Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (1): 78-89.DOI: 10.3969/j.issn.1004-1524.20240378
• Horticultural Science • Previous Articles Next Articles
QIN Douwen1,2(), LIU Weiqiang1,2, TIAN Jiting1,2, JU Xiuting1,2,*(
)
Received:
2024-04-26
Online:
2025-01-25
Published:
2025-02-14
CLC Number:
QIN Douwen, LIU Weiqiang, TIAN Jiting, JU Xiuting. Establishment of cpDNA-PCR reaction system and genetic diversity analysis of Tulipa iliensis[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 78-89.
序号 Number | 居群 Population | 居群个体数 Individual number of population | 采样地 Sample location |
---|---|---|---|
1 | 1 300 | 4 | 巩留县吉尔格郎乡Jilgelang Township, Gongliu County, China |
2 | 1 400 | 4 | 巩留县吉尔格郎乡Jilgelang Township, Gongliu County, China |
3 | 1 600 | 29 | 昭苏县喀夏加尔镇Kazhagar Township, Zhaosu County, China |
4 | 1 700 | 5 | 昭苏县喀夏加尔镇Kazhagar Township, Zhaosu County, China |
5 | 1 800 | 2 | 昭苏县喀夏加尔镇Kazhagar Township, Zhaosu County, China |
6 | 1 900 | 5 | 昭苏县乌尊布拉克镇Uzunbulak Township, Zhaosu County, China |
7 | 2 000 | 5 | 昭苏县乌尊布拉克镇Uzunbulak Township, Zhaosu County, China |
合计Total | 54 |
Table 1 The tested materials of Tulipa iliensis
序号 Number | 居群 Population | 居群个体数 Individual number of population | 采样地 Sample location |
---|---|---|---|
1 | 1 300 | 4 | 巩留县吉尔格郎乡Jilgelang Township, Gongliu County, China |
2 | 1 400 | 4 | 巩留县吉尔格郎乡Jilgelang Township, Gongliu County, China |
3 | 1 600 | 29 | 昭苏县喀夏加尔镇Kazhagar Township, Zhaosu County, China |
4 | 1 700 | 5 | 昭苏县喀夏加尔镇Kazhagar Township, Zhaosu County, China |
5 | 1 800 | 2 | 昭苏县喀夏加尔镇Kazhagar Township, Zhaosu County, China |
6 | 1 900 | 5 | 昭苏县乌尊布拉克镇Uzunbulak Township, Zhaosu County, China |
7 | 2 000 | 5 | 昭苏县乌尊布拉克镇Uzunbulak Township, Zhaosu County, China |
合计Total | 54 |
编号 Number | Taq DNA酶 Taq DNA polymerase/U | 镁离子 Mg2+/(mmol·L-1) | 脱氧核糖核苷酸 dNTP/(mmol·L-1) | 引物 Primer/(μmol·L-1) | DNA DNA/ng |
---|---|---|---|---|---|
1 | 0.25 | 1.0 | 0.05 | 0.2 | 30 |
2 | 0.50 | 1.0 | 0.10 | 0.3 | 50 |
3 | 0.75 | 1.0 | 0.15 | 0.4 | 80 |
4 | 1.00 | 1.0 | 0.20 | 0.5 | 110 |
5 | 0.75 | 1.5 | 0.05 | 0.3 | 110 |
6 | 1.00 | 1.5 | 0.10 | 0.2 | 80 |
7 | 0.25 | 1.5 | 0.15 | 0.5 | 50 |
8 | 0.50 | 1.5 | 0.20 | 0.4 | 30 |
9 | 1.00 | 2.0 | 0.05 | 0.4 | 50 |
10 | 0.75 | 2.0 | 0.10 | 0.5 | 30 |
11 | 0.50 | 2.0 | 0.15 | 0.2 | 110 |
12 | 0.25 | 2.0 | 0.20 | 0.3 | 80 |
13 | 0.50 | 2.5 | 0.05 | 0.5 | 80 |
14 | 0.25 | 2.5 | 0.10 | 0.4 | 110 |
15 | 1.00 | 2.5 | 0.15 | 0.3 | 30 |
16 | 0.75 | 2.5 | 0.20 | 0.2 | 50 |
Table 2 Orthogonal design of cpDNA-PCR reaction system for Tulipa iliensis
编号 Number | Taq DNA酶 Taq DNA polymerase/U | 镁离子 Mg2+/(mmol·L-1) | 脱氧核糖核苷酸 dNTP/(mmol·L-1) | 引物 Primer/(μmol·L-1) | DNA DNA/ng |
---|---|---|---|---|---|
1 | 0.25 | 1.0 | 0.05 | 0.2 | 30 |
2 | 0.50 | 1.0 | 0.10 | 0.3 | 50 |
3 | 0.75 | 1.0 | 0.15 | 0.4 | 80 |
4 | 1.00 | 1.0 | 0.20 | 0.5 | 110 |
5 | 0.75 | 1.5 | 0.05 | 0.3 | 110 |
6 | 1.00 | 1.5 | 0.10 | 0.2 | 80 |
7 | 0.25 | 1.5 | 0.15 | 0.5 | 50 |
8 | 0.50 | 1.5 | 0.20 | 0.4 | 30 |
9 | 1.00 | 2.0 | 0.05 | 0.4 | 50 |
10 | 0.75 | 2.0 | 0.10 | 0.5 | 30 |
11 | 0.50 | 2.0 | 0.15 | 0.2 | 110 |
12 | 0.25 | 2.0 | 0.20 | 0.3 | 80 |
13 | 0.50 | 2.5 | 0.05 | 0.5 | 80 |
14 | 0.25 | 2.5 | 0.10 | 0.4 | 110 |
15 | 1.00 | 2.5 | 0.15 | 0.3 | 30 |
16 | 0.75 | 2.5 | 0.20 | 0.2 | 50 |
水平 Level | Taq DNA酶 Taq DNA polymerase/U | 镁离子 Mg2+/(mmol·L-1) | 脱氧核糖核苷酸 dNTPs/(mmol·L-1) | 引物 Primer/(μmol·L-1) | DNA/ng |
---|---|---|---|---|---|
1 | 0.25 | 1.0 | 0.05 | 0.2 | 30 |
2 | 0.50 | 1.5 | 0.10 | 0.3 | 50 |
3 | 0.75 | 2.0 | 0.15 | 0.4 | 80 |
4 | 1.00 | 2.5 | 0.20 | 0.5 | 110 |
Table 3 Single-factor experimental design of Tulipa iliensis cpDNA-PCR reaction system
水平 Level | Taq DNA酶 Taq DNA polymerase/U | 镁离子 Mg2+/(mmol·L-1) | 脱氧核糖核苷酸 dNTPs/(mmol·L-1) | 引物 Primer/(μmol·L-1) | DNA/ng |
---|---|---|---|---|---|
1 | 0.25 | 1.0 | 0.05 | 0.2 | 30 |
2 | 0.50 | 1.5 | 0.10 | 0.3 | 50 |
3 | 0.75 | 2.0 | 0.15 | 0.4 | 80 |
4 | 1.00 | 2.5 | 0.20 | 0.5 | 110 |
编号No. | 引物Primer | 序列Sequence | 参考文献Reference | 退火温度Annealing temperature/℃ |
---|---|---|---|---|
1 | trnK | 5'-TACTCTACCATTGAGTTAGCAAC-3' | [ | 51.3 |
rps16 | 5'-AAAGGTGCTCAACCTACAAGAAC-3' | [ | 55.0 | |
2 | AtpI | 5'-TATTTACAAGYGGTATTCAAGCT-3' | [ | 49.8 |
AtpH | 5'-CCAAYCCAGCAGCAATAAC-3' | [ | 52.9 | |
3 | rps8 | 5'-TGAACAATATTTTCGGTAAT-3' | [ | 42.7 |
rpl16 | 5'-AACCAGATTTCGTAAACAAC-3' | [ | 47.3 | |
4 | PetB | 5'-CTGCCGTATTTATGTTATG-3' | [ | 44.7 |
PetD | 5'-GTCTAGCCCCTGTTCTTCCT-3' | [ | 56.4 | |
5 | M3 | 5'-GCAACAATACTTCCTATATCCGCTTCT-3' | [ | 56.2 |
M4 | 5'-GAACTCTTCTAATAATCCCGAACCTAA-3' | [ | 53.4 | |
6 | F71 | 5'-GCTATGCTTAGTGTGTGACTCGTTG-3' | [ | 57.9 |
R1516 | 5'-CCCTTCATTCTTCCTCTATGTTG-3' | [ | 52.7 | |
7 | accD | 5'-AATYGTACCACGTAATCYTTTAAA-3' | [ | 49.0 |
psaI | 5'-AGAAGCCATTGCAATTGCCGGAAA-3' | [ | 60.2 | |
8 | trnV | 5'-GTCTACGGTTCGARTCCGTA-3' | [ | 55.0 |
ndhC | 5'-TATTATTAGAAATGYCCARAAAATATCATAT-3' | [ | 47.7 | |
9 | petG | 5'-GGTCTAATTCCTATAACTTTGGC-3' | [ | 50.4 |
trnP | 5'-GGGATGTGGCGCAGCTTGG-3' | [ | 63.5 | |
10 | trnD | 5'-ACCAATTGAACTACAATCCC-3' | [ | 49.3 |
trnE | 5'-AGGACATCTCTCTTTCAAGGAG-3' | [ | 53.4 | |
11 | psbH | 5'-TCAAYRGTYTGTGTAGCCAT-3' | [ | 52.1 |
psbB | 5'-TCCAAAAANKKGGAGATCCAAC-3' | [ | 53.9 | |
12 | trnL | 5'-CGAAATCGGTAGACGCTACG-3' | [ | 55.8 |
trnF | 5'-ATTTGAACTGGTGACACGAG-3' | [ | 52.4 | |
13 | atpB | 5'-ACATCKARTACKGGACCAATAA-3' | [ | 51.2 |
rbcL | 5'-AACACCAGCTTTRAATCCAA-3' | [ | 50.3 | |
14 | a1 | 5'-CATTACAAATGCGATGCTCT-3' | [ | 50.2 |
b1 | 5'-TCTACCGATTTCGCCATATC-3' | [ | 51.3 | |
15 | 1F | 5'-TGCCTCTTGTCCTATGTCTC-3' | [ | 53.6 |
1R | 5'-TTTCCAAATGGATAGGATGGGGT-3' | [ | 55.8 | |
16 | 2F | 5'-TGGACTCCGTGGGCACATCAA-3' | [ | 61.9 |
2R | 5'-ATGCATCCTGTACGGTTGAGACC-3' | [ | 59.4 |
Table 4 Primer used in selection
编号No. | 引物Primer | 序列Sequence | 参考文献Reference | 退火温度Annealing temperature/℃ |
---|---|---|---|---|
1 | trnK | 5'-TACTCTACCATTGAGTTAGCAAC-3' | [ | 51.3 |
rps16 | 5'-AAAGGTGCTCAACCTACAAGAAC-3' | [ | 55.0 | |
2 | AtpI | 5'-TATTTACAAGYGGTATTCAAGCT-3' | [ | 49.8 |
AtpH | 5'-CCAAYCCAGCAGCAATAAC-3' | [ | 52.9 | |
3 | rps8 | 5'-TGAACAATATTTTCGGTAAT-3' | [ | 42.7 |
rpl16 | 5'-AACCAGATTTCGTAAACAAC-3' | [ | 47.3 | |
4 | PetB | 5'-CTGCCGTATTTATGTTATG-3' | [ | 44.7 |
PetD | 5'-GTCTAGCCCCTGTTCTTCCT-3' | [ | 56.4 | |
5 | M3 | 5'-GCAACAATACTTCCTATATCCGCTTCT-3' | [ | 56.2 |
M4 | 5'-GAACTCTTCTAATAATCCCGAACCTAA-3' | [ | 53.4 | |
6 | F71 | 5'-GCTATGCTTAGTGTGTGACTCGTTG-3' | [ | 57.9 |
R1516 | 5'-CCCTTCATTCTTCCTCTATGTTG-3' | [ | 52.7 | |
7 | accD | 5'-AATYGTACCACGTAATCYTTTAAA-3' | [ | 49.0 |
psaI | 5'-AGAAGCCATTGCAATTGCCGGAAA-3' | [ | 60.2 | |
8 | trnV | 5'-GTCTACGGTTCGARTCCGTA-3' | [ | 55.0 |
ndhC | 5'-TATTATTAGAAATGYCCARAAAATATCATAT-3' | [ | 47.7 | |
9 | petG | 5'-GGTCTAATTCCTATAACTTTGGC-3' | [ | 50.4 |
trnP | 5'-GGGATGTGGCGCAGCTTGG-3' | [ | 63.5 | |
10 | trnD | 5'-ACCAATTGAACTACAATCCC-3' | [ | 49.3 |
trnE | 5'-AGGACATCTCTCTTTCAAGGAG-3' | [ | 53.4 | |
11 | psbH | 5'-TCAAYRGTYTGTGTAGCCAT-3' | [ | 52.1 |
psbB | 5'-TCCAAAAANKKGGAGATCCAAC-3' | [ | 53.9 | |
12 | trnL | 5'-CGAAATCGGTAGACGCTACG-3' | [ | 55.8 |
trnF | 5'-ATTTGAACTGGTGACACGAG-3' | [ | 52.4 | |
13 | atpB | 5'-ACATCKARTACKGGACCAATAA-3' | [ | 51.2 |
rbcL | 5'-AACACCAGCTTTRAATCCAA-3' | [ | 50.3 | |
14 | a1 | 5'-CATTACAAATGCGATGCTCT-3' | [ | 50.2 |
b1 | 5'-TCTACCGATTTCGCCATATC-3' | [ | 51.3 | |
15 | 1F | 5'-TGCCTCTTGTCCTATGTCTC-3' | [ | 53.6 |
1R | 5'-TTTCCAAATGGATAGGATGGGGT-3' | [ | 55.8 | |
16 | 2F | 5'-TGGACTCCGTGGGCACATCAA-3' | [ | 61.9 |
2R | 5'-ATGCATCCTGTACGGTTGAGACC-3' | [ | 59.4 |
参数 Parameter | Taq DNA酶 Taq DNA polymerase/U | 镁离子 Mg2+/(mmol·L-1) | 脱氧核糖核苷酸 dNTPs/(mmol·L-1) | 引物 Primer/(μmol·L-1) | 模板DNA Template DNA/ng |
---|---|---|---|---|---|
K1 | 35.00 | 26.00 | 35.00 | 35.00 | 37.00 |
K2 | 36.00 | 57.00 | 31.00 | 36.00 | 39.00 |
K3 | 50.00 | 40.00 | 43.00 | 43.00 | 38.00 |
K4 | 43.00 | 13.00 | 55.00 | 50.00 | 50.00 |
k1 | 8.75 | 6.50 | 8.75 | 8.75 | 9.25 |
k2 | 9.00 | 14.25 | 7.75 | 9.00 | 9.75 |
k3 | 12.50 | 10.00 | 10.75 | 10.75 | 9.50 |
k4 | 10.75 | 10.25 | 13.75 | 12.50 | 12.50 |
R | 3.75 | 7.75 | 6.00 | 3.75 | 3.25 |
Table 5 Range analysis of orthogonal test of Tulipa iliensis
参数 Parameter | Taq DNA酶 Taq DNA polymerase/U | 镁离子 Mg2+/(mmol·L-1) | 脱氧核糖核苷酸 dNTPs/(mmol·L-1) | 引物 Primer/(μmol·L-1) | 模板DNA Template DNA/ng |
---|---|---|---|---|---|
K1 | 35.00 | 26.00 | 35.00 | 35.00 | 37.00 |
K2 | 36.00 | 57.00 | 31.00 | 36.00 | 39.00 |
K3 | 50.00 | 40.00 | 43.00 | 43.00 | 38.00 |
K4 | 43.00 | 13.00 | 55.00 | 50.00 | 50.00 |
k1 | 8.75 | 6.50 | 8.75 | 8.75 | 9.25 |
k2 | 9.00 | 14.25 | 7.75 | 9.00 | 9.75 |
k3 | 12.50 | 10.00 | 10.75 | 10.75 | 9.50 |
k4 | 10.75 | 10.25 | 13.75 | 12.50 | 12.50 |
R | 3.75 | 7.75 | 6.00 | 3.75 | 3.25 |
Fig.3 Single-factor experiment results M, DL2 000 DNA marker;A, dNTPs concentration:0.05, 0.10, 0.15, 0.20 mmol·L-1; B, Mg2+ concentration:1.00,1.50,2.00,2.50 mmol·L-1; C, Template DNA concentration:30, 50, 80、110 ng; D, Primer concentration:0.20, 0.30, 0.40, 0.50 mmol·L-1; E, Taq DNA polymerase contents:0.25, 0.50, 0.75, 1.00 U.
Fig.4 The cpDNA-PCR electrophoresis results of primers under different annealing temperature value conditions M, DL2 000 DNA marker; 1-3, The primers are respectively accD-psaI, petG-trnP, 2F-2R.
Fig.5 The gel electrophoresis image of psbB-psbH amplification result of Tulipa iliensis M, DL2 000 DNA marker; 1-21, Some individuals of Tulipa iliensis.
Fig.6 The gel electrophoresis image of psbB-psbH amplification result of ten tulip cultivar varieties M, DL2 000 DNA marker;1-10, The tested of tulip cultivar varieties.
Fig.7 Phylogenetic tree of 54 samples of Tulipa iliensis A, Phylogenetic tree constructed based on 12 cpDNA fragments; B, Phylogenetic phylogenetic tree of 54 samples of Tulipa iliensis.
[1] | NERIYA Y, MORIKAWA T, HAMAMOTO K, et al. Characterization of tulip streak virus, a novel virus associated with the family Phenuiviridae[J]. The Journal of General Virology, 2021, 102(2). |
[2] | 蒋丹青. 5℃郁金香日光温室栽培技术[J]. 安徽农学通报, 2021, 27(17): 69-70. |
JIANG D Q. 5℃ Celsius tulip daylight greenhouse cultivation technology[J]. Anhui Agricultural Science Bulletin, 2021, 27(17): 69-70. (in Chinese) | |
[3] | 张晓妍, 黄贤敏, 王世苗, 等. 野生郁金香总黄酮提取及抗氧化活性研究[J]. 伊犁师范大学学报(自然科学版), 2023, 17(1): 29-37. |
ZHANG X Y, HUANG X M, WANG S M, et al. Study on extraction and antioxidant activity of total flavonoids from wild tulip[J]. Journal of Yili Normal University(Natural Science Edition), 2023, 17(1): 29-37. (in Chinese with English abstract) | |
[4] | 王世苗. 郁金香属植物内生真菌分离、鉴定及其次生代谢产物的初步研究[D]. 伊犁: 伊犁师范大学, 2023. |
WANG S M. Preliminary studies on the isolation and identification of endophytic fungi and their secondary metabolites in Tulipa sp.[D]. Xinjiang: YiLi Normal University, 2023. (in Chinese with English abstract) | |
[5] | 李国强, 庄重, 杨平. 药用植物伊犁郁金香结构植物学研究[J]. 新疆农业科学, 1997, 34(1): 18-20. |
LI G Q, ZHUANG Z, YANG P. Study on the structure botany of medicinal plant Tulipa iliensis[J]. Xinjiang Agricultural Sciences, 1997, 34(1): 18-20. (in Chinese) | |
[6] | 王玉荣. 新疆郁金香属植物生物学特性及资源评价研究[D]. 乌鲁木齐: 新疆农业大学, 2001. |
WANG Y R. Studies on the biological characters and resources evaluation of Tulipa from xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2001. (in Chinese with English abstract) | |
[7] | 梅莉娟, 谭敦炎. 伊犁郁金香和阿尔泰郁金香不同居群的物候特点[J]. 新疆农业大学学报, 2006, 29(4): 18-21. |
MEI L J, TAN D Y. Phenological characteristics in different populations of Tulipa iliensis regel and Tulipa altaica pall ex spreng.[J]. Journal of Xinjiang Agricultural University, 2006, 29(4): 18-21. (in Chinese with English abstract) | |
[8] | 聂小霞, 林雪凤, 陆婷, 等. 伊犁郁金香休眠习性初步研究[J]. 江苏农业科学, 2017, 45(6): 121-123. |
NIE X X, LIN X F, LU T, et al. Preliminary study on the Hibernation of Tulipa iliensis[J]. Jiangsu Agricultural Sciences, 2017, 45(6): 121-123. (in Chinese) | |
[9] | 张阳, 马子兰, 徐珊珊, 等. 青藏高原东北部黄缨菊的谱系地理学[J]. 植物研究, 2022, 42(4): 565-573. |
ZHANG Y, MA Z L, XU S S, et al. Phylogeography of Xanthopappus Subacaulis(Asteraceae), an endemic species from the northeastern of the Qinghai-Tibet Plateau[J]. Bulletin of Botanical Research, 2022, 42(4): 565-573. (in Chinese with English abstract) | |
[10] | XU S J, TENG K, ZHANG H, et al. Chloroplast genomes of four Carex species: long repetitive sequences trigger dramatic changes in chloroplast genome structure[J]. Frontiers in Plant Science, 2023, 14: 1100876. |
[11] | ZHAI Y F, YU X Q, ZHOU J G, et al. Complete chloroplast genome sequencing and comparative analysis reveals changes to the chloroplast genome after allopolyploidization in Cucumis[J]. Genome, 2021, 64(6): 627-638. |
[12] | SEVINDIK E, MURATHAN Z T. DNA barcoding and sequence analysis of the cpDNA rbcL region in some Pyrus communis L. (Rosaceae) genotypes from ardahan/türkiye[J]. Erwerbs-Obstbau, 2023, 65(5): 1315-1320. |
[13] | CHEN X, TIAN L, TIAN J Y, et al. Extensive sampling provides new insights into phylogenetic relationships between wild and domesticated Zanthoxylum species in China[J]. Horticulturae, 2022, 8(5): 440. |
[14] | 杨宏. 迎春樱桃的谱系地理学研究[D]. 南京: 南京林业大学, 2023. |
YANG H. Phylogeography of Prunus discoidea Yü et Li[D]. Nanjing: Nanjing Forestry University, 2023. (in Chinese with English abstract) | |
[15] | 宛甜. 中国毛樱桃野生种群遗传多样性及谱系地理学研究[D]. 杨凌: 西北农林科技大学, 2023. |
WAN T. Genetic diversity and phylogeography of wild Prunus tomentosa in China[D]. Yangling: Northwest A & F University, 2023. (in Chinese with English abstract) | |
[16] | 张婕妤. 中国西南山地冰缘带特有植物丽江棱子芹的谱系地理学研究[D]. 昆明: 云南师范大学, 2023. |
ZHANG J Y. Phylogeographic study of the subnival endemic plant Pleurospermum foetens in the mountains of SW China[D]. Kunming: Yunnan Normal University, 2023. (in Chinese with English abstract) | |
[17] | 潘凤. 刺梨的遗传多样性及谱系地理学研究[D]. 贵阳: 贵州大学, 2022. |
PAN F. Genetic diversity and phylogeography of Rosa roxburghii Tratt[D]. Guiyang: Guizhou University, 2022. (in Chinese with English abstract) | |
[18] | LI L, WANG S J, CHEN Y P, et al. Climate change in the eastern Xinjiang of China and its connection to northwestern warm humidification[J]. Atmosphere, 2023, 14(9): 1421. |
[19] | 马秀花, 唐楠, 唐道城, 等. 郁金香的表型遗传多样性及观赏价值综合评价[J]. 分子植物育种, 2021, 19(4): 1320-1336. |
MA X H, TANG N, TANG D C, et al. Phenotypic genetic diversity and ornamental value comprehensive evaluation in tulip resources[J]. Molecular Plant Breeding, 2021, 19(4): 1320-1336. (in Chinese with English abstract) | |
[20] | 陈芳, 刘彤, 周玲玲. 新疆野生郁金香生物学特性及种子发芽特性的研究[J]. 石河子大学学报(自然科学版), 2001, 19(3): 197-200. |
CHEN F, LIU T, ZHOU L L. Research on the biological and germinating characters of wild Tulipa[J]. Journal of Shihezi University(Natural Science), 2001, 19(3): 197-200. (in Chinese with English abstract) | |
[21] | 朱新霞, 孙黎, 乐锦华. 野生郁金香的室内萌发研究[J]. 种子, 2005, 24(11): 63-64. |
ZHU X X, SUN L, LE J H. Studies on the indoor germination of wild tulips[J]. Seed, 2005, 24(11): 63-64. (in Chinese) | |
[22] | 聂小霞, 康晓珊, 陆婷, 等. 伊犁郁金香(Tulipa iliensis)种子萌发特性研究[J]. 种子, 2016, 35(12): 70-73. |
NIE X X, KANG X S, LU T, et al. Study on the seed germination characteristics of Tulipa iliensis[J]. Seed, 2016, 35(12): 70-73. (in Chinese with English abstract) | |
[23] | 陈娟娟. 两种野生郁金香种子萌发特性及多倍体诱导研究[D]. 沈阳: 沈阳农业大学, 2018. |
CHEN J J. Studies on seed germination and polyploid induction of two Tulipa species[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese with English abstract) | |
[24] | 黄钦华. 郁金香组织培养技术优化与干旱诱导蛋白TgDi19应用研究[D]. 武汉: 华中农业大学, 2022. |
HUANG Q H. Optimization of tulip tissue culture technology and application of drought inducible protein TgDi19[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese with English abstract) | |
[25] | JU X T, SHI G M, HOU Z Q, et al. Characterization of the complete chloroplast genome of Tulipa iliensis(Liliaceae)[J]. Mitochondrial DNA Part B, Resources, 2020, 5(3): 2362-2363. |
[26] | 栾启福, 欧阳彤, 姜彦成, 等. 新疆野生郁金香和栽培种的RAPD分析[J]. 江西农业大学学报, 2008, 30(4): 656-660. |
LUAN Q F, OUYANG T, JIANG Y C, et al. Tulip RAPD analysis of cultivars and wild species in Xinjiang[J]. Acta Agriculturae Universitatis Jiangxiensis, 2008, 30(4): 656-660. (in Chinese with English abstract) | |
[27] | 巨秀婷, 潘阿青, 蒋福娟, 等. 郁金香种质资源遗传多样性的ISSR分析[J]. 基因组学与应用生物学, 2019, 38(8): 3667-3674. |
JU X T, PAN A Q, JIANG F J, et al. Genetic diversity of tulip germplasm resource revealed by ISSR markers[J]. Genomics and Applied Biology, 2019, 38(8): 3667-3674. (in Chinese with English abstract) | |
[28] | 唐楠. 郁金香遗传连锁图谱构建及主要真菌病害抗性QTL定位[D]. 杨凌: 西北农林科技大学, 2014. |
TANG N. Construction of genetic linkage map for tulip and identification of QTLs for resistance to major fungal diseases[D]. Yangling: Northwest A & F University, 2014. (in Chinese with English abstract) | |
[29] | 周雨晴, 莫锦萍, 韦金梅, 等. 利用正交设计优化露兜簕的ISSR-PCR反应体系[J/OL]. 分子植物育种, 2022: 1-24. (2022-09-16) [2024-04-25]. https://kns.cnki.net/kcms/detail/46.1068.S.20220915.1354.002.html. |
ZHOU Y Q, MO J P, WEI J M, et al. Optimizing the ISSR-PCR system of Pandanus tectorius(L.) parkinson by orthogonal design[J/OL]. Molecular Plant Breeding, 2022: 1-24. (2022-09-16) [2024-04-25]. https://kns.cnki.net/kcms/detail/46.1068.S.20220915.1354.002.html. (in Chinese with English abstract) | |
[30] | HAJDARI A, PULAJ B, SCHMIDERER C, et al. Erratum: a phylogenetic analysis of the wild Tulipa species (Liliaceae) of Kosovo based on plastid and nuclear DNA sequence[J]. Advanced Genetics, 2021, 2(4): 2100057. |
[31] | SHAW J, LICKEY E B, SCHILLING E E, et al. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III[J]. American Journal of Botany, 2007, 94(3): 275-288. |
[32] | GRIVET D, HEINZE B, VENDRAMIN G G, et al. Genome walking with consensus primers: application to the large single copy region of chloroplast DNA[J]. Molecular Ecology Notes, 2001, 1(4):345-349. |
[33] | 李恩香. 黄精叶钩吻属的亲缘地理学及其近缘类群的系统进化研究[D]. 杭州: 浙江大学, 2006. |
LI E X. Studies on phylogeography of Croomia and phylogeny of Croomia and its Allies[D]. Hangzhou: Zhejiang University, 2006. (in Chinese with English abstract) | |
[34] | SMALL R L, Lickey E B, SHAW J, et al. Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae[J]. Molecular Phylogenetics and Evolution, 2005, 36, 3: 509-522. |
[35] | HWANG L H, HWANG S Y, LIN T P. Low chloroplast DNA variation and population differentiation of Chamaecyparis formosensis and Chamaecyparis taiwanensis[J]. Taiwan Journal of Forest Science, 2000, 15: 229-236. |
[36] | HAMILTON M B. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation[J]. Molecular Ecology, 1999, 8(3):521-523. |
[37] | TABERLET P, GIELLY L, PAUTOU G, et al. Universal primers for amplification of three non-coding regions of chloroplast DNA[J]. Plant Molecular Biology, 1991, 17: 1105-1109. |
[38] | GOLENBERG E M, CLEGG M T, DURBIN M L. Evolution of a noncoding region of the chloroplast genome[J]. Molecular Phylogenetics and Evolution, 1993, 2(1): 52-64. |
[39] | 马秀花, 唐楠, 唐道城. 郁金香SSR-PCR反应体系的建立与优化[J]. 分子植物育种, 2020, 18(12): 3961-3970. |
MA X H, TANG N, TANG D C. Establishment and optimization of SSR-PCR amplification system for tulip[J]. Molecular Plant Breeding, 2020, 18(12): 3961-3970. (in Chinese with English abstract) | |
[40] | 陈兰艳, 马秀花, 唐楠, 等. 郁金香SRAP-PCR体系建立与优化[J]. 分子植物育种, 2019, 17(20): 6711-6717. |
CHEN L Y, MA X H, TANG N, et al. Establishment and optimization of SRAP-PCR system for tulip[J]. Molecular Plant Breeding, 2019, 17(20): 6711-6717. (in Chinese with English abstract) | |
[41] | 巨秀婷, 阿啟兰. 郁金香ISSR-PCR体系建立与优化[J]. 分子植物育种, 2016, 14(4): 973-979. |
JU X T, A Q L. Establishment and optimization of ISSR-PCR system for tulip[J]. Molecular Plant Breeding, 2016, 14(4): 973-979. (in Chinese with English abstract) | |
[42] | 高曼熔, 杨天为, 黄诗宇, 等. 广西野生铁皮石斛SCoT体系优化及遗传多样性分析[J/OL]. 分子植物育种, 2023: 1-19. (2023-08-30) [2024-04-25]. https://kns.cnki.net/kcms/detail/46.1068.s.20230830.0912.002.html. |
GAO M R, YANG T W, HUANG S Y, et al. Optimization of SCoT system of Dendrobium officinale and analysis of genetic diversity of wild germplasm in Guangxi[J/OL]. Molecular Plant Breeding, 2023: 1-19. (2023-08-30) [2024-04-25]. https://kns.cnki.net/kcms/detail/46.1068.s.20230830.0912.002.html. (in Chinese with English abstract) | |
[43] | 袁柳娇, 余如凤, 钟军弟, 等. 红树植物木榄SCoT-PCR体系优化及遗传多样性分析[J]. 基因组学与应用生物学, 2017, 36(1): 352-361. |
YUAN L J, YU R F, ZHONG J D, et al. System optimization of SCoT-PCR and genetic diversity analysis of a mangrove plant: Bruguiera gymnorrhiza[J]. Genomics and Applied Biology, 2017, 36(1): 352-361. (in Chinese with English abstract) | |
[44] | 余智城, 何雪娇, 林秀香, 等. 基于SSR标记的琯溪蜜柚种质资源遗传多样性分析[J]. 福建热作科技, 2024, 49 (01):40-43. |
YU Z C, HE X J, LIN X X, et al. Analysis of genetic diversity of germplasm resources of Guanxi pomelo based on SSR markers[J]. Fujian Science & Technology of Tropical Crops, 2024, 49 (1):40-43. (in Chinese with English abstract) | |
[45] | 丁海麦, 白羽, 周红兵, 等. 不同居群蒙古扁桃的遗传多样性SRAP分析[J]. 分子植物育种, 2024, 22(8): 2583-2589. |
DING H M, BAI Y, ZHOU H B, et al. SRAP analysis of genetic diversity in different populations of Amygdalus mongolica[J]. Molecular Plant Breeding, 2024, 22(8): 2583-2589. (in Chinese with English abstract) | |
[46] | 郭丽, 吴玲, 王绍明, 等. 破碎化生境中伊犁郁金香种群种子形态特征和萌发特性的适应性演化[J]. 种子, 2015, 34(9): 1-5. |
GUO L, WU L, WANG S M, et al. Adaptive evolutions of Tulipa iliensis Regel.Seed characteristics and germination in habitat fragmentation[J]. Seed, 2015, 34(9): 1-5. (in Chinese with English abstract) | |
[47] | 艾沙江·阿不都沙拉木. 伊犁郁金香的繁殖生物学特性及其生态适应对策[D]. 乌鲁木齐: 新疆农业大学, 2013. |
AYSAJAN A. Reproductive biology of Tulipa iliensis and its adaptive strategies to the early spring environment[D]. Urumqi: Xinjiang Agricultural University, 2013. (in Chinese with English abstract) | |
[48] | 汪自松, 李兆佳, 罗厚仟, 等. 苦瓜种质资源农艺和品质性状遗传多样性分析[J]. 中国蔬菜, 2024(3): 104-110. |
WANG Z S, LI Z J, LUO H Q, et al. Genetic diversity analysis of agronomic and quality traits in bitter gourd germplasm resourcs[J]. China Vegetables, 2024(3): 104-110. (in Chinese with English abstract) | |
[49] | 张芳, 陆瑞华, 傅焕哲, 等. 基于AFLP分子标记的我国不同生态栽培产区枸杞资源遗传多样性分析[J]. 中草药, 2023, 54(18): 6074-6083. |
ZHANG F, LU R H, FU H Z, et al. Genetic diversity analysis of Lycium chinense samples from different cultivation areas based on AFLP molecular markers[J]. Chinese Traditional and Herbal Drugs, 2023, 54(18): 6074-6083. (in Chinese with English abstract) | |
[50] | 邢桂梅, 张艳秋, 张惠华, 等. 我国野生郁金香资源的鉴定及评价研究[C]// 中国球宿根花卉研究进展2022. 辽宁省农业科学院花卉研究所,辽宁省花卉科学重点实验室, 2022:39. |
[1] | ZHANG Yuanyuan, FENG Juling, XIAO Jingfeng, GUAN Yu, LONG Chuer, YAO Lirong, MENG Yaxiong, SI Erjing, LI Baochun, MA Xiaole, WANG Huajun, ZHOU Xirong, LIU Meijin, WANG Juncheng. Genetic diversity and association analysis between agronomic traits and SSR markers in hulless barley [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 1977-1989. |
[2] | DONG Lili, XU Zhihao, YAN Canlong, FAN Xiaoping, JIN Zelan, WANG Zhonghua. Molecular identification and genetic relationship of different breeding populations in Fritillaria thunbergii based on phenotype and molecular markers [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1719-1730. |
[3] | HUANG Hui, CHU Tianjiang, XIE Nan, LIU Kai. Investigation on the genetic diversity of Sarcocheilichthys sinensis from diverse geographical populations and other species within the Sarcocheilichthys genus through the analysis of mitochondrial COI sequence segments [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1779-1788. |
[4] | MA Li, LAN Yi, XIE Bingxin, ZHOU Chunlu, LUO Shuyuan, XU Wenkun, DONG Xinxing, YAN Dawei. Study of polymorphism in the VRTN gene and its association with production traits in (Duroc×Saba)♂×[Yorkshire×(Landrace×Saba)]♀ [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1502-1510. |
[5] | WANG Baogen, CHEN Xiaoyang, WU Jian, LI Xiao, WANG Ying, WANG Jian, WU Xiaohua, LU Zhongfu, SUN Yuyan, DONG Wenqi, LI Guojing, WU Xinyi. Genetic diversity of cowpea landraces in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1569-1582. |
[6] | ZHU Yanyu, YU Wentao, GAO Shuilian, LYU Shuiyuan, WANG Pan, JIN Wanmin, GUI Wenjing, LIN Yi, YE Naixing. The diversity of tea germplasm resources and genetic relationship of ‘Tieguanyin’-derived varieties in Anxi, Fujian, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1591-1601. |
[7] | ZHANG Ting, WANG Xueyan, GUO Qinwei, LI Chaosen, LIU Huiqin, XIANG Xiaomin, WEI Jing, ZHAO Dongfeng, WAN Hongjian. Genetic diversity of pepper germplasm resources based on agronomic traits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 325-333. |
[8] | YANG Tianwen, WANG Jing, LI Jiong, XU Binqi, CHENG Jiaowen, HONG Yu, CAO Yi, CUI Junjie. Genetic diversity analysis and fingerprint construction of Dading bitter gourd germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 103-114. |
[9] | WU Qian, TANG Ziyi, TIAN Shengye, HE Haiye, PAN Weiwei, WANG Junfeng, BAO Honghua, ZHANG Huijuan, JIANG Ming. Genetic diversity of Rhododendron huadingense based on SARP molecular marker [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 127-133. |
[10] | ZHANG Xiaoli, ZHU Linglong, LI Fuzhen, TANG Xiumei, XIA Youlin, YOU Yu, ZHONG Ruichun. Evaluation and analysis of agronomic and quality traits of 115 peanut germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2033-2044. |
[11] | YUAN Ye, LIU Rui, WANG Lingyun, SHEN Meng, YE Xuelian, QUAN Xinhua, WANG Ruisen, YAO Xiangtan. Genetic diversity analysis of Trapa L. cultivars in Jiangsu and Zhejiang Provinces using SLAF-seq [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1773-1781. |
[12] | MENG Yusha, WANG Yin, LAI Qixian, LIU Lei, XIANG Chao, WU Yonghua, ZHENG Yanran, GU Xingguo, FANG Hao, MIAO Miao, WU Liehong, TANG Yong. Assessment of genetic diversity and variety identification based on insertion site-based polymorphism (ISBP) markers developed in wild species related to sweet potato [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 489-498. |
[13] | YANG Qiulei, WEI Xudong, MA Zhijie, CHEN Shengmei, CHAO Shengyu, WULAN Bateer. Maternal genetic diversity and genetic background of Qaidam cattle based on mtDNA Cyt b sequence variations [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 285-292. |
[14] | LIU Shili, LIAN Qingping, JIA Yongyi, CHI Meili, LI Fei, JIANG Jianhu, LIU Yinuo, ZHENG Jianbo, CHENG Shun, GU Zhimin. Genetic diversity analysis of three Opsariichthys bidens populations in Zhejiang Province based on mitochondrial Cyt b gene sequences [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 293-300. |
[15] | LI Xiaojuan, ZHAO Wenju, ZHAO Mengliang, SHAO Dengkui, MA Yidong, REN Yanjing. Development and application of SSR markers based on transcriptome sequencing of turnip (Brassica rapa ssp. rapa) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 319-328. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 151
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||