Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (2): 319-328.DOI: 10.3969/j.issn.1004-1524.2023.02.09
• Horticultural Science • Previous Articles Next Articles
LI Xiaojuan1,2(
), ZHAO Wenju1,2, ZHAO Mengliang1,2, SHAO Dengkui1,2, MA Yidong1,2, REN Yanjing1,2,*(
)
Received:2021-11-02
Online:2023-02-25
Published:2023-03-14
Contact:
REN Yanjing
CLC Number:
LI Xiaojuan, ZHAO Wenju, ZHAO Mengliang, SHAO Dengkui, MA Yidong, REN Yanjing. Development and application of SSR markers based on transcriptome sequencing of turnip (Brassica rapa ssp. rapa)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 319-328.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.02.09
| 编号No. | 名称Name | 产地Production area | 编号No. | 名称Name | 产地Production area |
|---|---|---|---|---|---|
| 1 | 1401 | 青海Qinghai | 26 | W29 | 青海Qinghai |
| 2 | 1402 | 青海Qinghai | 27 | W30 | 青海Qinghai |
| 3 | 1403 | 西藏Tibet | 28 | W31 | 青海Qinghai |
| 4 | 1404 | 青海Qinghai | 29 | T1 | 河北Hebei |
| 5 | 1405 | 青海Qinghai | 30 | T2 | 河北Hebei |
| 6 | 1406 | 四川Sichuan | 31 | T4 | 黑龙江Heilongjiang |
| 7 | 1407 | 四川Sichuan | 32 | T5 | 内蒙古Inner Mongolia |
| 8 | 1408 | 新疆Xinjiang | 33 | T6 | 内蒙古Inner Mongolia |
| 9 | 1409 | 新疆Xinjiang | 34 | T11 | 日本Japan |
| 10 | 1410 | 青海Qinghai | 35 | T14 | 日本Japan |
| 11 | 1411 | 西藏Tibet | 36 | T15 | 日本Japan |
| 12 | 1412 | 云南Yunnan | 37 | T16 | 青海Qinghai |
| 13 | 1413 | 云南Yunnan | 38 | T17 | 青海Qinghai |
| 14 | G1 | 青海Qinghai | 39 | T18 | 甘肃Gansu |
| 15 | G2 | 青海Qinghai | 40 | IC9 | 国家种质资源库The National Germplasm Bank |
| 16 | G3 | 青海Qinghai | 41 | IC22 | 国家种质资源库The National Germplasm Bank |
| 17 | G4 | 青海Qinghai | 42 | IC23 | 国家种质资源库The National Germplasm Bank |
| 18 | W21 | 北京Beijing | 43 | IC28 | 国家种质资源库The National Germplasm Bank |
| 19 | W22 | 河南Henan | 44 | IC39 | 国家种质资源库The National Germplasm Bank |
| 20 | W23 | 河北Hebei | 45 | IC40 | 国家种质资源库The National Germplasm Bank |
| 21 | W24 | 河北Hebei | 46 | IC43 | 国家种质资源库The National Germplasm Bank |
| 22 | W25 | 河北Hebei | 47 | IC44 | 国家种质资源库The National Germplasm Bank |
| 23 | W26 | 内蒙古Inner Mongolia | 48 | BLK | 内蒙古Inner Mongolia |
| 24 | W27 | 北京Beijing | 49 | SK | 黑龙江Heilongjiang |
| 25 | W28 | 内蒙古Inner Mongolia | 50 | NS1 | 内蒙古Inner Mongolia |
Table 1 Information of materials tested
| 编号No. | 名称Name | 产地Production area | 编号No. | 名称Name | 产地Production area |
|---|---|---|---|---|---|
| 1 | 1401 | 青海Qinghai | 26 | W29 | 青海Qinghai |
| 2 | 1402 | 青海Qinghai | 27 | W30 | 青海Qinghai |
| 3 | 1403 | 西藏Tibet | 28 | W31 | 青海Qinghai |
| 4 | 1404 | 青海Qinghai | 29 | T1 | 河北Hebei |
| 5 | 1405 | 青海Qinghai | 30 | T2 | 河北Hebei |
| 6 | 1406 | 四川Sichuan | 31 | T4 | 黑龙江Heilongjiang |
| 7 | 1407 | 四川Sichuan | 32 | T5 | 内蒙古Inner Mongolia |
| 8 | 1408 | 新疆Xinjiang | 33 | T6 | 内蒙古Inner Mongolia |
| 9 | 1409 | 新疆Xinjiang | 34 | T11 | 日本Japan |
| 10 | 1410 | 青海Qinghai | 35 | T14 | 日本Japan |
| 11 | 1411 | 西藏Tibet | 36 | T15 | 日本Japan |
| 12 | 1412 | 云南Yunnan | 37 | T16 | 青海Qinghai |
| 13 | 1413 | 云南Yunnan | 38 | T17 | 青海Qinghai |
| 14 | G1 | 青海Qinghai | 39 | T18 | 甘肃Gansu |
| 15 | G2 | 青海Qinghai | 40 | IC9 | 国家种质资源库The National Germplasm Bank |
| 16 | G3 | 青海Qinghai | 41 | IC22 | 国家种质资源库The National Germplasm Bank |
| 17 | G4 | 青海Qinghai | 42 | IC23 | 国家种质资源库The National Germplasm Bank |
| 18 | W21 | 北京Beijing | 43 | IC28 | 国家种质资源库The National Germplasm Bank |
| 19 | W22 | 河南Henan | 44 | IC39 | 国家种质资源库The National Germplasm Bank |
| 20 | W23 | 河北Hebei | 45 | IC40 | 国家种质资源库The National Germplasm Bank |
| 21 | W24 | 河北Hebei | 46 | IC43 | 国家种质资源库The National Germplasm Bank |
| 22 | W25 | 河北Hebei | 47 | IC44 | 国家种质资源库The National Germplasm Bank |
| 23 | W26 | 内蒙古Inner Mongolia | 48 | BLK | 内蒙古Inner Mongolia |
| 24 | W27 | 北京Beijing | 49 | SK | 黑龙江Heilongjiang |
| 25 | W28 | 内蒙古Inner Mongolia | 50 | NS1 | 内蒙古Inner Mongolia |
| 重复基元 Repeat motif length | 重复次数Repeat number | 合计 Total | 比例 Percentage/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 5 | 6 | 7 | 8 | 9 | 10 | >10 | |||
| 单核苷酸Mononucleotide | 0 | 0 | 0 | 0 | 0 | 16 975 | 7 820 | 24 795 | 45.50 |
| 二核苷酸Dinucleotide | 0 | 6 174 | 3 311 | 2 421 | 1 550 | 0 | 0 | 13 456 | 24.70 |
| 三核苷酸Trinucleotide | 9 813 | 3 591 | 1 388 | 620 | 97 | 0 | 0 | 15 509 | 28.47 |
| 四核苷酸Tetranucleotide | 342 | 94 | 12 | 7 | 2 | 0 | 6 | 461 | 0.85 |
| 五核苷酸Pentanucleotide | 95 | 18 | 5 | 2 | 0 | 4 | 0 | 124 | 0.23 |
| 六核苷酸Hexanucleotide | 77 | 32 | 17 | 6 | 1 | 0 | 5 | 137 | 0.25 |
| 合计Total | 10 327 | 9 909 | 4 733 | 3 056 | 1 650 | 16 979 | 7 831 | 54 482 | 100 |
| 合计占比Total proportion/% | 18.95 | 18.19 | 8.69 | 5.61 | 3.03 | 31.16 | 14.37 | ||
Table 2 Number and ratio of SSR in turnip
| 重复基元 Repeat motif length | 重复次数Repeat number | 合计 Total | 比例 Percentage/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 5 | 6 | 7 | 8 | 9 | 10 | >10 | |||
| 单核苷酸Mononucleotide | 0 | 0 | 0 | 0 | 0 | 16 975 | 7 820 | 24 795 | 45.50 |
| 二核苷酸Dinucleotide | 0 | 6 174 | 3 311 | 2 421 | 1 550 | 0 | 0 | 13 456 | 24.70 |
| 三核苷酸Trinucleotide | 9 813 | 3 591 | 1 388 | 620 | 97 | 0 | 0 | 15 509 | 28.47 |
| 四核苷酸Tetranucleotide | 342 | 94 | 12 | 7 | 2 | 0 | 6 | 461 | 0.85 |
| 五核苷酸Pentanucleotide | 95 | 18 | 5 | 2 | 0 | 4 | 0 | 124 | 0.23 |
| 六核苷酸Hexanucleotide | 77 | 32 | 17 | 6 | 1 | 0 | 5 | 137 | 0.25 |
| 合计Total | 10 327 | 9 909 | 4 733 | 3 056 | 1 650 | 16 979 | 7 831 | 54 482 | 100 |
| 合计占比Total proportion/% | 18.95 | 18.19 | 8.69 | 5.61 | 3.03 | 31.16 | 14.37 | ||
| 重复类型 Repeat type | 基序类型数 Number of motif type | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% |
|---|---|---|---|---|---|---|---|
| 单核苷酸Mononucleotide | 2 | A/T | 24 649 | 45.24 | C/G | 146 | 0.27 |
| 二核苷酸Dinucleotide | 4 | AT/AT | 2 585 | 4.74 | AG/CT | 9 288 | 17.05 |
| AC/GT | 1 551 | 2.85 | CG/CG | 32 | 0.06 | ||
| 三核苷酸Trinucleotide | 10 | AAT/ATT | 553 | 1.02 | ACC/GGT | 1 216 | 2.23 |
| AAC/GTT | 1 535 | 2.82 | ACG/CGT | 517 | 0.95 | ||
| AAG/CTT | 5 054 | 9.28 | AGC/GCT | 713 | 1.31 | ||
| ATC/GAT | 1 381 | 2.53 | AGG/CCT | 2656 | 4.88 | ||
| ATG/CAT | 1 511 | 2.77 | CCG/TCC | 464 | 0.85 | ||
| 四核苷酸Tetranucleotide | 26 | AAAC/GTTT | 96 | 0.18 | AAAG/CTTT | 112 | 0.21 |
| AAAT/ATTT | 80 | 0.15 | 其他Others | 173 | 0.32 | ||
| 五核苷酸Pentanucleotide | 26 | AAAAT/ATTTT | 24 | 0.04 | AAAAG/CTTTT | 13 | 0.02 |
| AACCA/TGGTT | 16 | 0.03 | 其他Others | 71 | 0.13 | ||
| 六核苷酸Hexanucleotide | 44 | GGCTGT/ACAGCC | 14 | 0.03 | CCAGCT/AGCTGG | 13 | 0.02 |
| TTTTTG/CAAAAA | 11 | 0.02 | 其他Others | 99 | 0.18 |
Table 3 SSR repeat motifs, number and their ratio of turnip
| 重复类型 Repeat type | 基序类型数 Number of motif type | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% |
|---|---|---|---|---|---|---|---|
| 单核苷酸Mononucleotide | 2 | A/T | 24 649 | 45.24 | C/G | 146 | 0.27 |
| 二核苷酸Dinucleotide | 4 | AT/AT | 2 585 | 4.74 | AG/CT | 9 288 | 17.05 |
| AC/GT | 1 551 | 2.85 | CG/CG | 32 | 0.06 | ||
| 三核苷酸Trinucleotide | 10 | AAT/ATT | 553 | 1.02 | ACC/GGT | 1 216 | 2.23 |
| AAC/GTT | 1 535 | 2.82 | ACG/CGT | 517 | 0.95 | ||
| AAG/CTT | 5 054 | 9.28 | AGC/GCT | 713 | 1.31 | ||
| ATC/GAT | 1 381 | 2.53 | AGG/CCT | 2656 | 4.88 | ||
| ATG/CAT | 1 511 | 2.77 | CCG/TCC | 464 | 0.85 | ||
| 四核苷酸Tetranucleotide | 26 | AAAC/GTTT | 96 | 0.18 | AAAG/CTTT | 112 | 0.21 |
| AAAT/ATTT | 80 | 0.15 | 其他Others | 173 | 0.32 | ||
| 五核苷酸Pentanucleotide | 26 | AAAAT/ATTTT | 24 | 0.04 | AAAAG/CTTTT | 13 | 0.02 |
| AACCA/TGGTT | 16 | 0.03 | 其他Others | 71 | 0.13 | ||
| 六核苷酸Hexanucleotide | 44 | GGCTGT/ACAGCC | 14 | 0.03 | CCAGCT/AGCTGG | 13 | 0.02 |
| TTTTTG/CAAAAA | 11 | 0.02 | 其他Others | 99 | 0.18 |
| 序号 No. | 引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 预期产物大小 Expected product size/bp | 退火温度 Annealing temperature/ ℃ | GC含量 GC content | 扩增条带数 Number of amplification bands | 多态性条带数 Number of polymorphism bands | 多态性比例 Percentage of polymorphism/ % |
|---|---|---|---|---|---|---|---|---|
| 1 | Cluster-10000.0 | TTAATCGATCTCCGGTGGCG | 217 | 60.00 | 55.00 | 3 | 3 | 100 |
| TCTACGTATGGGACCAGCCA | ||||||||
| 2 | Cluster-27140.0 | GACTGATGAGATGCCTCGGG | 209 | 59.97 | 60.00 | 3 | 3 | 100 |
| CCGGAGATCCAATGTACCCG | ||||||||
| 3 | Cluster-30924.104122 | CGGTTGTCTCCCCGGTTTAA | 200 | 59.97 | 57.50 | 1 | 1 | 100 |
| CCCAGTAGATTCTCGCGTCC | ||||||||
| 4 | Cluster-30924.109584 | GGACGCACCAATCTCCTTGA | 204 | 60.00 | 57.50 | 1 | 1 | 100 |
| GCCCAATCTACCGAGTCGAG | ||||||||
| 5 | Cluster-30924.114983 | AAGGAGACGTCTTGCGAAGG | 208 | 60.04 | 52.50 | 6 | 6 | 100 |
| ATGCCGTTCCGAGTTTCCAT | ||||||||
| 6 | Cluster-30924.120390 | CCTTGTGTTGCAAAGAGGGC | 211 | 59.97 | 55.00 | 1 | 1 | 100 |
| CTGGTGCGCATTTATCTGCC | ||||||||
| 7 | Cluster-30924.126255 | TGATGATGATGGCTGGGCTG | 211 | 60.11 | 52.50 | 8 | 8 | 100 |
| GCGCTAGGCTTTGCTTTTGT | ||||||||
| 8 | Cluster-30924.132245 | TCGGCATATGCTAGCTGGTG | 209 | 59.97 | 55.00 | 2 | 2 | 100 |
| GACCACGCTCCTTCAGACAA | ||||||||
| 9 | Cluster-30924.138446 | TCCGTTTGAACCACACCCAA | 213 | 59.96 | 50.00 | 5 | 5 | 100 |
| TAACAGCAACCTCGTTGGCT | ||||||||
| 10 | Cluster-30924.144894 | CGGAGCGGATGCAAGACTAT | 221 | 59.93 | 55.00 | 6 | 6 | 100 |
| TCCCTCAGGACCAAAAGTGC | ||||||||
| 11 | Cluster-30924.151200 | AAGGAGGCTGCAAGAGTGAC | 221 | 59.96 | 57.50 | 6 | 6 | 100 |
| CCAGTGGGTGTCTCAGGTTC | ||||||||
| 12 | Cluster-30924.157883 | CATTCGACCCGCTCTCTCTC | 206 | 59.97 | 60.00 | 2 | 2 | 100 |
| CACCCGACAGTATACGTCCG | ||||||||
| 13 | Cluster-30924.164312 | GGAGACTGAGGGGATGAGGT | 219 | 60.03 | 57.50 | 4 | 4 | 100 |
| AGAAATCGGACCCGGGTTTC | ||||||||
| 14 | Cluster-30924.171259 | TGTGAACCCAAGCTCCGTAC | 228 | 59.97 | 55.00 | 3 | 3 | 100 |
| GCCGTCTTCATCACATTCGC | ||||||||
| 15 | Cluster-30924.22191 | TGGCTATCATCCCCTGTCCA | 207 | 60.03 | 55.00 | 1 | 1 | 100 |
| GGGGATCAAGAAACGCCTGA | ||||||||
| 16 | Cluster-30924.28557 | TCTTCATGCGGCTTCCTCTG | 229 | 60.07 | 55.00 | 7 | 7 | 100 |
| AGCAAAGCTCCCATCAGACC | ||||||||
| 17 | Cluster-30924.35340 | AGAGAGGCTATTGGCGCATC | 218 | 59.97 | 55.00 | 6 | 6 | 100 |
| TCGGACAAGACACGGTGAAG | ||||||||
| 18 | Cluster-30924.41968 | CGCAGTTGGTTGTCACACAG | 203 | 59.97 | 55.00 | 3 | 3 | 100 |
| CGTCTCACTCGGTGTTCCAA | ||||||||
| 19 | Cluster-30924.48364 | GAAGGGTGGAGTCGACAAGG | 206 | 59.97 | 60.00 | 1 | 1 | 100 |
| GGTGGCTCTAATCGGTGGAG | ||||||||
| 20 | Cluster-30924.54426 | CTGCTTCTCCTCTTGCACCA | 257 | 59.97 | 55.00 | 3 | 3 | 100 |
| TGTCGGAGGAGCTGAAACAC | ||||||||
| 21 | Cluster-30924.60140 | AGGTGGGGATAAGCACAAGC | 203 | 60.04 | 57.50 | 12 | 12 | 100 |
| GTTCTCCACTGCCTCTGTCC | ||||||||
| 22 | Cluster-30924.65654 | GCCATCTCCGACTTCCCAAA | 224 | 60.04 | 55.00 | 2 | 2 | 100 |
| GTCCAGTTCTCGCCATTCCA | ||||||||
| 23 | Cluster-30924.71367 | GCTGTCGGTGGTGTTCAAAC | 245 | 59.97 | 55.00 | 4 | 4 | 100 |
| TAACAGGGACCGGCAAAGAC | ||||||||
| 24 | Cluster-30924.76636 | AGAGATGGCTGTGTTGGTGG | 203 | 60.00 | 55.00 | 13 | 13 | 100 |
| ATGAGCGTCTTCCTCCTCCT | ||||||||
| 25 | Cluster-30924.82553 | ATTCGAGTTGGTGCCTGAGG | 241 | 60.04 | 55.00 | 2 | 2 | 100 |
| AACGGAAAGCTCGAGGTCTG | ||||||||
| 26 | Cluster-30924.87846 | GAGCAATCGGTTCCCTGGAA | 217 | 60.03 | 55.00 | 2 | 2 | 100 |
| TCATCTGGTACCTCGGAGCA | ||||||||
| 27 | Cluster-30924.93982 | CCAACTTGACGGTCGAAGGA | 218 | 60.00 | 55.00 | 1 | 1 | 100 |
| TCAGATAACTCGAGGGGGC | ||||||||
| 28 | Cluster-30924.99449 | GCTCTGCCTGTTTTGGAAGC | 217 | 60.00 | 55.00 | 6 | 6 | 100 |
| TGCTCTCTTCAACAGCCTGG | ||||||||
| 29 | Cluster-62597.0 | TGGACAAGGTGAAGTCTCCG | 212 | 59.57 | 55.00 | 6 | 6 | 100 |
| ATTCGGAGAGCGAGGTTGAC | ||||||||
| 30 | Cluster-9993.0 | GCGAGTCAGGCCTAAAGGTT | 228 | 60.04 | 55.00 | 6 | 6 | 100 |
| TCAATTTCCCTGGCGTCTCC |
Table 4 Primer sequences and amplification information of turnip
| 序号 No. | 引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 预期产物大小 Expected product size/bp | 退火温度 Annealing temperature/ ℃ | GC含量 GC content | 扩增条带数 Number of amplification bands | 多态性条带数 Number of polymorphism bands | 多态性比例 Percentage of polymorphism/ % |
|---|---|---|---|---|---|---|---|---|
| 1 | Cluster-10000.0 | TTAATCGATCTCCGGTGGCG | 217 | 60.00 | 55.00 | 3 | 3 | 100 |
| TCTACGTATGGGACCAGCCA | ||||||||
| 2 | Cluster-27140.0 | GACTGATGAGATGCCTCGGG | 209 | 59.97 | 60.00 | 3 | 3 | 100 |
| CCGGAGATCCAATGTACCCG | ||||||||
| 3 | Cluster-30924.104122 | CGGTTGTCTCCCCGGTTTAA | 200 | 59.97 | 57.50 | 1 | 1 | 100 |
| CCCAGTAGATTCTCGCGTCC | ||||||||
| 4 | Cluster-30924.109584 | GGACGCACCAATCTCCTTGA | 204 | 60.00 | 57.50 | 1 | 1 | 100 |
| GCCCAATCTACCGAGTCGAG | ||||||||
| 5 | Cluster-30924.114983 | AAGGAGACGTCTTGCGAAGG | 208 | 60.04 | 52.50 | 6 | 6 | 100 |
| ATGCCGTTCCGAGTTTCCAT | ||||||||
| 6 | Cluster-30924.120390 | CCTTGTGTTGCAAAGAGGGC | 211 | 59.97 | 55.00 | 1 | 1 | 100 |
| CTGGTGCGCATTTATCTGCC | ||||||||
| 7 | Cluster-30924.126255 | TGATGATGATGGCTGGGCTG | 211 | 60.11 | 52.50 | 8 | 8 | 100 |
| GCGCTAGGCTTTGCTTTTGT | ||||||||
| 8 | Cluster-30924.132245 | TCGGCATATGCTAGCTGGTG | 209 | 59.97 | 55.00 | 2 | 2 | 100 |
| GACCACGCTCCTTCAGACAA | ||||||||
| 9 | Cluster-30924.138446 | TCCGTTTGAACCACACCCAA | 213 | 59.96 | 50.00 | 5 | 5 | 100 |
| TAACAGCAACCTCGTTGGCT | ||||||||
| 10 | Cluster-30924.144894 | CGGAGCGGATGCAAGACTAT | 221 | 59.93 | 55.00 | 6 | 6 | 100 |
| TCCCTCAGGACCAAAAGTGC | ||||||||
| 11 | Cluster-30924.151200 | AAGGAGGCTGCAAGAGTGAC | 221 | 59.96 | 57.50 | 6 | 6 | 100 |
| CCAGTGGGTGTCTCAGGTTC | ||||||||
| 12 | Cluster-30924.157883 | CATTCGACCCGCTCTCTCTC | 206 | 59.97 | 60.00 | 2 | 2 | 100 |
| CACCCGACAGTATACGTCCG | ||||||||
| 13 | Cluster-30924.164312 | GGAGACTGAGGGGATGAGGT | 219 | 60.03 | 57.50 | 4 | 4 | 100 |
| AGAAATCGGACCCGGGTTTC | ||||||||
| 14 | Cluster-30924.171259 | TGTGAACCCAAGCTCCGTAC | 228 | 59.97 | 55.00 | 3 | 3 | 100 |
| GCCGTCTTCATCACATTCGC | ||||||||
| 15 | Cluster-30924.22191 | TGGCTATCATCCCCTGTCCA | 207 | 60.03 | 55.00 | 1 | 1 | 100 |
| GGGGATCAAGAAACGCCTGA | ||||||||
| 16 | Cluster-30924.28557 | TCTTCATGCGGCTTCCTCTG | 229 | 60.07 | 55.00 | 7 | 7 | 100 |
| AGCAAAGCTCCCATCAGACC | ||||||||
| 17 | Cluster-30924.35340 | AGAGAGGCTATTGGCGCATC | 218 | 59.97 | 55.00 | 6 | 6 | 100 |
| TCGGACAAGACACGGTGAAG | ||||||||
| 18 | Cluster-30924.41968 | CGCAGTTGGTTGTCACACAG | 203 | 59.97 | 55.00 | 3 | 3 | 100 |
| CGTCTCACTCGGTGTTCCAA | ||||||||
| 19 | Cluster-30924.48364 | GAAGGGTGGAGTCGACAAGG | 206 | 59.97 | 60.00 | 1 | 1 | 100 |
| GGTGGCTCTAATCGGTGGAG | ||||||||
| 20 | Cluster-30924.54426 | CTGCTTCTCCTCTTGCACCA | 257 | 59.97 | 55.00 | 3 | 3 | 100 |
| TGTCGGAGGAGCTGAAACAC | ||||||||
| 21 | Cluster-30924.60140 | AGGTGGGGATAAGCACAAGC | 203 | 60.04 | 57.50 | 12 | 12 | 100 |
| GTTCTCCACTGCCTCTGTCC | ||||||||
| 22 | Cluster-30924.65654 | GCCATCTCCGACTTCCCAAA | 224 | 60.04 | 55.00 | 2 | 2 | 100 |
| GTCCAGTTCTCGCCATTCCA | ||||||||
| 23 | Cluster-30924.71367 | GCTGTCGGTGGTGTTCAAAC | 245 | 59.97 | 55.00 | 4 | 4 | 100 |
| TAACAGGGACCGGCAAAGAC | ||||||||
| 24 | Cluster-30924.76636 | AGAGATGGCTGTGTTGGTGG | 203 | 60.00 | 55.00 | 13 | 13 | 100 |
| ATGAGCGTCTTCCTCCTCCT | ||||||||
| 25 | Cluster-30924.82553 | ATTCGAGTTGGTGCCTGAGG | 241 | 60.04 | 55.00 | 2 | 2 | 100 |
| AACGGAAAGCTCGAGGTCTG | ||||||||
| 26 | Cluster-30924.87846 | GAGCAATCGGTTCCCTGGAA | 217 | 60.03 | 55.00 | 2 | 2 | 100 |
| TCATCTGGTACCTCGGAGCA | ||||||||
| 27 | Cluster-30924.93982 | CCAACTTGACGGTCGAAGGA | 218 | 60.00 | 55.00 | 1 | 1 | 100 |
| TCAGATAACTCGAGGGGGC | ||||||||
| 28 | Cluster-30924.99449 | GCTCTGCCTGTTTTGGAAGC | 217 | 60.00 | 55.00 | 6 | 6 | 100 |
| TGCTCTCTTCAACAGCCTGG | ||||||||
| 29 | Cluster-62597.0 | TGGACAAGGTGAAGTCTCCG | 212 | 59.57 | 55.00 | 6 | 6 | 100 |
| ATTCGGAGAGCGAGGTTGAC | ||||||||
| 30 | Cluster-9993.0 | GCGAGTCAGGCCTAAAGGTT | 228 | 60.04 | 55.00 | 6 | 6 | 100 |
| TCAATTTCCCTGGCGTCTCC |
| 引物 Primer | 观测等位基因数 Na | 有效等位基因数 Ne | Nei’s期望杂合度 h | 多样性指数 I | 多态性信息含量 PIC |
|---|---|---|---|---|---|
| Cluster-30924.35340 | 6 | 1.167 4 | 0.140 3 | 0.265 4 | 0.438 1 |
| Cluster-30924.171259 | 3 | 1.408 7 | 0.277 3 | 0.443 3 | 0.698 6 |
| Cluster-30924.151200 | 6 | 1.665 4 | 0.365 3 | 0.536 1 | 0.866 8 |
| Cluster-30924.41968 | 3 | 1.701 0 | 0.377 6 | 0.551 1 | 0.689 3 |
| Cluster-30924.28557 | 7 | 1.328 8 | 0.239 2 | 0.397 8 | 0.616 9 |
| Cluster-30924.164312 | 4 | 1.856 3 | 0.455 1 | 0.646 0 | 0.737 0 |
| Cluster-30924.157883 | 2 | 1.336 0 | 0.224 1 | 0.363 7 | 0.235 6 |
| Cluster-9993.0 | 6 | 1.662 7 | 0.373 2 | 0.549 9 | 0.825 7 |
| Cluster-62597.0 | 6 | 1.220 0 | 0.136 7 | 0.234 0 | 0.459 9 |
| Cluster-30924.65654 | 2 | 1.456 3 | 0.265 6 | 0.407 9 | 0.312 4 |
| Cluster-30924.71367 | 4 | 1.338 1 | 0.218 4 | 0.348 8 | 0.572 3 |
| Cluster-30924.76636 | 6 | 1.761 2 | 0.428 9 | 0.619 4 | 0.858 5 |
| Cluster-30924.99449 | 3 | 1.698 9 | 0.411 4 | 0.601 7 | 0.497 6 |
| Cluster-30924.82553 | 2 | 1.423 5 | 0.255 4 | 0.397 3 | 0.289 0 |
| Cluster-30924.87846 | 2 | 1.020 3 | 0.019 9 | 0.056 2 | 0.038 4 |
| Cluster-30924.60140 | 6 | 1.742 9 | 0.422 9 | 0.613 1 | 0.639 7 |
| Cluster-10000.0 | 3 | 1.366 2 | 0.198 8 | 0.306 1 | 0.439 9 |
| Cluster-27140.0 | 3 | 1.796 7 | 0.442 2 | 0.633 9 | 0.575 0 |
| Cluster-30924.54426 | 3 | 1.577 0 | 0.346 9 | 0.525 7 | 0.592 2 |
| Cluster-30924.114983 | 6 | 1.181 4 | 0.111 0 | 0.190 9 | 0.310 7 |
| Cluster-30924.126255 | 5 | 1.618 5 | 0.370 8 | 0.554 1 | 0.914 7 |
| Cluster-30924.132245 | 2 | 1.197 9 | 0.160 5 | 0.292 7 | 0.404 7 |
| Cluster-30924.138446 | 5 | 1.529 6 | 0.322 4 | 0.489 9 | 0.875 8 |
| Cluster-30924.144894 | 6 | 1.505 7 | 0.322 9 | 0.498 8 | 0.769 0 |
| 平均值Mean | 4.208 3 | 1.481 7 | 0.287 0 | 0.438 5 | 0.569 1 |
| 标准差Standard deviation | 1.718 9 | 0.230 0 | 0.118 7 | 0.157 3 | 0.232 3 |
Table 5 Genetic parameters of 24 pairs of primers for SSR
| 引物 Primer | 观测等位基因数 Na | 有效等位基因数 Ne | Nei’s期望杂合度 h | 多样性指数 I | 多态性信息含量 PIC |
|---|---|---|---|---|---|
| Cluster-30924.35340 | 6 | 1.167 4 | 0.140 3 | 0.265 4 | 0.438 1 |
| Cluster-30924.171259 | 3 | 1.408 7 | 0.277 3 | 0.443 3 | 0.698 6 |
| Cluster-30924.151200 | 6 | 1.665 4 | 0.365 3 | 0.536 1 | 0.866 8 |
| Cluster-30924.41968 | 3 | 1.701 0 | 0.377 6 | 0.551 1 | 0.689 3 |
| Cluster-30924.28557 | 7 | 1.328 8 | 0.239 2 | 0.397 8 | 0.616 9 |
| Cluster-30924.164312 | 4 | 1.856 3 | 0.455 1 | 0.646 0 | 0.737 0 |
| Cluster-30924.157883 | 2 | 1.336 0 | 0.224 1 | 0.363 7 | 0.235 6 |
| Cluster-9993.0 | 6 | 1.662 7 | 0.373 2 | 0.549 9 | 0.825 7 |
| Cluster-62597.0 | 6 | 1.220 0 | 0.136 7 | 0.234 0 | 0.459 9 |
| Cluster-30924.65654 | 2 | 1.456 3 | 0.265 6 | 0.407 9 | 0.312 4 |
| Cluster-30924.71367 | 4 | 1.338 1 | 0.218 4 | 0.348 8 | 0.572 3 |
| Cluster-30924.76636 | 6 | 1.761 2 | 0.428 9 | 0.619 4 | 0.858 5 |
| Cluster-30924.99449 | 3 | 1.698 9 | 0.411 4 | 0.601 7 | 0.497 6 |
| Cluster-30924.82553 | 2 | 1.423 5 | 0.255 4 | 0.397 3 | 0.289 0 |
| Cluster-30924.87846 | 2 | 1.020 3 | 0.019 9 | 0.056 2 | 0.038 4 |
| Cluster-30924.60140 | 6 | 1.742 9 | 0.422 9 | 0.613 1 | 0.639 7 |
| Cluster-10000.0 | 3 | 1.366 2 | 0.198 8 | 0.306 1 | 0.439 9 |
| Cluster-27140.0 | 3 | 1.796 7 | 0.442 2 | 0.633 9 | 0.575 0 |
| Cluster-30924.54426 | 3 | 1.577 0 | 0.346 9 | 0.525 7 | 0.592 2 |
| Cluster-30924.114983 | 6 | 1.181 4 | 0.111 0 | 0.190 9 | 0.310 7 |
| Cluster-30924.126255 | 5 | 1.618 5 | 0.370 8 | 0.554 1 | 0.914 7 |
| Cluster-30924.132245 | 2 | 1.197 9 | 0.160 5 | 0.292 7 | 0.404 7 |
| Cluster-30924.138446 | 5 | 1.529 6 | 0.322 4 | 0.489 9 | 0.875 8 |
| Cluster-30924.144894 | 6 | 1.505 7 | 0.322 9 | 0.498 8 | 0.769 0 |
| 平均值Mean | 4.208 3 | 1.481 7 | 0.287 0 | 0.438 5 | 0.569 1 |
| 标准差Standard deviation | 1.718 9 | 0.230 0 | 0.118 7 | 0.157 3 | 0.232 3 |
| [1] | 任延靖, 韩睿, 赵孟良. 芜菁实时荧光定量PCR内参基因筛选[J]. 青海农林科技, 2021(3): 1-6. |
| REN Y J, HAN R, ZHAO M L. Internal reference genes screening of turnip by real-time fluorescence quantiative PCR[J]. Science and Technology of Qinghai Agriculture and Forestry, 2021(3): 1-6. (in Chinese with English abstract) | |
| [2] | 李欢欢, 陈春丽, 海力茜·陶尔大洪. 芜菁中性多糖对D-半乳糖致衰老小鼠的抗氧化作用[J]. 食品科技, 2021, 46(5): 168-173. |
| LI H H, CHEN C L, HAILIQIAN T D. Antioxidant effect of turnip neutral polysaccharide on D-galactose-induced aging mice[J]. Food Science and Technology, 2021, 46(5): 168-173. (in Chinese with English abstract) | |
| [3] | 张丽静, 付劢, 张文会, 等. 芜菁膏超声提取工艺优化及其抗氧化活性研究[J]. 西北农林科技大学学报(自然科学版), 2021, 49(10): 111-119. |
| ZHANG L J, FU M, ZHANG W H, et al. Optimization of ultrasonic extraction technology of Brassica radix and its antioxidant activity[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(10): 111-119. (in Chinese with English abstract) | |
| [4] | 刘建兵, 林风, 林军, 等. 芜菁的降血脂活性评价及作用机制探讨[J]. 海南医学院学报, 2022, 28(3):171-180. |
| LIU J B, LIN F, LIN J, et al. Evaluation of hypolipidemic activity of Brassica rapa and its mechanism analysis[J]. Journal of Hainan Medical University, 2022, 28(3):171-180. (in Chinese with English abstract) | |
| [5] | DEJANOVIC G M, ASLLANAJ E, GAMBA M, et al. Phytochemical characterization of turnip greens (Brassica rapa ssp. rapa): a systematic review[J]. PLoS One, 2021, 16(2): e0247032. |
| [6] | 乔舒婷, 董文其, 胡齐赞, 等. 基于丝瓜全基因组序列SSR分子标记开发[J/OL]. 分子植物育种: 1-18[2021-10-13].http://kns.cnki.net/kcms/detail/46.1068.S.20210414.0946.004.html. |
| QIAO S T, DONG W Q, HU Q Z, et al. Development of SSR molecular markers based on whole genome sequences of sponge gourd[J/OL]. Molecular Plant Breeding: 1-18[2021-10-13].http://kns.cnki.net/kcms/detail/46.1068.S.20210414.0946.004.html. (in Chinese with English abstract) | |
| [7] | 刘美娟, 郑司浩, 赵莎, 等. 不同产区黄芩SSR分子标记鉴别研究[J]. 中国现代中药, 2021, 23(11):1876-1882. |
| LIU M J, ZHENG S H, ZHAO S, et al, Research on identification of SSR molecular markers about Scutellaria baicalensis in different producing areas[J]. Modern Chinese Medicine, 2021, 23(11):1876-1882. (in Chinese with English abstract) | |
| [8] | 李桂花, 陈汉才, 张艳, 等. 小白菜种质遗传多样性与亲缘关系的SRAP和SSR分析[J]. 广东农业科学, 2017, 44(5): 37-45. |
| LI G H, CHEN H C, ZHANG Y, et al. Genetic diversity and phylogenetic relationships analysis of Chinese cabbage germplasm resources by SRAP and SSR[J]. Guangdong Agricultural Sciences, 2017, 44(5): 37-45. (in Chinese with English abstract) | |
| [9] | 徐营莉, 华德平, 张红, 等. 白菜类蔬菜种子纯度SSR分子标记鉴定[J]. 分子植物育种, 2020, 18(1): 187-192. |
| XU Y L, HUA D P, ZHANG H, et al. Identification of SSR molecular markers for purity of Chinese cabbage seeds[J]. Molecular Plant Breeding, 2020, 18(1): 187-192. (in Chinese with English abstract) | |
| [10] | 何晓丽, 杨丹青, 杜志杰, 等. 不结球白菜形态性状及SSR遗传多样性关联分析[J]. 分子植物育种, 2021, 19(6): 1919-1927. |
| HE X L, YANG D Q, DU Z J, et al. Association analysis of morphological traits and SSR genetic diversity in non-heading Chinese cabbage[J]. Molecular Plant Breeding, 2021, 19(6): 1919-1927. (in Chinese with English abstract) | |
| [11] | 李永平, 张双照, 薛珠政, 等. 利用芥菜转录组信息挖掘SSR标记及用于种质分析[J]. 福建农业学报, 2020, 35(2): 169-177. |
| LI Y P, ZHANG S Z, XUE Z Z, et al. Using SSR markers from Brassica juncea transcriptome for germplasm analysis[J]. Fujian Journal of Agricultural Sciences, 2020, 35(2): 169-177. (in Chinese with English abstract) | |
| [12] | 颜新林, 管中荣, 温雯, 等. 基于SSR标记的芥菜品种鉴定技术体系建立及应用[J]. 植物遗传资源学报, 2021, 22(3): 758-770. |
| YAN X L, GUAN Z R, WEN W, et al. Establishment and application of mustard variety identification system based on SSR markers(Brassica juncea L.)[J]. Journal of Plant Genetic Resources, 2021, 22(3): 758-770. (in Chinese with English abstract) | |
| [13] | 胡齐赞, 乔舒婷, 董文其, 等. 浙江地方芥菜种质资源表型鉴定及遗传多样性分析[J/OL]. 分子植物育种:1-20[2021-09-10]. http://kns.cnki.net/kcms/detail/46.1068.S.20210331.1339.011.html. |
| HU Q Z, QIAO S T, DONG W Q, et al. Phenotype identification and genetic diversity analysis of mustard local germplasm resources in Zhejiang[J/OL]. Molecular Plant Breeding: 1-20[2021-09-10].http://kns.cnki.net/kcms/detail/46.1068.S.20210331.1339.011.html. (in Chinese with English abstract) | |
| [14] | ZHAO M, ZHONG Q, TIAN M, et al. Comparative transcriptome analysis reveals differentially expressed genes associated with the development of Jerusalem artichoke tuber (Helianthus tuberosus L.)[J]. Industrial Crops & Products, 2020, 151, 112455. |
| [15] | POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter, 1997, 15(1): 8-15. |
| [16] | 栾生, 孔杰, 王清印, 等. 日本囊对虾(Marsupenaeus japonicus)基因组微卫星特征分析[J]. 自然科学进展, 2007, 17(6): 731-740. |
| LUAN S, KONG J, WANG Q Y, et al. Analysis of mirosatellites in the genome of Kuruma prawn Marsupenaeus japonicus[J]. Progress in Natural Science, 2007, 17(6): 731-740. (in Chinese) | |
| [17] | ALI M E, WALIULLAH S. A Core35S promoter of cauliflower mosaic virus drives more efficient replication of turnip crinkle virus[J]. Plants, 2021, 10(8): 1700. |
| [18] | 原静云, 李小军, 任翠翠, 等. 基于SSR标记的49个大白菜自交系遗传多样性分析[J]. 河南农业科学, 2016, 45(11): 92-95. |
| YUAN J Y, LI X J, REN C C, et al. Genetic diversity analysis of forty-nine Chinese cabbage varieties using SSR markers[J]. Journal of Henan Agricultural Sciences, 2016, 45(11): 92-95. (in Chinese with English abstract) | |
| [19] | 李菊, 杨亮, 苗明军, 等. 大蒜农艺性状与SSR遗传多样性关联分析[J]. 分子植物育种, 2022, 20(23):7857-7867. |
| LI J, YANG L, MIAO M J, et al. Association analysis of agronomic traits and SSR genetic diversity in garlic[J]. Molecular Plant Breeding, 2022, 20(23):7857-7867. (in Chinese with English abstract) | |
| [20] | 赵湘, 于拴仓, 薛林宝, 等. 利用SSR和InDel标记构建白菜×芜菁分子遗传图谱[J]. 西北农业学报, 2011, 20(12): 111-115. |
| ZHAO X, YU S C, XUE L B, et al. Construction of a genetic linkage map in Chinese cabbage × turnip based on SSR and InDel markers[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(12): 111-115. (in Chinese with English abstract) | |
| [21] | 陈春艳, 马杰, 屈雯, 等. 基于转录组序列的胡萝卜EST-SSR标记开发及遗传多样性分析[J/OL]. 分子植物育种: 1-12[2021-10-21]. http://kns.cnki.net/kcms/detail/46.1068.S.20210318.1142.016.html. |
| CHENG C Y, MA J, QU W, et al. Development of EST-SSR markers based on transcriptome sequencing and genetic diversity analysis of carrot[J/OL]. Molecular Plant Breeding: 1-12[2021-10-21].http://kns.cnki.net/kcms/detail/46.1068.S.20210318.1142.016.html. (in Chinese with English abstract) | |
| [22] | 张春红, 黄正金, 樊苏帆, 等. 不同栽培类型蓝莓遗传多样性的SSR分析[J]. 中国南方果树, 2021, 50(2): 154-160. |
| ZHANG C H, HUANG Z J, FAN S F, et al. SSR analysis of the genetic diversity of blueberry in different cultivated types[J]. South China Fruits, 2021, 50(2): 154-160. (in Chinese) | |
| [23] | 刘新雨, 田洁. 大蒜转录组简单重复序列标记分析与分子标记开发[J]. 浙江农业学报, 2020, 32(9): 1615-1625. |
| LIU X Y, TIAN J. Analysis of simple sequence repeats in transcriptome of garlic (Allium sativum L.) and development of molecular markers[J]. Acta Agriculturae Zhejiangensis, 2020, 32(9): 1615-1625. (in Chinese with English abstract) | |
| [24] | 杨亮, 李菊, 李志, 等. 基于SSR分子标记的番茄遗传多样性分析[J]. 分子植物育种, 2022, 20(22):7511-7521. |
| YANG L, LI J, LI Z, et al. Genetic diversity analysis of tomato based on SSR molecular markers[J]. Molecular Plant Breeding, 2022, 20(22):7511-7521. (in Chinese with English abstract) | |
| [25] | 李延龙, 张华敏, 崔蕴刚, 等. 韭菜全长转录组SSR信息分析及分子标记开发[J]. 园艺学报, 2020, 47(4): 759-768. |
| LI Y L, ZHANG H M, CUI Y G, et al. Analysis on SSR information in full-length transcriptome and development of molecular markers in Allium tuberosum[J]. Acta Horticulturae Sinica, 2020, 47(4): 759-768. (in Chinese with English abstract) |
| [1] | HONG Xia, LU Jilai, QI Huijuan, CHEN Xiaoshang. Genetic diversity analysis and core collection construction of ginger (Zingiber officinale Rosc.) germplasm accessions [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1233-1243. |
| [2] | WANG Yidi, WANG Jinglei, HU Tianhua, XU Yunmin, BAO Chonglai. Development of molecular markers for clubroot resistance and their application in Brassicaceae breeding [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1272-1284. |
| [3] | YUE Li, ZHUANG Hongmei, ZULIPIYA· Maimaiti, WANG Jiamin, MAO Hongyan, ZHANG Yingxian, NIGARY· Yadikar, YU Ming. Comprehensive evaluation of the texture quality of turnip succulent root based on principal component analysis and cluster analysis [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1057-1071. |
| [4] | LEI Zhiwei, LI Xinxin, XU Heng, ZHANG Heng, ZHU Ying, ZHANG Hua. Identification of QTLs for stem borer resistance using chromosome segment substitution lines in rice [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 530-537. |
| [5] | CHEN Feng, CHEN Hong, CHEN Bingquan, BAO Chunjie, ZHOU Haoliang, ZHAO Xin, GUO Laizhen. Analysis of endogenous hormone changes and gene expression related to walnut apomixis kernels formation [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 381-393. |
| [6] | QIN Douwen, LIU Weiqiang, TIAN Jiting, JU Xiuting. Establishment of cpDNA-PCR reaction system and genetic diversity analysis of Tulipa iliensis [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 78-89. |
| [7] | ZHANG Yuanyuan, FENG Juling, XIAO Jingfeng, GUAN Yu, LONG Chuer, YAO Lirong, MENG Yaxiong, SI Erjing, LI Baochun, MA Xiaole, WANG Huajun, ZHOU Xirong, LIU Meijin, WANG Juncheng. Genetic diversity and association analysis between agronomic traits and SSR markers in hulless barley [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 1977-1989. |
| [8] | DONG Lili, XU Zhihao, YAN Canlong, FAN Xiaoping, JIN Zelan, WANG Zhonghua. Molecular identification and genetic relationship of different breeding populations in Fritillaria thunbergii based on phenotype and molecular markers [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1719-1730. |
| [9] | HUANG Hui, CHU Tianjiang, XIE Nan, LIU Kai. Investigation on the genetic diversity of Sarcocheilichthys sinensis from diverse geographical populations and other species within the Sarcocheilichthys genus through the analysis of mitochondrial COI sequence segments [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1779-1788. |
| [10] | MA Li, LAN Yi, XIE Bingxin, ZHOU Chunlu, LUO Shuyuan, XU Wenkun, DONG Xinxing, YAN Dawei. Study of polymorphism in the VRTN gene and its association with production traits in (Duroc×Saba)♂×[Yorkshire×(Landrace×Saba)]♀ [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1502-1510. |
| [11] | WANG Baogen, CHEN Xiaoyang, WU Jian, LI Xiao, WANG Ying, WANG Jian, WU Xiaohua, LU Zhongfu, SUN Yuyan, DONG Wenqi, LI Guojing, WU Xinyi. Genetic diversity of cowpea landraces in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1569-1582. |
| [12] | ZHU Yanyu, YU Wentao, GAO Shuilian, LYU Shuiyuan, WANG Pan, JIN Wanmin, GUI Wenjing, LIN Yi, YE Naixing. The diversity of tea germplasm resources and genetic relationship of ‘Tieguanyin’-derived varieties in Anxi, Fujian, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1591-1601. |
| [13] | LI Juncheng, DANG Yunzhi, SUN Qingming. Transcriptome analysis and HSP response of pitaya (Selenicereus spp.) under heat stress [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1067-1075. |
| [14] | ZHANG Ting, WANG Xueyan, GUO Qinwei, LI Chaosen, LIU Huiqin, XIANG Xiaomin, WEI Jing, ZHAO Dongfeng, WAN Hongjian. Genetic diversity of pepper germplasm resources based on agronomic traits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 325-333. |
| [15] | HE Lingyu, QIAO Xian, WANG Xinyue, LI Xianglong. Exploring ADSL gene regulation of inosine monophosphate content in Bashang long tail chicken based on transcriptome and next-generation sequencing technology [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2676-2686. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||