Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (8): 1719-1730.DOI: 10.3969/j.issn.1004-1524.20230980
• Crop Science • Previous Articles Next Articles
DONG Lili(), XU Zhihao, YAN Canlong, FAN Xiaoping, JIN Zelan, WANG Zhonghua(
)
Received:
2023-08-15
Online:
2024-08-25
Published:
2024-09-06
Contact:
WANG Zhonghua
CLC Number:
DONG Lili, XU Zhihao, YAN Canlong, FAN Xiaoping, JIN Zelan, WANG Zhonghua. Molecular identification and genetic relationship of different breeding populations in Fritillaria thunbergii based on phenotype and molecular markers[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1719-1730.
组别 Group | 样品信息 Massage of the sample | 样品名 Sample name | 组别 Group | 样品信息 Massage of the sample | 样品名 Sample name |
---|---|---|---|---|---|
1 | 浙贝3号优选后代 | WS-2022-1-1 | RS-2022-22-4 | ||
Selected offspring of Zhebei No.3 | WS-2022-2-1 | RS-2022-23-2 | |||
WS-2022-2-3 | RS-2022-23-3 | ||||
WS-2022-2-4 | RS-2022-23-4 | ||||
WS-2022-3-4 | RS-2022-24-1 | ||||
WS-2022-4-3 | RS-2022-24-2 | ||||
WS-2022-5-2 | RS-2022-24- | ||||
WS-2022-7-1 | RS-2022-24-4 | ||||
WS-2022-7-3 | RS-2022-25-2 | ||||
WS-2022-8-3 | RS-2022-25-5 | ||||
WS-2022-8-4 | RS-2022-26-1 | ||||
WS-2022-9-3 | RS-2022-26-2 | ||||
WS-2022-10-4 | RS-2022-26-3 | ||||
WS-2022-11-1 | RS-2022-26-4 | ||||
WS-2022-11-5 | RS-2022-27-1 | ||||
WS-2022-12-1 | RS-2022-27-3 | ||||
WS-2022-12-2 | RS-2022-28-1 | ||||
WS-2022-14-2 | RS-2022-28-4 | ||||
WS-2022-14-3 | RS-2022-28-5 | ||||
WS-2022-15-1 | RS-2022-29-1 | ||||
WS-2022-15-2 | RS-2022-29-2 | ||||
WS-2022-15-3 | RS-2022-29-3 | ||||
WS-2022-16-1 | RS-2022-29-4 | ||||
WS-2022-17-1 | RS-2022-29-5 | ||||
WS-2022-18-1 | RS-2022-29-6 | ||||
WS-2022-18-2 | RS-2022-30-1 | ||||
WS-2022-19-3 | RS-2022-30-2 | ||||
WS-2022-20-3 | RS-2022-31-1 | ||||
WS-2022-23-3 | RS-2022-31-2 | ||||
2 | 浙贝1号种子辐照后代 | RS-2022-1-1 | RS-2022-31-3 | ||
Offspring of Zhebei No.1 seeds | RS-2022-2-1 | RS-2022-31-4 | |||
after irradiation | RS-2022-3-1 | RS-2022-31-5 | |||
RS-2022-4-2 | RS-2022-32-1 | ||||
RS-2022-4-3 | RS-2022-32-2 | ||||
RS-2022-4-4 | RS-2022-32-3 | ||||
RS-2022-4-5 | RS-2022-33-2 | ||||
RS-2022-5-1 | 3 | 父本:浙贝2号;母本:浙贝1号 | ZF1-2022-1-1 | ||
RS-2022-5-2 | Male parent: Zhebei No.2; | ZF1-2022-2-1 | |||
RS-2022-6-1 | Female parent: Zhebei No.1 | ZF1-2022-3-1 | |||
RS-2022-6-2 | ZF1-2022-5-1 | ||||
RS-2022-7-2 | ZF1-2022-6-1 | ||||
RS-2022-7-3 | ZF1-2022-8-1 | ||||
RS-2022-7-4 | 4 | 父本:浙贝2号;母本:浙贝3号 | ZF2-2022-2-1 | ||
RS-2022-9-3 | Male parent: Zhebei No.2; | ZF2-2022-2-2 | |||
RS-2022-9-4 | Female parent: Zhebei No.3 | ZF2-2022-3-1 | |||
RS-2022-10-1 | ZF2-2022-4-1 | ||||
RS-2022-10-2 | ZF2-2022-5-1 | ||||
RS-2022-10-3 | 5 | 父本:浙贝3号;母本:浙贝2号 | ZF3-2022-1-1 | ||
RS-2022-12-2 | Male parent: Zhebei No.3; | ZF3-2022-2-1 | |||
RS-2022-13-4 | Female parent: Zhebei No.2 | RS-2022-14-1 | |||
RS-2022-22-3 | RS-2022-14-2 | ||||
RS-2022-14-3 | ZF4-2022-6-1 | ||||
RS-2022-14-4 | ZF4-2022-7-1 | ||||
RS-2022-16-1 | ZF4-2022-7-2 | ||||
RS-2022-17-2 | ZF4-2022-7-3 | ||||
RS-2022-17-3 | ZF4-2022-7-4 | ||||
RS-2022-17-5 | ZF4-2022-7-5 | ||||
RS-2022-18-3 | 7 | 父本:浙贝3号;母本:浙贝1号 | ZF5-2022-(1-2)-1 | ||
RS-2022-18-4 | Male parent: Zhebei No.3; | ZF5-2022-(1-2)-2 | |||
RS-2022-18-5 | Female parent: Zhebei No.1 | ZF5-2022-(1-2)-3 | |||
RS-2022-19-1 | ZF5-2022-(1-2)-4 | ||||
RS-2022-19-4 | ZF5-2022-(1-2)-5 | ||||
RS-2022-19-5 | ZF5-2022-3-1 | ||||
RS-2022-20-1 | ZF5-2022-4-1 | ||||
RS-2022-20-3 | ZF5-2022-4-2 | ||||
RS-2022-20-4 | ZF5-2022-4-3 | ||||
RS-2022-20-5 | ZF5-2022-5-1 | ||||
RS-2022-21-1 | 8 | 亲本Parent | 浙贝1号Zhebei No.1 | ||
RS-2022-21-2 | 浙贝2号Zhebei No.2 | ||||
RS-2022-21-3 | 浙贝3号Zhebei No.3 | ||||
RS-2022-22-1 | 浙贝4号(拟审定新品种) | ||||
RS-2022-22-2 | Zhebei No.4 (New variety to | ||||
6 | 父本:浙贝1号;母本:浙贝3号 | ZF4-2022-1-1 | be approved) | ||
Male parent: Zhebei No.1; | ZF4-2022-4-3 | ||||
Female parent: Zhebei No.3 | ZF4-2022-5-1 |
Table 1 Sample information of F. thunbergii
组别 Group | 样品信息 Massage of the sample | 样品名 Sample name | 组别 Group | 样品信息 Massage of the sample | 样品名 Sample name |
---|---|---|---|---|---|
1 | 浙贝3号优选后代 | WS-2022-1-1 | RS-2022-22-4 | ||
Selected offspring of Zhebei No.3 | WS-2022-2-1 | RS-2022-23-2 | |||
WS-2022-2-3 | RS-2022-23-3 | ||||
WS-2022-2-4 | RS-2022-23-4 | ||||
WS-2022-3-4 | RS-2022-24-1 | ||||
WS-2022-4-3 | RS-2022-24-2 | ||||
WS-2022-5-2 | RS-2022-24- | ||||
WS-2022-7-1 | RS-2022-24-4 | ||||
WS-2022-7-3 | RS-2022-25-2 | ||||
WS-2022-8-3 | RS-2022-25-5 | ||||
WS-2022-8-4 | RS-2022-26-1 | ||||
WS-2022-9-3 | RS-2022-26-2 | ||||
WS-2022-10-4 | RS-2022-26-3 | ||||
WS-2022-11-1 | RS-2022-26-4 | ||||
WS-2022-11-5 | RS-2022-27-1 | ||||
WS-2022-12-1 | RS-2022-27-3 | ||||
WS-2022-12-2 | RS-2022-28-1 | ||||
WS-2022-14-2 | RS-2022-28-4 | ||||
WS-2022-14-3 | RS-2022-28-5 | ||||
WS-2022-15-1 | RS-2022-29-1 | ||||
WS-2022-15-2 | RS-2022-29-2 | ||||
WS-2022-15-3 | RS-2022-29-3 | ||||
WS-2022-16-1 | RS-2022-29-4 | ||||
WS-2022-17-1 | RS-2022-29-5 | ||||
WS-2022-18-1 | RS-2022-29-6 | ||||
WS-2022-18-2 | RS-2022-30-1 | ||||
WS-2022-19-3 | RS-2022-30-2 | ||||
WS-2022-20-3 | RS-2022-31-1 | ||||
WS-2022-23-3 | RS-2022-31-2 | ||||
2 | 浙贝1号种子辐照后代 | RS-2022-1-1 | RS-2022-31-3 | ||
Offspring of Zhebei No.1 seeds | RS-2022-2-1 | RS-2022-31-4 | |||
after irradiation | RS-2022-3-1 | RS-2022-31-5 | |||
RS-2022-4-2 | RS-2022-32-1 | ||||
RS-2022-4-3 | RS-2022-32-2 | ||||
RS-2022-4-4 | RS-2022-32-3 | ||||
RS-2022-4-5 | RS-2022-33-2 | ||||
RS-2022-5-1 | 3 | 父本:浙贝2号;母本:浙贝1号 | ZF1-2022-1-1 | ||
RS-2022-5-2 | Male parent: Zhebei No.2; | ZF1-2022-2-1 | |||
RS-2022-6-1 | Female parent: Zhebei No.1 | ZF1-2022-3-1 | |||
RS-2022-6-2 | ZF1-2022-5-1 | ||||
RS-2022-7-2 | ZF1-2022-6-1 | ||||
RS-2022-7-3 | ZF1-2022-8-1 | ||||
RS-2022-7-4 | 4 | 父本:浙贝2号;母本:浙贝3号 | ZF2-2022-2-1 | ||
RS-2022-9-3 | Male parent: Zhebei No.2; | ZF2-2022-2-2 | |||
RS-2022-9-4 | Female parent: Zhebei No.3 | ZF2-2022-3-1 | |||
RS-2022-10-1 | ZF2-2022-4-1 | ||||
RS-2022-10-2 | ZF2-2022-5-1 | ||||
RS-2022-10-3 | 5 | 父本:浙贝3号;母本:浙贝2号 | ZF3-2022-1-1 | ||
RS-2022-12-2 | Male parent: Zhebei No.3; | ZF3-2022-2-1 | |||
RS-2022-13-4 | Female parent: Zhebei No.2 | RS-2022-14-1 | |||
RS-2022-22-3 | RS-2022-14-2 | ||||
RS-2022-14-3 | ZF4-2022-6-1 | ||||
RS-2022-14-4 | ZF4-2022-7-1 | ||||
RS-2022-16-1 | ZF4-2022-7-2 | ||||
RS-2022-17-2 | ZF4-2022-7-3 | ||||
RS-2022-17-3 | ZF4-2022-7-4 | ||||
RS-2022-17-5 | ZF4-2022-7-5 | ||||
RS-2022-18-3 | 7 | 父本:浙贝3号;母本:浙贝1号 | ZF5-2022-(1-2)-1 | ||
RS-2022-18-4 | Male parent: Zhebei No.3; | ZF5-2022-(1-2)-2 | |||
RS-2022-18-5 | Female parent: Zhebei No.1 | ZF5-2022-(1-2)-3 | |||
RS-2022-19-1 | ZF5-2022-(1-2)-4 | ||||
RS-2022-19-4 | ZF5-2022-(1-2)-5 | ||||
RS-2022-19-5 | ZF5-2022-3-1 | ||||
RS-2022-20-1 | ZF5-2022-4-1 | ||||
RS-2022-20-3 | ZF5-2022-4-2 | ||||
RS-2022-20-4 | ZF5-2022-4-3 | ||||
RS-2022-20-5 | ZF5-2022-5-1 | ||||
RS-2022-21-1 | 8 | 亲本Parent | 浙贝1号Zhebei No.1 | ||
RS-2022-21-2 | 浙贝2号Zhebei No.2 | ||||
RS-2022-21-3 | 浙贝3号Zhebei No.3 | ||||
RS-2022-22-1 | 浙贝4号(拟审定新品种) | ||||
RS-2022-22-2 | Zhebei No.4 (New variety to | ||||
6 | 父本:浙贝1号;母本:浙贝3号 | ZF4-2022-1-1 | be approved) | ||
Male parent: Zhebei No.1; | ZF4-2022-4-3 | ||||
Female parent: Zhebei No.3 | ZF4-2022-5-1 |
序号 No. | 性状 Characters | 类型 Type | 编码 Coding |
---|---|---|---|
1 | 叶片数量Number of leaves | 二元性状Binary trait | 1,中;2,多 1, Medium; 2, More |
2 | 叶片颜色Leaf color | 二元性状Binary trait | 1,深绿色;2,黄绿色1, Dark green; 2, Yellow green |
3 | 叶片宽度Leaf width | 多元性状Multivariate trait | 1,细长;2,中;3,宽1, Slender; 2, Medium; 3, Wide |
4 | 花朵形状 Flower shape | 多元性状 Multivariate trait | 1,花类似浙贝1号;2,花介于浙贝1号与浙贝3号之间;3,花类似浙贝 2 号 1, Flowers similar to Zhebei No.1; 2, Flowers are between Zhebei No.1 and Zhebei No.3; 3, Flowers similar to Zhebei No.2 |
5 | 花朵数量Number of flowers | 多元性状Multivariate trait | 1,少;2,中;3,多 1, Less; 2, Medium; 3, More |
6 | 花朵颜色Flower color | 多元性状Multivariate trait | 1,偏黄;2,正常;3,偏绿 1, Slightly yellow; 2, Normal; 3, Slightly green |
7 | 花朵内壁颜色 Flower inner wall color | 二元性状 Binary trait | 1,正常;2,紫色 1, Normal; 2, Purple |
8 | 茎秆数量Number of stems | 多元性状Multivariate trait | 1,1根;2,2根;3,3根 1, One piece; 2, Two pieces; 3, Three pieces |
9 | 茎秆粗细Stem thickness | 多元性状Multivariate trait | 1,细;2,中;3,粗 1, Thin; 2, Medium; 3, Thick |
10 | 结籽程度 Seed setting degree | 多元性状 Multivariate trait | 1,未结籽;2,部分结籽;3,结籽 1, Not yet seeded; 2, Partial seeded; 3, Seed setting |
Table 2 Morphological characters of F. thunbergii and their assignment (customized)
序号 No. | 性状 Characters | 类型 Type | 编码 Coding |
---|---|---|---|
1 | 叶片数量Number of leaves | 二元性状Binary trait | 1,中;2,多 1, Medium; 2, More |
2 | 叶片颜色Leaf color | 二元性状Binary trait | 1,深绿色;2,黄绿色1, Dark green; 2, Yellow green |
3 | 叶片宽度Leaf width | 多元性状Multivariate trait | 1,细长;2,中;3,宽1, Slender; 2, Medium; 3, Wide |
4 | 花朵形状 Flower shape | 多元性状 Multivariate trait | 1,花类似浙贝1号;2,花介于浙贝1号与浙贝3号之间;3,花类似浙贝 2 号 1, Flowers similar to Zhebei No.1; 2, Flowers are between Zhebei No.1 and Zhebei No.3; 3, Flowers similar to Zhebei No.2 |
5 | 花朵数量Number of flowers | 多元性状Multivariate trait | 1,少;2,中;3,多 1, Less; 2, Medium; 3, More |
6 | 花朵颜色Flower color | 多元性状Multivariate trait | 1,偏黄;2,正常;3,偏绿 1, Slightly yellow; 2, Normal; 3, Slightly green |
7 | 花朵内壁颜色 Flower inner wall color | 二元性状 Binary trait | 1,正常;2,紫色 1, Normal; 2, Purple |
8 | 茎秆数量Number of stems | 多元性状Multivariate trait | 1,1根;2,2根;3,3根 1, One piece; 2, Two pieces; 3, Three pieces |
9 | 茎秆粗细Stem thickness | 多元性状Multivariate trait | 1,细;2,中;3,粗 1, Thin; 2, Medium; 3, Thick |
10 | 结籽程度 Seed setting degree | 多元性状 Multivariate trait | 1,未结籽;2,部分结籽;3,结籽 1, Not yet seeded; 2, Partial seeded; 3, Seed setting |
引物名称 Primer name | 序列 Primer sequence(5'-3') |
---|---|
SCoT 14 | ACGACATGGCGACCACGC |
SCoT 25 | ACCATGGCTACCACCGGG |
SCoT 29 | CCATGGCTACCACCGGCC |
SCoT 35 | CATGGCTACCACCGGCCC |
SCoT 41 | CAATGGCTACCACTGACA |
Table 3 Primer sequence of SCoT
引物名称 Primer name | 序列 Primer sequence(5'-3') |
---|---|
SCoT 14 | ACGACATGGCGACCACGC |
SCoT 25 | ACCATGGCTACCACCGGG |
SCoT 29 | CCATGGCTACCACCGGCC |
SCoT 35 | CATGGCTACCACCGGCCC |
SCoT 41 | CAATGGCTACCACTGACA |
表型 Phenotype | 浙贝1号 Zhebei No.1 | 浙贝2号 Zhebei No.2 | 浙贝3号 Zhebei No.3 | 浙贝4号 Zhebei No.4 |
---|---|---|---|---|
叶数Number of leaves | 正常Normal | 正常Normal | 正常Normal | 多More |
叶形Leaf shape | 狭叶Narrow leaf | 宽叶Wide leaf | 宽叶Wide leaf | 狭叶Narrow leaf |
叶色Leaf color | 深绿色Dark green | 黄绿色Yellow green | 黄绿色Yellow green | 深绿色Dark green |
花色Flower color | 花朵外部颜色偏黄内部颜色浅、紫色纹路偏少The external color of the flower is yellowish, the internal color is light, and there are few purple patterns | 花朵外部颜色偏绿,内部紫色纹路最深The flower has a greenish exterior color and the deepest purple pattern inside | 介于浙贝1号和浙贝2号之间,内部紫色纹路少Between Zhebei No.1 and Zhebei No.2, there are few purple patterns inside | 花朵外部颜色偏黄内壁颜色较浙贝1号浅、内部紫色纹路少The outer color of the flower is yellowish, and the inner wall color is lighter than that of Zhebei No.1, with fewer purple patterns inside |
花瓣个数Number of petals | 6 | 6 | 6 | 6 |
茎秆粗细Stem thickness | 细Thin | 粗Thick | 细Thin | 粗Thick |
茎秆个数Number of stems | 两茎秆Two stems | 两茎秆Two stems | 三茎秆Three stems | 三或四茎秆Three or four stems |
Table 4 Phenotypic difference of four parents of F. thunbergii
表型 Phenotype | 浙贝1号 Zhebei No.1 | 浙贝2号 Zhebei No.2 | 浙贝3号 Zhebei No.3 | 浙贝4号 Zhebei No.4 |
---|---|---|---|---|
叶数Number of leaves | 正常Normal | 正常Normal | 正常Normal | 多More |
叶形Leaf shape | 狭叶Narrow leaf | 宽叶Wide leaf | 宽叶Wide leaf | 狭叶Narrow leaf |
叶色Leaf color | 深绿色Dark green | 黄绿色Yellow green | 黄绿色Yellow green | 深绿色Dark green |
花色Flower color | 花朵外部颜色偏黄内部颜色浅、紫色纹路偏少The external color of the flower is yellowish, the internal color is light, and there are few purple patterns | 花朵外部颜色偏绿,内部紫色纹路最深The flower has a greenish exterior color and the deepest purple pattern inside | 介于浙贝1号和浙贝2号之间,内部紫色纹路少Between Zhebei No.1 and Zhebei No.2, there are few purple patterns inside | 花朵外部颜色偏黄内壁颜色较浙贝1号浅、内部紫色纹路少The outer color of the flower is yellowish, and the inner wall color is lighter than that of Zhebei No.1, with fewer purple patterns inside |
花瓣个数Number of petals | 6 | 6 | 6 | 6 |
茎秆粗细Stem thickness | 细Thin | 粗Thick | 细Thin | 粗Thick |
茎秆个数Number of stems | 两茎秆Two stems | 两茎秆Two stems | 三茎秆Three stems | 三或四茎秆Three or four stems |
Fig.3 Results of genomic DNA amplification of some test materials with 5 primers A, Amplified electrophoresis of primer SCoT14; B, Amplification electrophoresis of primer SCoT25; C, Amplification electrophoresis of primer SCoT29; D, Amplification electrophoresis of primer SCoT35; E, Amplification electrophoresis of primer SCoT41.
引物 Primer | 总扩增位点/条 Total amplification sites | 多态性位点/条 Polymorphic loci | 多态性位点比率 Ratio of polymorphic loci/% |
---|---|---|---|
SCoT14 | 22 | 21 | 95.45 |
SCoT25 | 20 | 17 | 85.00 |
SCoT29 | 17 | 14 | 82.35 |
SCoT35 | 34 | 29 | 85.29 |
SCoT41 | 18 | 15 | 83.33 |
平均数 | 22.2 | 19.2 | 86.29 |
Average | |||
总数Total | 111 | 96 | — |
Table 5 Statistical table of amplification results of 5 primers
引物 Primer | 总扩增位点/条 Total amplification sites | 多态性位点/条 Polymorphic loci | 多态性位点比率 Ratio of polymorphic loci/% |
---|---|---|---|
SCoT14 | 22 | 21 | 95.45 |
SCoT25 | 20 | 17 | 85.00 |
SCoT29 | 17 | 14 | 82.35 |
SCoT35 | 34 | 29 | 85.29 |
SCoT41 | 18 | 15 | 83.33 |
平均数 | 22.2 | 19.2 | 86.29 |
Average | |||
总数Total | 111 | 96 | — |
Fig.6 Clustering analysis based on genetic similarity coefficient among germplasm resources of offspring from parental combination with Zhebei No.2 and Zhebei No.3
Fig.7 Clustering analysis based on genetic similarity coefficient among germplasm resources of offspring from parental combination with Zhebei No.1 and Zhebei No.3
Fig.8 Correlation analysis of morphological characters of F. thunbergii 1, YPS-number of leaves; 2, YS-leaf color; 3, YK-leaf width; 4, HX-flower type; 5, HDS-number of flowers; 6, HS-flower color; 7, HNS-flower inner wall color; 8, JG-number of stems; 9, JGZ-stem thickness; 10, JZ-degree of seed setting.
指标 Index | 贝母素甲 Peimine | 贝母素乙 Peiminine | 总生物碱 Total alkaloid |
---|---|---|---|
叶宽Leaf width | -0.434** | -0.368** | -0.433** |
Table 6 Correlation analysis between alkaloid content and leaf width of F. thunbergii at maturity stage
指标 Index | 贝母素甲 Peimine | 贝母素乙 Peiminine | 总生物碱 Total alkaloid |
---|---|---|---|
叶宽Leaf width | -0.434** | -0.368** | -0.433** |
[1] | 张田, 倪典墨, 郭忠静, 等. 贝母属植物分子标记应用研究[J]. 中国野生植物资源, 2020, 39(3): 63-67, 76. |
ZHANG T, NI D M, GUO Z J, et al. Application of molecular markers for plants in Fritillaria[J]. Chinese Wild Plant Resources, 2020, 39(3): 63-67, 76. (in Chinese with English abstract) | |
[2] | 李梓铭, 范小平, 金泽兰, 等. 浙贝母GA20ox、NCED、IAA的克隆、表达及在鳞茎发育中的作用[J]. 农业生物技术学报, 2021, 29(9): 1710-1721. |
LI Z M, FAN X P, JIN Z L, et al. Cloning and expression of GA20ox, NCED and IAA and their roles in bulb development of Fritillaria thunbergii[J]. Journal of Agricultural Biotechnology, 2021, 29(9): 1710-1721. (in Chinese with English abstract) | |
[3] | COLLARD B C Y, MACKILL D J. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants[J]. Plant Molecular Biology Reporter, 2009, 27(1): 86-93. |
[4] | 冯俊彦, 康乐, 郎涛, 等. 基于SCoT分子标记的甘薯及其野生种遗传多样性分析[J]. 华北农学报, 2021, 36(1): 18-26. |
FENG J Y, KANG L, LANG T, et al. Genetic diversity analysis of sweet potato and its wild species using SCoT molecular markers[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(1): 18-26. (in Chinese with English abstract) | |
[5] | 王悦星, 周婉莹, 张文慧, 等. 利用SCoT分子标记分析85个猕猴桃品种(系)及野生近缘种的遗传结构[J]. 果树学报, 2021, 38(7): 1044-1054. |
WANG Y X, ZHOU W Y, ZHANG W H, et al. Genetic structure analysis of 85 kiwifruit varieties(lines) and wild relatives by SCoT molecular markers[J]. Journal of Fruit Science, 2021, 38(7): 1044-1054. (in Chinese with English abstract) | |
[6] | 彭芳芳, 龙治坚, 魏召新, 等. 樱桃种质SCoT分子标记与叶片表型性状关联分析[J]. 园艺学报, 2021, 48(2): 325-335. |
PENG F F, LONG Z J, WEI Z X, et al. Association analysis of SCoT markers and leaf phenotypic traits in cherry germplasm[J]. Acta Horticulturae Sinica, 2021, 48(2): 325-335. (in Chinese with English abstract) | |
[7] | 邬龙怡, 胡珊, 杨志业, 等. SCoT分子标记对不同品种化橘红的亲缘关系分析[J]. 现代中药研究与实践, 2018, 32(6): 12-16. |
WU L Y, HU S, YANG Z Y, et al. Study on the genetic relationship of Exocarpium citri grandis by SCoT molecular markers[J]. Research and Practice on Chinese Medicines, 2018, 32(6): 12-16. (in Chinese with English abstract) | |
[8] | 何伯伟, 周书军, 陈爱良, 等. 浙贝母浙贝1号特征特性及栽培加工技术[J]. 浙江农业科学, 2014, 55(6): 833-835. |
HE B W, ZHOU S J, CHEN A L, et al. Characteristics and cultivation techniques of Fritillaria thunbergii Zhebei No.1[J]. Journal of Zhejiang Agricultural Sciences, 2014, 55(6): 833-835. (in Chinese) | |
[9] | 何伯伟, 周书军, 叶剑峰, 等. 浙贝2号新品种选育和主要生物性状研究[J]. 浙江农业科学, 2014, 55(7): 1014-1018. |
HE B W, ZHOU S J, YE J F, et al. Breeding of new variety Zhebei No.2 and study on its main biological characters[J]. Journal of Zhejiang Agricultural Sciences, 2014, 55(7): 1014-1018. (in Chinese) | |
[10] | 江建铭, 俞信光, 王文静, 等. 浙贝母新品种“浙贝3号” 的选育与品种特性[J]. 中国中药杂志, 2019, 44(3): 448-453. |
JIANG J M, YU X G, WANG W J, et al. Breeding and variety characteristics of a new variety of Fritillaria thunbergii “Zhebei 3”[J]. China Journal of Chinese Materia Medica, 2019, 44(3): 448-453. (in Chinese with English abstract) | |
[11] | 吴秋丽. 不同品种和产地浙贝母质量评价与分子标记辅助育种研究[D]. 宁波: 浙江万里学院, 2020. |
WU Q L. Quality evaluation and molecular marker assisted breeding of different varieties and origins of Fritillaria thunbergii[D]. Ningbo: Zhejiang Wanli University, 2020. (in Chinese with English abstract) | |
[12] | 崔明超, 程斌, 陈宏降, 等. 玉涎胶囊的质量标准研究[J]. 安徽医药, 2014, 18(5): 815-819. |
CUI M C, CHENG B, CHEN H J, et al. Quality standard of Yuxian capsules[J]. Anhui Medical and Pharmaceutical Journal, 2014, 18(5): 815-819. (in Chinese with English abstract) | |
[13] | 吴秋丽, 嵇元烨, 董莉莉, 等. 不同产地浙贝母生物碱含量及其合成相关基因表达研究[J]. 广西植物, 2020, 40(12): 1755-1763. |
WU Q L, JI Y Y, DONG L L, et al. Alkaloid content and synthesis related gene expression of Fritillaria thunbergii in different producing areas[J]. Guihaia, 2020, 40(12): 1755-1763. (in Chinese with English abstract) | |
[14] | LUO D D, LIU Y Y, WANG Y P, et al. Rapid identification of Fritillariae Cirrhosae Bulbus and its adulterants by UPLC-ELSD fingerprint combined with chemometrics methods[J]. Biochemical Systematics and Ecology, 2018, 76: 46-51. |
[15] | 田慧, 陈宏夏, 黄勇, 等. 青钱柳种质资源SCoT分子标记遗传多样性分析[J]. 世界科学技术-中医药现代化, 2022, 24(7): 2732-2739. |
TIAN H, CHEN H X, HUANG Y, et al. Genetic diversity of Germplasm Resource SCo T of Cyclocarya paliurus(batal.)Iljinsk by molecular markers[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2022, 24(7): 2732-2739. (in Chinese with English abstract) | |
[16] | WANG Y, CHEN H W, HAN D G, et al. Correlation of the A-FABP gene polymorphism and mRNA expression with intramuscular fat content in three-yellow chicken and hetian-black chicken[J]. Animal Biotechnology, 2017, 28(1): 37-43. |
[17] | 欧景莉, 朱杨帆, 陈豪军, 等. 基于SCoT分子标记的48份杨桃种质遗传多样性分析[J]. 南方农业学报, 2019, 50(8): 1680-1687. |
OU J L, ZHU Y F, CHEN H J, et al. Genetic relationship analysis of 48 Averrhoa carambola L. germplasms based on SCoT marker[J]. Journal of Southern Agriculture, 2019, 50(8): 1680-1687. (in Chinese with English abstract) | |
[18] | 石海霞, 肖承鸿, 周涛, 等. 地黄种质资源的SCoT分子标记遗传多样性分析[J]. 中药材, 2018, 41(7): 1577-1580. |
SHI H X, XIAO C H, ZHOU T, et al. Genetic diversity analysis of Rehmannia glutinosa germplasm resources by SCoT molecular markers[J]. Journal of Chinese Medicinal Materials, 2018, 41(7): 1577-1580. (in Chinese) | |
[19] | 陈伯伦, 张晋, 黄继魁, 等. SCoT分子标记在猕猴桃遗传多样性分析与变异鉴定上的应用[J]. 农业生物技术学报, 2018, 26(1): 77-86. |
CHEN B L, ZHANG J, HUANG J K, et al. Application of SCoT markers on genetic diversity analysis and variation identification of Actinidia[J]. Journal of Agricultural Biotechnology, 2018, 26(1): 77-86. (in Chinese with English abstract) | |
[20] | 李玉锋, 唐琳, 陈放. 8种贝母的RAPD分析[J]. 中成药, 2006, 28(10): 1528-1529. |
LI Y F, TANG L, CHEN F. Random DNA analysis of 8 species of Fritillaria cocos[J]. Chinese Traditional Patent Medicine, 2006, 28(10): 1528-1529. (in Chinese) | |
[21] | 詹羽姣, 盛萍, 姚蓝, 等. 新疆贝母属8种药用贝母遗传多样性ISSR分析[J]. 中国野生植物资源, 2015, 34(4): 1-6. |
ZHAN Y J, SHENG P, YAO L, et al. ISSR analysis on genetic diversity of 8 species of plants in Fritillaria L. from Xinjiang[J]. Chinese Wild Plant Resources, 2015, 34(4): 1-6. (in Chinese with English abstract) |
[1] | HUANG Hui, CHU Tianjiang, XIE Nan, LIU Kai. Investigation on the genetic diversity of Sarcocheilichthys sinensis from diverse geographical populations and other species within the Sarcocheilichthys genus through the analysis of mitochondrial COI sequence segments [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1779-1788. |
[2] | MA Li, LAN Yi, XIE Bingxin, ZHOU Chunlu, LUO Shuyuan, XU Wenkun, DONG Xinxing, YAN Dawei. Study of polymorphism in the VRTN gene and its association with production traits in (Duroc×Saba)♂×[Yorkshire×(Landrace×Saba)]♀ [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1502-1510. |
[3] | WANG Baogen, CHEN Xiaoyang, WU Jian, LI Xiao, WANG Ying, WANG Jian, WU Xiaohua, LU Zhongfu, SUN Yuyan, DONG Wenqi, LI Guojing, WU Xinyi. Genetic diversity of cowpea landraces in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1569-1582. |
[4] | ZHU Yanyu, YU Wentao, GAO Shuilian, LYU Shuiyuan, WANG Pan, JIN Wanmin, GUI Wenjing, LIN Yi, YE Naixing. The diversity of tea germplasm resources and genetic relationship of ‘Tieguanyin’-derived varieties in Anxi, Fujian, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1591-1601. |
[5] | LI Yadong, LUO Xiaobo, PENG Xiao, YANG Guangqian, JIN Yueyue, ZU Guidong, TIAN Huan, ZHANG Wanping. Development of SNP and InDel markers in radish and their association with phenotypic characters [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1055-1066. |
[6] | XUE Xianbin, JIA Qiong, CHEN Zhengfeng, LI Ruiyuan, CHEN Qingfu, SHI Taoxiong. Comprehensive evaluation of agronomic characteristics of recombinant inbred lines of Tartary buckwheat based on principal component analysis [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 748-759. |
[7] | ZHANG Ting, WANG Xueyan, GUO Qinwei, LI Chaosen, LIU Huiqin, XIANG Xiaomin, WEI Jing, ZHAO Dongfeng, WAN Hongjian. Genetic diversity of pepper germplasm resources based on agronomic traits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 325-333. |
[8] | YANG Tianwen, WANG Jing, LI Jiong, XU Binqi, CHENG Jiaowen, HONG Yu, CAO Yi, CUI Junjie. Genetic diversity analysis and fingerprint construction of Dading bitter gourd germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 103-114. |
[9] | WU Qian, TANG Ziyi, TIAN Shengye, HE Haiye, PAN Weiwei, WANG Junfeng, BAO Honghua, ZHANG Huijuan, JIANG Ming. Genetic diversity of Rhododendron huadingense based on SARP molecular marker [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 127-133. |
[10] | ZHANG Xiaoli, ZHU Linglong, LI Fuzhen, TANG Xiumei, XIA Youlin, YOU Yu, ZHONG Ruichun. Evaluation and analysis of agronomic and quality traits of 115 peanut germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2033-2044. |
[11] | YUAN Ye, LIU Rui, WANG Lingyun, SHEN Meng, YE Xuelian, QUAN Xinhua, WANG Ruisen, YAO Xiangtan. Genetic diversity analysis of Trapa L. cultivars in Jiangsu and Zhejiang Provinces using SLAF-seq [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1773-1781. |
[12] | FU Hongfei, GUO Saisai, ZHENG Jirong. Effects of compound substrate with residues of Solanaceous vegetables on cucumber seedling [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1805-1813. |
[13] | MENG Yusha, WANG Yin, LAI Qixian, LIU Lei, XIANG Chao, WU Yonghua, ZHENG Yanran, GU Xingguo, FANG Hao, MIAO Miao, WU Liehong, TANG Yong. Assessment of genetic diversity and variety identification based on insertion site-based polymorphism (ISBP) markers developed in wild species related to sweet potato [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 489-498. |
[14] | LOU Qianqi, LIANG Yan. Quality analysis of five kinds of tomato germplasm resources with different fruit colors [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 582-589. |
[15] | YANG Qiulei, WEI Xudong, MA Zhijie, CHEN Shengmei, CHAO Shengyu, WULAN Bateer. Maternal genetic diversity and genetic background of Qaidam cattle based on mtDNA Cyt b sequence variations [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 285-292. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 410
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 164
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||