Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (2): 308-318.DOI: 3969/j.issn.1004-1524.2023.02.08
• Horticultural Science • Previous Articles Next Articles
LI Pingfang1,2(), YAO Xiefeng2,*(
), XU Jinhua2, ZHU Lingli2, YANG Xingping2,*(
)
Received:
2022-05-20
Online:
2023-02-25
Published:
2023-03-14
Contact:
YAO Xiefeng,YANG Xingping
CLC Number:
LI Pingfang, YAO Xiefeng, XU Jinhua, ZHU Lingli, YANG Xingping. Identification and preliminary functional characterization of SWEET sugar transporters involved in fruit development of melon (Cucumis melo L.)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 308-318.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/3969/j.issn.1004-1524.2023.02.08
引物名称 | 上游引物序列 | 下游引物序列 |
---|---|---|
Primer name | Forward primer sequence(5'-3') | Reverse primer sequence(5'-3') |
CmSWEET1 | TCTTGGAAATGCAACTGCTC | GGCAATTCAACATCGTCATC |
CmSWEET2 | AAAGTGTGGAGTTTATGCCATTT | CCCAACATAGTTCCTATTCCATT |
CmSWEET3 | CTCCGCAAGTTCCTTATGGT | CAATGGGCTTCCCACTAGAT |
CmSWEET5d | GGCCTCTTTCTGTCACCAGT | GCATTCCATAGAACACCCAA |
CmSWEET7a | GAGGGAAGGTAAAGGGAAGG | TGTTGCGAGTCCTATCAAGC |
CmSWEET7c | ATGGAAGAAGGGATCAGTGG | CCGTACAATGTCCACACCAT |
CmSWEET10 | TTCTTCAGCCAAACATGGAC | CGGGTGCAATAGATCAGATG |
CmSWEET12a | ACGCGGATGAGTTCTTTCTT | GAGCCTTCTTGGGAGCATAG |
CmSWEET12c | TCGATACTCATCACCCTGGA | AAGTGCCACCACATATGGAA |
CmSWEET12d | TCGAAAGAGAGTTTCTTCCTTACA | GCAGCAGGGTTATGGGTATT |
CmSWEET15 | CTCCTTTGGTTGTGTCATCG | AATGAAGTGAATGGCCACAA |
CmSWEET17c | AACGGAGATGATGGAGGAAG | TTGGCTTTGGAAGGCTTAAC |
Actin7 | TGCCCAGAAGTTCTATTCCAGC | CATAGTTGAACCACCACTGAGGAC |
TOPO-SWEET7a | CAC CAT GGT TTC TTT GGT GC | TCAAGCTCCATGGACCTCAG |
TOPO-SWEET3 | CACCATGAGATCTCTCTACACCAT | CTAGGAGTTATTTTGATGTGGA |
TOPO-SWEET17c | CACCATGGCTGCTAGTTTGAGCT | TCAAAATTTTCCATCTTCCACC |
NEV-SWEET7a: | GCGGCCGC AAGCTTGTAAAAGAA AT GGT TTC TTT GGT GC | GCGGCCGCTCAAGCTCCATGGACCTC |
NEV-SWEET3: | GCGGCCGC AAGCTTGTAAAAGAA ATGAGATCTCTCTACACC | GCGGCCGCCTAGGAGTTATTTTGATG |
Table 1 Primers used in RT-PCR, qPCR and cloning
引物名称 | 上游引物序列 | 下游引物序列 |
---|---|---|
Primer name | Forward primer sequence(5'-3') | Reverse primer sequence(5'-3') |
CmSWEET1 | TCTTGGAAATGCAACTGCTC | GGCAATTCAACATCGTCATC |
CmSWEET2 | AAAGTGTGGAGTTTATGCCATTT | CCCAACATAGTTCCTATTCCATT |
CmSWEET3 | CTCCGCAAGTTCCTTATGGT | CAATGGGCTTCCCACTAGAT |
CmSWEET5d | GGCCTCTTTCTGTCACCAGT | GCATTCCATAGAACACCCAA |
CmSWEET7a | GAGGGAAGGTAAAGGGAAGG | TGTTGCGAGTCCTATCAAGC |
CmSWEET7c | ATGGAAGAAGGGATCAGTGG | CCGTACAATGTCCACACCAT |
CmSWEET10 | TTCTTCAGCCAAACATGGAC | CGGGTGCAATAGATCAGATG |
CmSWEET12a | ACGCGGATGAGTTCTTTCTT | GAGCCTTCTTGGGAGCATAG |
CmSWEET12c | TCGATACTCATCACCCTGGA | AAGTGCCACCACATATGGAA |
CmSWEET12d | TCGAAAGAGAGTTTCTTCCTTACA | GCAGCAGGGTTATGGGTATT |
CmSWEET15 | CTCCTTTGGTTGTGTCATCG | AATGAAGTGAATGGCCACAA |
CmSWEET17c | AACGGAGATGATGGAGGAAG | TTGGCTTTGGAAGGCTTAAC |
Actin7 | TGCCCAGAAGTTCTATTCCAGC | CATAGTTGAACCACCACTGAGGAC |
TOPO-SWEET7a | CAC CAT GGT TTC TTT GGT GC | TCAAGCTCCATGGACCTCAG |
TOPO-SWEET3 | CACCATGAGATCTCTCTACACCAT | CTAGGAGTTATTTTGATGTGGA |
TOPO-SWEET17c | CACCATGGCTGCTAGTTTGAGCT | TCAAAATTTTCCATCTTCCACC |
NEV-SWEET7a: | GCGGCCGC AAGCTTGTAAAAGAA AT GGT TTC TTT GGT GC | GCGGCCGCTCAAGCTCCATGGACCTC |
NEV-SWEET3: | GCGGCCGC AAGCTTGTAAAAGAA ATGAGATCTCTCTACACC | GCGGCCGCCTAGGAGTTATTTTGATG |
基因名 Gene name | 甜瓜基因组ID Melon genome IDs | 拟南芥同源基因 Arabidopsis hits | E值 E-value | 开放阅读框 ORF length/bp | 多肽Deduced polypeptide | |||
---|---|---|---|---|---|---|---|---|
长度 | 分子量 | 等电点 | 跨膜区域 | |||||
Length/aa | MW/ku | pI | TM | |||||
CmSWEET1 | MELO3C008417.2.1 | AtSWEET1 | 6.00×10-94 | 759 | 252 | 27.7 | 9.25 | 7 |
CmSWEET3 | MELO3C005869.2.1 | AtSWEET3 | 3.00×10-43 | 627 | 208 | 23.5 | 9.06 | 5 |
CmSWEET5a | MELO3C002256.2.1 | AtSWEET5 | 2.00×10-72 | 552 | 183 | 21 | 9.42 | 5 |
CmSWEET5b | MELO3C009951.2.1 | AtSWEET5 | 9.00×10-67 | 747 | 248 | 28.2 | 8.91 | 7 |
CmSWEET5c | MELO3C009950.2.1 | AtSWEET5 | 5.00×10-63 | 705 | 234 | 26 | 8.72 | 7 |
CmSWEET7a | MELO3C016259.2.1 | AtSWEET7 | 3.00×10-74 | 789 | 262 | 29.1 | 9.1 | 7 |
CmSWEET7b | MELO3C005758.2.1 | AtSWEET7 | 3.00×10-39 | 504 | 265 | 29.1 | 9.66 | 7 |
CmSWEET9a | MELO3C008674.2.1 | AtSWEET9 | 4.00×10-76 | 798 | 262 | 30.1 | 9.07 | 7 |
CmSWEET9b | MELO3C031232.2.1 | AtSWEET9 | 4.00×10-59 | 639 | 212 | 24.3 | 9.8 | 6 |
CmSWEET10 | MELO3C026184.2.1 | AtSWEET10 | 5.00×10-82 | 891 | 296 | 33 | 9.23 | 7 |
CmSWEET12a | MELO3C026183.2.1 | AtSWEET12 | 1.00×10-79 | 894 | 297 | 33.3 | 8.85 | 7 |
CmSWEET12b | MELO3C002381.2.1 | AtSWEET12 | 2.00×10-72 | 876 | 291 | 32.9 | 6.44 | 7 |
CmSWEET12c | MELO3C002380.2.1 | AtSWEET12 | 3.00×10-38 | 729 | 242 | 27.4 | 8.97 | 5 |
CmSWEET15 | MELO3C022341.2.1 | AtSWEET15 | 2.00×10-74 | 822 | 273 | 30.9 | 9.19 | 6 |
CmSWEET17a | MELO3C000200.2.1 | AtSWEET17 | 2.00×10-42 | 582 | 193 | 21.6 | 7.66 | 4 |
CmSWEET17b | MELO3C004222.2.1 | AtSWEET17 | 1.00×10-31 | 456 | 151 | 16.6 | 8.67 | 5 |
CmSWEET17c | MELO3C027076.2.1 | AtSWEET17 | 2.00×10-27 | 615 | 204 | 22.5 | 7.8 | 4 |
CmSWEET17d | MELO3C031734.2.1 | AtSWEET17 | 4.00×10-16 | 501 | 166 | 19.5 | 9.86 | 2 |
Table 2 Bioinformatics analysis of SWEETs family genes in melon
基因名 Gene name | 甜瓜基因组ID Melon genome IDs | 拟南芥同源基因 Arabidopsis hits | E值 E-value | 开放阅读框 ORF length/bp | 多肽Deduced polypeptide | |||
---|---|---|---|---|---|---|---|---|
长度 | 分子量 | 等电点 | 跨膜区域 | |||||
Length/aa | MW/ku | pI | TM | |||||
CmSWEET1 | MELO3C008417.2.1 | AtSWEET1 | 6.00×10-94 | 759 | 252 | 27.7 | 9.25 | 7 |
CmSWEET3 | MELO3C005869.2.1 | AtSWEET3 | 3.00×10-43 | 627 | 208 | 23.5 | 9.06 | 5 |
CmSWEET5a | MELO3C002256.2.1 | AtSWEET5 | 2.00×10-72 | 552 | 183 | 21 | 9.42 | 5 |
CmSWEET5b | MELO3C009951.2.1 | AtSWEET5 | 9.00×10-67 | 747 | 248 | 28.2 | 8.91 | 7 |
CmSWEET5c | MELO3C009950.2.1 | AtSWEET5 | 5.00×10-63 | 705 | 234 | 26 | 8.72 | 7 |
CmSWEET7a | MELO3C016259.2.1 | AtSWEET7 | 3.00×10-74 | 789 | 262 | 29.1 | 9.1 | 7 |
CmSWEET7b | MELO3C005758.2.1 | AtSWEET7 | 3.00×10-39 | 504 | 265 | 29.1 | 9.66 | 7 |
CmSWEET9a | MELO3C008674.2.1 | AtSWEET9 | 4.00×10-76 | 798 | 262 | 30.1 | 9.07 | 7 |
CmSWEET9b | MELO3C031232.2.1 | AtSWEET9 | 4.00×10-59 | 639 | 212 | 24.3 | 9.8 | 6 |
CmSWEET10 | MELO3C026184.2.1 | AtSWEET10 | 5.00×10-82 | 891 | 296 | 33 | 9.23 | 7 |
CmSWEET12a | MELO3C026183.2.1 | AtSWEET12 | 1.00×10-79 | 894 | 297 | 33.3 | 8.85 | 7 |
CmSWEET12b | MELO3C002381.2.1 | AtSWEET12 | 2.00×10-72 | 876 | 291 | 32.9 | 6.44 | 7 |
CmSWEET12c | MELO3C002380.2.1 | AtSWEET12 | 3.00×10-38 | 729 | 242 | 27.4 | 8.97 | 5 |
CmSWEET15 | MELO3C022341.2.1 | AtSWEET15 | 2.00×10-74 | 822 | 273 | 30.9 | 9.19 | 6 |
CmSWEET17a | MELO3C000200.2.1 | AtSWEET17 | 2.00×10-42 | 582 | 193 | 21.6 | 7.66 | 4 |
CmSWEET17b | MELO3C004222.2.1 | AtSWEET17 | 1.00×10-31 | 456 | 151 | 16.6 | 8.67 | 5 |
CmSWEET17c | MELO3C027076.2.1 | AtSWEET17 | 2.00×10-27 | 615 | 204 | 22.5 | 7.8 | 4 |
CmSWEET17d | MELO3C031734.2.1 | AtSWEET17 | 4.00×10-16 | 501 | 166 | 19.5 | 9.86 | 2 |
Fig.4 qPCR analysis of 3 CmSWEETs genes during different fruit developmental stages in melon plants Each fruit was set as one replicate, the data were obtained from three separate replicates, each value in the graph showed means ± SD. Expression levels produced by qPCR were expressed as a ratio to the control. which was set at 1.0.
[1] | CHEN L Q, HOU B H, LALONDE S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323): 527-532. |
[2] | BÜTTNER M, et al. Monosaccharide transporters in plants: structure, function and physiology[J]. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2000, 1465(1/2): 263-274. |
[3] | KÜHN C, et al. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13(3): 287-297. |
[4] | ZHANG X Y, WANG X L, WANG X F, et al. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry[J]. Plant Physiology, 2006, 142(1): 220-232. |
[5] | NIE P X, WANG X Y, HU L P, et al. The predominance of the apoplasmic phloem-unloading pathway is interrupted by a symplasmic pathway during Chinese jujube fruit development[J]. Plant and Cell Physiology, 2010, 51(6): 1007-1018. |
[6] | ZHANG L Y, PENG Y B, PELLESCHI-TRAVIER S, et al. Evidence for apoplasmic phloem unloading in developing apple fruit[J]. Plant Physiology, 2004, 135(1): 574-586. |
[7] | HU L P, SUN H H, LI R F, et al. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage[J]. Plant, Cell & Environment, 2011, 34(11): 1835-1848. |
[8] | REN Y, GUO S G, ZHANG J, et al. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon[J]. Plant Physiology, 2018, 176(1): 836-850. |
[9] | CHEN L Q, QU X Q, HOU B H, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science, 2012, 335(6065): 207-211. |
[10] | KO H Y, HO L H, NEUHAUS H E, et al. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato[J]. Plant Physiology, 2021, 187(4): 2230-2245. |
[11] | XUAN Y H, HU Y B, CHEN L Q, et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): E3685-E3694. |
[12] | BREIA R, CONDE A, BADIM H, et al. Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles[J]. Plant Physiology, 2021, 186(2): 836-852. |
[13] | 胡丽萍, 张峰, 徐惠, 等. 植物SWEET基因家族结构、功能及调控研究进展[J]. 生物技术通报, 2017, 33(4): 27-37. |
HU L P, ZHANG F, XU H, et al. Research advances in the structure, function and regulation of SWEET gene family in plants[J]. Biotechnology Bulletin, 2017, 33(4): 27-37. (in Chinese with English abstract) | |
[14] | MANCK-GÖTZENBERGER J, REQUENA N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family[J]. Frontiers in Plant Science, 2016, 7: 487. |
[15] | 陈慧敏, 李威, 马雄风, 等. 植物SWEET基因家族的相关研究进展[J]. 中国农学通报, 2017, 33(19): 34-39. |
CHEN H M, LI W, MA X F, et al. SWEET gene family in plants: research advances[J]. Chinese Agricultural Science Bulletin, 2017, 33(19): 34-39. (in Chinese with English abstract) | |
[16] | MA L, ZHANG D C, MIAO Q S, et al. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling[J]. Plant and Cell Physiology, 2017, 58(5): 863-873. |
[17] | MATHAN J, SINGH A, RANJAN A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice[J]. Physiologia Plantarum, 2021, 171(4): 620-637. |
[18] | OLIVA R, JI C H, ATIENZA-GRANDE G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nature Biotechnology, 2019, 37(11): 1344-1350. |
[19] | KANNO Y, OIKAWA T, CHIBA Y, et al. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J]. Nature Communications, 2016, 7: 13245. |
[20] | CHEN L Q, LIN I W, QU X Q, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo[J]. The Plant Cell, 2015, 27(3): 607-619. |
[21] | LIVAK K J, et al. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. |
[22] | ANJALI A, FATIMA U, SENTHIL-KUMAR M. The ins and outs of SWEETs in plants: current understanding of the basics and their prospects in crop improvement[J]. Journal of Biosciences, 2021, 46: 100. |
[23] | WEI X Y, LIU F L, CHEN C, et al. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars[J]. Frontiers in Plant Science, 2014, 5: 569. |
[24] | ZHEN Q L, FANG T, PENG Q, et al. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation[J]. Horticulture Research, 2018, 5(10.1038): s41438-18. |
[25] | FENG C Y, HAN J X, HAN X X, et al. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato[J]. Gene, 2015, 573(2): 261-272. |
[26] | ZHANG Z, ZOU L M, REN C, et al. VvSWEET10 mediates sugar accumulation in grapes[J]. Genes, 2019, 10(4): 255. |
[27] | HU L P, ZHANG F, SONG S H, et al. Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber[J]. Journal of Integrative Agriculture, 2017, 16(7): 1486-1501. |
[28] | HUANG S W, LI R Q, ZHANG Z H, et al. The genome of the cucumber, Cucumis sativus L[J]. Nature Genetics, 2009, 41(12): 1275-1281. |
[29] | 申长卫, 袁敬平. 南瓜SWEET蛋白家族的全基因组鉴定与进化分析[J]. 广西植物, 2021, 41(1): 40-54. |
SHEN C W, YUAN J P. Genome-wide identification and phylogenetic analysis of SWEET protein family in pumpkin[J]. Guihaia, 2021, 41(1): 40-54. (in Chinese with English abstract) | |
[30] | KÜHN C, GROF C P L. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13(3): 287-297. |
[31] | SEO P J, PARK J M, KANG S K, et al. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity[J]. Planta, 2011, 233(1): 189-200. |
[32] | CHARDON F, BEDU M, CALENGE F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis[J]. Current Biology, 2013, 23(8): 697-702. |
[33] | KLEMENS P A W, PATZKE K, DEITMER J, et al. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis[J]. Plant Physiology, 2013, 163(3): 1338-1352. |
[34] | 杨官显, 许海峰, 张静, 等. 苹果糖转运蛋白基因MdSWEET17的功能鉴定[J]. 植物生理学报, 2018, 54(11): 1737-1745. |
YANG G X, XU H F, ZHANG J, et al. Functional identification of a sugar transporter gene MdSWEET17 in apple[J]. Plant Physiology Journal, 2018, 54(11): 1737-1745. (in Chinese with English abstract) | |
[35] | NI J P, LI J M, ZHU R X, et al. Overexpression of sugar transporter gene PbSWEET4 of pear causes sugar reduce and early senescence in leaves[J]. Gene, 2020, 743: 144582. |
[36] | LI Y X, LIU H, YAO X H, et al. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development[J]. Plant Physiology, 2021, 186(1): 640-654. |
[37] | SONNEWALD U. Sweets-the missing sugar efflux carriers[J]. Frontiers in Plant Science, 2011, 2: 7. |
[38] | CHEN L Q. SWEET sugar transporters for phloem transport and pathogen nutrition[J]. New Phytologist, 2014, 201(4): 1150-1155. |
[1] | FANG Mingya, YU Hongwei, WU Yaxian, HAN Wenyan, LI Xin, LIU Haihe. Effects of exogenous epigallocatechin gallate on resistance of melon seedlings to powdery mildew [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 138-145. |
[2] | JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590. |
[3] | WANG Chenwei, WANG Xiaofu, WEI Wei, CHEN Xiaoyun, SHEN Jie, XU Junfeng, CAI Jian. Establishment of on-site rapid dual-mode fluorescence RPA detection method for bacterialfruit of blotch [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1519-1528. |
[4] | NIU Erli, PEI Hongbin, DING Jian, ZHU Shenlong. Flower bud differentiation and fruit development of three olive cultivars [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 887-896. |
[5] | ZHAO Yuhong, HE Wen, LI Gen, WANG Qiang, XIE Rui, WANG Yan, CHEN Qing, WANG Xiaorong. Fruit quality of Citrus maxima (Burm.) Merrill and its bud mutants varieties in Sichuan area [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 995-1004. |
[6] | HAN Yuanshun, XU Linyun, ZHOU Jie, YU Bing. Experimental study on vibration response and fruit dropping of chestnut tree [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 599-613. |
[7] | CAI Jiye, FANG Xiangjun, HAN Yanchao, DING Yuting, CHEN Hangjun, WU Weijie, GAO Haiyan. Effect controlled atmosphere storage on postharvest preservation of Dongkui bayberry [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 352-359. |
[8] | LU Linghong, MA Yuanyuan, GU Xianbin, XIAO Jinping, SONG Genhua, ZHANG Huiqin. Changes of polysaccharide content and pectin degradation related enzyme activities in cell wall during softening of kiwifruit [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2648-2658. |
[9] | DENG Tao, YANG Hua, XIAO Yingping, WANG Wen, LYU Wentao, WANG Xiaoli, WU Zhen, JI Xiaofeng. Simultaneous determination of five Alternaria toxins by QuEChERS-ultra-performance liquid chromatography-tandem mass spectrometry in fruit puree for infants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2728-2739. |
[10] | ZHOU Xinxing, ZHAO Lin, ZHANG Wenjie, TAN Changwei, LI Gangbo, SHI Mengyun, ZHANG Ting, YANG Feng. Remote sensing extraction of fruit tree planting area based on Sentinel-2 multi-temporal images [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2767-2777. |
[11] | HAO Jinlian, YANG Yuqi, WANG Ru, YANG Mengsi, LIAO Chenyu, CHEN Hong, HU Haifang. Effects of different harvest time on quality of walnut varieties Wen 185 and Xinxin 2 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2188-2198. |
[12] | LI Hongmei, LU Shengmin, ZHENG Meiyu, CAO Feng, ZHANG Wenjuan, DONG Mingsheng. Comparison on qualitative characters of fruit paste processed using two main loquat varieties cultivated in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2277-2285. |
[13] | GUO Yang, GUO Junxian, SHI Yong, LI Xuelian, HUANG Hua. SPAD inversion model of cantaloupe canopy leaf based on BiPLS-CARS-PLS [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2286-2295. |
[14] | LUO Yue, WU Xiaomao, LIU Ali, YAO Xiaolong, LI Rongyu, GENG Guangdong. Visual detection method of Colletotrichum scovilleiin fruit and vegetable based on LAMP [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 98-103. |
[15] | XIONG Xue, ZHAO Lina, YANG Senlin, SAMIAH Arif, ZHANG Yidong. Genome-wide identification of CmCIPK family and its expression analysis under abiotic stress in melon [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1625-1639. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||