCGAGGTTGAC | ||||||||
30 | Cluster-9993.0 | GCGAGTCAGGCCTAAAGGTT | 228 | 60.04 | 55.00 | 6 | 6 | 100 |
TCAATTTCCCTGGCGTCTCC |
Table 4 Primer sequences and amplification information of turnip
序号 No. | 引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 预期产物大小 Expected product size/bp | 退火温度 Annealing temperature/ ℃ | GC含量 GC content | 扩增条带数 Number of amplification bands | 多态性条带数 Number of polymorphism bands | 多态性比例 Percentage of polymorphism/ % |
---|---|---|---|---|---|---|---|---|
1 | Cluster-10000.0 | TTAATCGATCTCCGGTGGCG | 217 | 60.00 | 55.00 | 3 | 3 | 100 |
TCTACGTATGGGACCAGCCA | ||||||||
2 | Cluster-27140.0 | GACTGATGAGATGCCTCGGG | 209 | 59.97 | 60.00 | 3 | 3 | 100 |
CCGGAGATCCAATGTACCCG | ||||||||
3 | Cluster-30924.104122 | CGGTTGTCTCCCCGGTTTAA | 200 | 59.97 | 57.50 | 1 | 1 | 100 |
CCCAGTAGATTCTCGCGTCC | ||||||||
4 | Cluster-30924.109584 | GGACGCACCAATCTCCTTGA | 204 | 60.00 | 57.50 | 1 | 1 | 100 |
GCCCAATCTACCGAGTCGAG | ||||||||
5 | Cluster-30924.114983 | AAGGAGACGTCTTGCGAAGG | 208 | 60.04 | 52.50 | 6 | 6 | 100 |
ATGCCGTTCCGAGTTTCCAT | ||||||||
6 | Cluster-30924.120390 | CCTTGTGTTGCAAAGAGGGC | 211 | 59.97 | 55.00 | 1 | 1 | 100 |
CTGGTGCGCATTTATCTGCC | ||||||||
7 | Cluster-30924.126255 | TGATGATGATGGCTGGGCTG | 211 | 60.11 | 52.50 | 8 | 8 | 100 |
GCGCTAGGCTTTGCTTTTGT | ||||||||
8 | Cluster-30924.132245 | TCGGCATATGCTAGCTGGTG | 209 | 59.97 | 55.00 | 2 | 2 | 100 |
GACCACGCTCCTTCAGACAA | ||||||||
9 | Cluster-30924.138446 | TCCGTTTGAACCACACCCAA | 213 | 59.96 | 50.00 | 5 | 5 | 100 |
TAACAGCAACCTCGTTGGCT | ||||||||
10 | Cluster-30924.144894 | CGGAGCGGATGCAAGACTAT | 221 | 59.93 | 55.00 | 6 | 6 | 100 |
TCCCTCAGGACCAAAAGTGC | ||||||||
11 | Cluster-30924.151200 | AAGGAGGCTGCAAGAGTGAC | 221 | 59.96 | 57.50 | 6 | 6 | 100 |
CCAGTGGGTGTCTCAGGTTC | ||||||||
12 | Cluster-30924.157883 | CATTCGACCCGCTCTCTCTC | 206 | 59.97 | 60.00 | 2 | 2 | 100 |
CACCCGACAGTATACGTCCG | ||||||||
13 | Cluster-30924.164312 | GGAGACTGAGGGGATGAGGT | 219 | 60.03 | 57.50 | 4 | 4 | 100 |
AGAAATCGGACCCGGGTTTC | ||||||||
14 | Cluster-30924.171259 | TGTGAACCCAAGCTCCGTAC | 228 | 59.97 | 55.00 | 3 | 3 | 100 |
GCCGTCTTCATCACATTCGC | ||||||||
15 | Cluster-30924.22191 | TGGCTATCATCCCCTGTCCA | 207 | 60.03 | 55.00 | 1 | 1 | 100 |
GGGGATCAAGAAACGCCTGA | ||||||||
16 | Cluster-30924.28557 | TCTTCATGCGGCTTCCTCTG | 229 | 60.07 | 55.00 | 7 | 7 | 100 |
AGCAAAGCTCCCATCAGACC | ||||||||
17 | Cluster-30924.35340 | AGAGAGGCTATTGGCGCATC | 218 | 59.97 | 55.00 | 6 | 6 | 100 |
TCGGACAAGACACGGTGAAG | ||||||||
18 | Cluster-30924.41968 | CGCAGTTGGTTGTCACACAG | 203 | 59.97 | 55.00 | 3 | 3 | 100 |
CGTCTCACTCGGTGTTCCAA | ||||||||
19 | Cluster-30924.48364 | GAAGGGTGGAGTCGACAAGG | 206 | 59.97 | 60.00 | 1 | 1 | 100 |
GGTGGCTCTAATCGGTGGAG | ||||||||
20 | Cluster-30924.54426 | CTGCTTCTCCTCTTGCACCA | 257 | 59.97 | 55.00 | 3 | 3 | 100 |
TGTCGGAGGAGCTGAAACAC | ||||||||
21 | Cluster-30924.60140 | AGGTGGGGATAAGCACAAGC | 203 | 60.04 | 57.50 | 12 | 12 | 100 |
GTTCTCCACTGCCTCTGTCC | ||||||||
22 | Cluster-30924.65654 | GCCATCTCCGACTTCCCAAA | 224 | 60.04 | 55.00 | 2 | 2 | 100 |
GTCCAGTTCTCGCCATTCCA | ||||||||
23 | Cluster-30924.71367 | GCTGTCGGTGGTGTTCAAAC | 245 | 59.97 | 55.00 | 4 | 4 | 100 |
TAACAGGGACCGGCAAAGAC | ||||||||
24 | Cluster-30924.76636 | AGAGATGGCTGTGTTGGTGG | 203 | 60.00 | 55.00 | 13 | 13 | 100 |
ATGAGCGTCTTCCTCCTCCT | ||||||||
25 | Cluster-30924.82553 | ATTCGAGTTGGTGCCTGAGG | 241 | 60.04 | 55.00 | 2 | 2 | 100 |
AACGGAAAGCTCGAGGTCTG | ||||||||
26 | Cluster-30924.87846 | GAGCAATCGGTTCCCTGGAA | 217 | 60.03 | 55.00 | 2 | 2 | 100 |
TCATCTGGTACCTCGGAGCA | ||||||||
27 | Cluster-30924.93982 | CCAACTTGACGGTCGAAGGA | 218 | 60.00 | 55.00 | 1 | 1 | 100 |
TCAGATAACTCGAGGGGGC | ||||||||
28 | Cluster-30924.99449 | GCTCTGCCTGTTTTGGAAGC | 217 | 60.00 | 55.00 | 6 | 6 | 100 |
TGCTCTCTTCAACAGCCTGG | ||||||||
29 | Cluster-62597.0 | TGGACAAGGTGAAGTCTCCG | 212 | 59.57 | 55.00 | 6 | 6 | 100 |
ATTCGGAGAGCGAGGTTGAC | ||||||||
30 | Cluster-9993.0 | GCGAGTCAGGCCTAAAGGTT | 228 | 60.04 | 55.00 | 6 | 6 | 100 |
TCAATTTCCCTGGCGTCTCC |
引物 Primer | 观测等位基因数 Na | 有效等位基因数 Ne | Nei’s期望杂合度 h | 多样性指数 I | 多态性信息含量 PIC |
---|---|---|---|---|---|
Cluster-30924.35340 | 6 | 1.167 4 | 0.140 3 | 0.265 4 | 0.438 1 |
Cluster-30924.171259 | 3 | 1.408 7 | 0.277 3 | 0.443 3 | 0.698 6 |
Cluster-30924.151200 | 6 | 1.665 4 | 0.365 3 | 0.536 1 | 0.866 8 |
Cluster-30924.41968 | 3 | 1.701 0 | 0.377 6 | 0.551 1 | 0.689 3 |
Cluster-30924.28557 | 7 | 1.328 8 | 0.239 2 | 0.397 8 | 0.616 9 |
Cluster-30924.164312 | 4 | 1.856 3 | 0.455 1 | 0.646 0 | 0.737 0 |
Cluster-30924.157883 | 2 | 1.336 0 | 0.224 1 | 0.363 7 | 0.235 6 |
Cluster-9993.0 | 6 | 1.662 7 | 0.373 2 | 0.549 9 | 0.825 7 |
Cluster-62597.0 | 6 | 1.220 0 | 0.136 7 | 0.234 0 | 0.459 9 |
Cluster-30924.65654 | 2 | 1.456 3 | 0.265 6 | 0.407 9 | 0.312 4 |
Cluster-30924.71367 | 4 | 1.338 1 | 0.218 4 | 0.348 8 | 0.572 3 |
Cluster-30924.76636 | 6 | 1.761 2 | 0.428 9 | 0.619 4 | 0.858 5 |
Cluster-30924.99449 | 3 | 1.698 9 | 0.411 4 | 0.601 7 | 0.497 6 |
Cluster-30924.82553 | 2 | 1.423 5 | 0.255 4 | 0.397 3 | 0.289 0 |
Cluster-30924.87846 | 2 | 1.020 3 | 0.019 9 | 0.056 2 | 0.038 4 |
Cluster-30924.60140 | 6 | 1.742 9 | 0.422 9 | 0.613 1 | 0.639 7 |
Cluster-10000.0 | 3 | 1.366 2 | 0.198 8 | 0.306 1 | 0.439 9 |
Cluster-27140.0 | 3 | 1.796 7 | 0.442 2 | 0.633 9 | 0.575 0 |
Cluster-30924.54426 | 3 | 1.577 0 | 0.346 9 | 0.525 7 | 0.592 2 |
Cluster-30924.114983 | 6 | 1.181 4 | 0.111 0 | 0.190 9 | 0.310 7 |
Cluster-30924.126255 | 5 | 1.618 5 | 0.370 8 | 0.554 1 | 0.914 7 |
Cluster-30924.132245 | 2 | 1.197 9 | 0.160 5 | 0.292 7 | 0.404 7 |
Cluster-30924.138446 | 5 | 1.529 6 | 0.322 4 | 0.489 9 | 0.875 8 |
Cluster-30924.144894 | 6 | 1.505 7 | 0.322 9 | 0.498 8 | 0.769 0 |
平均值Mean | 4.208 3 | 1.481 7 | 0.287 0 | 0.438 5 | 0.569 1 |
标准差Standard deviation | 1.718 9 | 0.230 0 | 0.118 7 | 0.157 3 | 0.232 3 |
Table 5 Genetic parameters of 24 pairs of primers for SSR
引物 Primer | 观测等位基因数 Na | 有效等位基因数 Ne | Nei’s期望杂合度 h | 多样性指数 I | 多态性信息含量 PIC |
---|---|---|---|---|---|
Cluster-30924.35340 | 6 | 1.167 4 | 0.140 3 | 0.265 4 | 0.438 1 |
Cluster-30924.171259 | 3 | 1.408 7 | 0.277 3 | 0.443 3 | 0.698 6 |
Cluster-30924.151200 | 6 | 1.665 4 | 0.365 3 | 0.536 1 | 0.866 8 |
Cluster-30924.41968 | 3 | 1.701 0 | 0.377 6 | 0.551 1 | 0.689 3 |
Cluster-30924.28557 | 7 | 1.328 8 | 0.239 2 | 0.397 8 | 0.616 9 |
Cluster-30924.164312 | 4 | 1.856 3 | 0.455 1 | 0.646 0 | 0.737 0 |
Cluster-30924.157883 | 2 | 1.336 0 | 0.224 1 | 0.363 7 | 0.235 6 |
Cluster-9993.0 | 6 | 1.662 7 | 0.373 2 | 0.549 9 | 0.825 7 |
Cluster-62597.0 | 6 | 1.220 0 | 0.136 7 | 0.234 0 | 0.459 9 |
Cluster-30924.65654 | 2 | 1.456 3 | 0.265 6 | 0.407 9 | 0.312 4 |
Cluster-30924.71367 | 4 | 1.338 1 | 0.218 4 | 0.348 8 | 0.572 3 |
Cluster-30924.76636 | 6 | 1.761 2 | 0.428 9 | 0.619 4 | 0.858 5 |
Cluster-30924.99449 | 3 | 1.698 9 | 0.411 4 | 0.601 7 | 0.497 6 |
Cluster-30924.82553 | 2 | 1.423 5 | 0.255 4 | 0.397 3 | 0.289 0 |
Cluster-30924.87846 | 2 | 1.020 3 | 0.019 9 | 0.056 2 | 0.038 4 |
Cluster-30924.60140 | 6 | 1.742 9 | 0.422 9 | 0.613 1 | 0.639 7 |
Cluster-10000.0 | 3 | 1.366 2 | 0.198 8 | 0.306 1 | 0.439 9 |
Cluster-27140.0 | 3 | 1.796 7 | 0.442 2 | 0.633 9 | 0.575 0 |
Cluster-30924.54426 | 3 | 1.577 0 | 0.346 9 | 0.525 7 | 0.592 2 |
Cluster-30924.114983 | 6 | 1.181 4 | 0.111 0 | 0.190 9 | 0.310 7 |
Cluster-30924.126255 | 5 | 1.618 5 | 0.370 8 | 0.554 1 | 0.914 7 |
Cluster-30924.132245 | 2 | 1.197 9 | 0.160 5 | 0.292 7 | 0.404 7 |
Cluster-30924.138446 | 5 | 1.529 6 | 0.322 4 | 0.489 9 | 0.875 8 |
Cluster-30924.144894 | 6 | 1.505 7 | 0.322 9 | 0.498 8 | 0.769 0 |
平均值Mean | 4.208 3 | 1.481 7 | 0.287 0 | 0.438 5 | 0.569 1 |
标准差Standard deviation | 1.718 9 | 0.230 0 | 0.118 7 | 0.157 3 | 0.232 3 |
[1] | 任延靖, 韩睿, 赵孟良. 芜菁实时荧光定量PCR内参基因筛选[J]. 青海农林科技, 2021(3): 1-6. |
REN Y J, HAN R, ZHAO M L. Internal reference genes screening of turnip by real-time fluorescence quantiative PCR[J]. Science and Technology of Qinghai Agriculture and Forestry, 2021(3): 1-6. (in Chinese with English abstract) | |
[2] | 李欢欢, 陈春丽, 海力茜·陶尔大洪. 芜菁中性多糖对D-半乳糖致衰老小鼠的抗氧化作用[J]. 食品科技, 2021, 46(5): 168-173. |
LI H H, CHEN C L, HAILIQIAN T D. Antioxidant effect of turnip neutral polysaccharide on D-galactose-induced aging mice[J]. Food Science and Technology, 2021, 46(5): 168-173. (in Chinese with English abstract) | |
[3] | 张丽静, 付劢, 张文会, 等. 芜菁膏超声提取工艺优化及其抗氧化活性研究[J]. 西北农林科技大学学报(自然科学版), 2021, 49(10): 111-119. |
ZHANG L J, FU M, ZHANG W H, et al. Optimization of ultrasonic extraction technology of Brassica radix and its antioxidant activity[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(10): 111-119. (in Chinese with English abstract) | |
[4] | 刘建兵, 林风, 林军, 等. 芜菁的降血脂活性评价及作用机制探讨[J]. 海南医学院学报, 2022, 28(3):171-180. |
LIU J B, LIN F, LIN J, et al. Evaluation of hypolipidemic activity of Brassica rapa and its mechanism analysis[J]. Journal of Hainan Medical University, 2022, 28(3):171-180. (in Chinese with English abstract) | |
[5] | DEJANOVIC G M, ASLLANAJ E, GAMBA M, et al. Phytochemical characterization of turnip greens (Brassica rapa ssp. rapa): a systematic review[J]. PLoS One, 2021, 16(2): e0247032. |
[6] | 乔舒婷, 董文其, 胡齐赞, 等. 基于丝瓜全基因组序列SSR分子标记开发[J/OL]. 分子植物育种: 1-18[2021-10-13].http://kns.cnki.net/kcms/detail/46.1068.S.20210414.0946.004.html. |
QIAO S T, DONG W Q, HU Q Z, et al. Development of SSR molecular markers based on whole genome sequences of sponge gourd[J/OL]. Molecular Plant Breeding: 1-18[2021-10-13].http://kns.cnki.net/kcms/detail/46.1068.S.20210414.0946.004.html. (in Chinese with English abstract) | |
[7] | 刘美娟, 郑司浩, 赵莎, 等. 不同产区黄芩SSR分子标记鉴别研究[J]. 中国现代中药, 2021, 23(11):1876-1882. |
LIU M J, ZHENG S H, ZHAO S, et al, Research on identification of SSR molecular markers about Scutellaria baicalensis in different producing areas[J]. Modern Chinese Medicine, 2021, 23(11):1876-1882. (in Chinese with English abstract) | |
[8] | 李桂花, 陈汉才, 张艳, 等. 小白菜种质遗传多样性与亲缘关系的SRAP和SSR分析[J]. 广东农业科学, 2017, 44(5): 37-45. |
LI G H, CHEN H C, ZHANG Y, et al. Genetic diversity and phylogenetic relationships analysis of Chinese cabbage germplasm resources by SRAP and SSR[J]. Guangdong Agricultural Sciences, 2017, 44(5): 37-45. (in Chinese with English abstract) | |
[9] | 徐营莉, 华德平, 张红, 等. 白菜类蔬菜种子纯度SSR分子标记鉴定[J]. 分子植物育种, 2020, 18(1): 187-192. |
XU Y L, HUA D P, ZHANG H, et al. Identification of SSR molecular markers for purity of Chinese cabbage seeds[J]. Molecular Plant Breeding, 2020, 18(1): 187-192. (in Chinese with English abstract) | |
[10] | 何晓丽, 杨丹青, 杜志杰, 等. 不结球白菜形态性状及SSR遗传多样性关联分析[J]. 分子植物育种, 2021, 19(6): 1919-1927. |
HE X L, YANG D Q, DU Z J, et al. Association analysis of morphological traits and SSR genetic diversity in non-heading Chinese cabbage[J]. Molecular Plant Breeding, 2021, 19(6): 1919-1927. (in Chinese with English abstract) | |
[11] | 李永平, 张双照, 薛珠政, 等. 利用芥菜转录组信息挖掘SSR标记及用于种质分析[J]. 福建农业学报, 2020, 35(2): 169-177. |
LI Y P, ZHANG S Z, XUE Z Z, et al. Using SSR markers from Brassica juncea transcriptome for germplasm analysis[J]. Fujian Journal of Agricultural Sciences, 2020, 35(2): 169-177. (in Chinese with English abstract) | |
[12] | 颜新林, 管中荣, 温雯, 等. 基于SSR标记的芥菜品种鉴定技术体系建立及应用[J]. 植物遗传资源学报, 2021, 22(3): 758-770. |
YAN X L, GUAN Z R, WEN W, et al. Establishment and application of mustard variety identification system based on SSR markers(Brassica juncea L.)[J]. Journal of Plant Genetic Resources, 2021, 22(3): 758-770. (in Chinese with English abstract) | |
[13] | 胡齐赞, 乔舒婷, 董文其, 等. 浙江地方芥菜种质资源表型鉴定及遗传多样性分析[J/OL]. 分子植物育种:1-20[2021-09-10]. http://kns.cnki.net/kcms/detail/46.1068.S.20210331.1339.011.html. |
HU Q Z, QIAO S T, DONG W Q, et al. Phenotype identification and genetic diversity analysis of mustard local germplasm resources in Zhejiang[J/OL]. Molecular Plant Breeding: 1-20[2021-09-10].http://kns.cnki.net/kcms/detail/46.1068.S.20210331.1339.011.html. (in Chinese with English abstract) | |
[14] | ZHAO M, ZHONG Q, TIAN M, et al. Comparative transcriptome analysis reveals differentially expressed genes associated with the development of Jerusalem artichoke tuber (Helianthus tuberosus L.)[J]. Industrial Crops & Products, 2020, 151, 112455. |
[15] | POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter, 1997, 15(1): 8-15. |
[16] | 栾生, 孔杰, 王清印, 等. 日本囊对虾(Marsupenaeus japonicus)基因组微卫星特征分析[J]. 自然科学进展, 2007, 17(6): 731-740. |
LUAN S, KONG J, WANG Q Y, et al. Analysis of mirosatellites in the genome of Kuruma prawn Marsupenaeus japonicus[J]. Progress in Natural Science, 2007, 17(6): 731-740. (in Chinese) | |
[17] | ALI M E, WALIULLAH S. A Core35S promoter of cauliflower mosaic virus drives more efficient replication of turnip crinkle virus[J]. Plants, 2021, 10(8): 1700. |
[18] | 原静云, 李小军, 任翠翠, 等. 基于SSR标记的49个大白菜自交系遗传多样性分析[J]. 河南农业科学, 2016, 45(11): 92-95. |
YUAN J Y, LI X J, REN C C, et al. Genetic diversity analysis of forty-nine Chinese cabbage varieties using SSR markers[J]. Journal of Henan Agricultural Sciences, 2016, 45(11): 92-95. (in Chinese with English abstract) | |
[19] | 李菊, 杨亮, 苗明军, 等. 大蒜农艺性状与SSR遗传多样性关联分析[J]. 分子植物育种, 2022, 20(23):7857-7867. |
LI J, YANG L, MIAO M J, et al. Association analysis of agronomic traits and SSR genetic diversity in garlic[J]. Molecular Plant Breeding, 2022, 20(23):7857-7867. (in Chinese with English abstract) | |
[20] | 赵湘, 于拴仓, 薛林宝, 等. 利用SSR和InDel标记构建白菜×芜菁分子遗传图谱[J]. 西北农业学报, 2011, 20(12): 111-115. |
ZHAO X, YU S C, XUE L B, et al. Construction of a genetic linkage map in Chinese cabbage × turnip based on SSR and InDel markers[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(12): 111-115. (in Chinese with English abstract) | |
[21] | 陈春艳, 马杰, 屈雯, 等. 基于转录组序列的胡萝卜EST-SSR标记开发及遗传多样性分析[J/OL]. 分子植物育种: 1-12[2021-10-21]. http://kns.cnki.net/kcms/detail/46.1068.S.20210318.1142.016.html. |
CHENG C Y, MA J, QU W, et al. Development of EST-SSR markers based on transcriptome sequencing and genetic diversity analysis of carrot[J/OL]. Molecular Plant Breeding: 1-12[2021-10-21].http://kns.cnki.net/kcms/detail/46.1068.S.20210318.1142.016.html. (in Chinese with English abstract) | |
[22] | 张春红, 黄正金, 樊苏帆, 等. 不同栽培类型蓝莓遗传多样性的SSR分析[J]. 中国南方果树, 2021, 50(2): 154-160. |
ZHANG C H, HUANG Z J, FAN S F, et al. SSR analysis of the genetic diversity of blueberry in different cultivated types[J]. South China Fruits, 2021, 50(2): 154-160. (in Chinese) | |
[23] | 刘新雨, 田洁. 大蒜转录组简单重复序列标记分析与分子标记开发[J]. 浙江农业学报, 2020, 32(9): 1615-1625. |
LIU X Y, TIAN J. Analysis of simple sequence repeats in transcriptome of garlic (Allium sativum L.) and development of molecular markers[J]. Acta Agriculturae Zhejiangensis, 2020, 32(9): 1615-1625. (in Chinese with English abstract) | |
[24] | 杨亮, 李菊, 李志, 等. 基于SSR分子标记的番茄遗传多样性分析[J]. 分子植物育种, 2022, 20(22):7511-7521. |
YANG L, LI J, LI Z, et al. Genetic diversity analysis of tomato based on SSR molecular markers[J]. Molecular Plant Breeding, 2022, 20(22):7511-7521. (in Chinese with English abstract) | |
[25] | 李延龙, 张华敏, 崔蕴刚, 等. 韭菜全长转录组SSR信息分析及分子标记开发[J]. 园艺学报, 2020, 47(4): 759-768. |
LI Y L, ZHANG H M, CUI Y G, et al. Analysis on SSR information in full-length transcriptome and development of molecular markers in Allium tuberosum[J]. Acta Horticulturae Sinica, 2020, 47(4): 759-768. (in Chinese with English abstract) |
[1] | YANG Qiulei, WEI Xudong, MA Zhijie, CHEN Shengmei, CHAO Shengyu, WULAN Bateer. Maternal genetic diversity and genetic background of Qaidam cattle based on mtDNA Cyt b sequence variations [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 285-292. |
[2] | LIU Shili, LIAN Qingping, JIA Yongyi, CHI Meili, LI Fei, JIANG Jianhu, LIU Yinuo, ZHENG Jianbo, CHENG Shun, GU Zhimin. Genetic diversity analysis of three Opsariichthys bidens populations in Zhejiang Province based on mitochondrial Cyt b gene sequences [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 293-300. |
[3] | YE Meirong, HUANG Shoucheng, WANG Xiaopeng, LIU Airong, CUI Feng, KANG Jian. Transcriptome analysis of leaves of wild Portulaca oleracea L. based on Iso-Seq technology [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 67-78. |
[4] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
[5] | GUO Dandan, LIU Feng, NIU Baolong, LOU Bao. Genetic diversity of wild and cultured populations of little yellow croaker (Larimichthys polyactis) based on mitochondrial Cytb gene and D-loop region [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1856-1865. |
[6] | GU Xianbin, LU Linghong, SONG Genhua, XIAO Jinping, ZHANG Huiqin. Regulation effect of melatonin pretreatment on waterlogging tolerance in peach seedling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1911-1924. |
[7] | JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590. |
[8] | WANG Siliang, SHAO Yue, YAN Chengjin. Transcriptome analysis of Spodoptera furgiperda during corn-wheat host alternation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1236-1247. |
[9] | LIU Yihan, MOU Qingshan, CHEN Shanyu, RUAN Guanhai, HU Jin, GUAN Yajing. Establishment of DNA fingerprint for sunflower by SSR-HRM technique [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 678-686. |
[10] | LIU Chen, XU Haobo, SI Yuyang, LI Yapeng, GUO Yuting, DU Changxia. Research progress on regulation mechanism of plant response to salt stress based on transcriptomics [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 870-878. |
[11] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[12] | LAN Guoxiang, JIN Siqi, LI Xingrun, LIU Xiyu, LI Guomei, DONG Xinxing. Screening and functional analysis of differentially expressed genes in breast muscle transcriptome between Plateau raindrop pigeon and Janssen pigeon [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 507-516. |
[13] | YANG Xinxia, TANG Mansheng, ZHANG Bin. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 207-220. |
[14] | PEI Yun, XU Xiuhong, LU Jinbiao, CHEN Amin, ZHANG Wanping. Genetic diversity analysis of 151 cherry tomato resources in Guizhou Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 310-316. |
[15] | CHEN Jie, ZUO Zhicai, CAI Dongjie, FU Xingxin, LIU Lingli, ZHANG Yilin, GOU Liping, WANG Ya, REN Zhihua, DENG Junliang. Global genotype and subgenotype prevalence of bovine viral diarrhea virus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2622-2628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||