Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (5): 1067-1075.DOI: 10.3969/j.issn.1004-1524.20230843
• Horticultural Science • Previous Articles Next Articles
LI Juncheng1(), DANG Yunzhi2, SUN Qingming1,*(
)
Received:
2023-07-10
Online:
2024-05-25
Published:
2024-05-29
CLC Number:
LI Juncheng, DANG Yunzhi, SUN Qingming. Transcriptome analysis and HSP response of pitaya (Selenicereus spp.) under heat stress[J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1067-1075.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230843
基因名称 Gene ID | 正向引物/反向引物 Forward primers/Reverse primers |
---|---|
HSP17.6II | TGTGAGGATGGAGAGGAGGATGG/GGAGCCACCTTCTGAGCAGTAAC |
HSP23.6 | AGATGGTTAGGGCTGACGATGATG/CTGGCTCACGCTCCGAGTTG |
HSP21 | CGAAGGCTCCTTGATGTCTCTCC/CCCGTTCCTCCTGGCATTGTC |
HSP17.4 | TCGGGAGAAGGAGGAGAAGACC/TCGGAACGGTCACAGTCAACAC |
HSP17.8 | AGCATAACCACCATCATCGGAAGG/AGCATACGAACCGCCCAAGTC |
HSP18.2 | GGAGGTCAAAGTGGAGGTGGAAG/GCATTCTCAGGGAGGCGGAAC |
HSP22.0 | TTGGACTCGGTCAAGGCTAAGC/CACTACCTTCACCACCTTCAATGC |
HSP17.6C | CTCCCACTCCGCCCTCTCTC/TCCACCTTGACCTCCTCCTTCC |
HSP17.6B | CCCTGATTCCCACATCTACTCTGC/GTCTTCCGCCTCCACCTTGATC |
HSP23.5 | AGATGGTTAGGGCTGACGATGATG/CTGGCTCACGCTCCGAGTTG |
Table 1 Primers used for expression detection of HSP gene expression trend
基因名称 Gene ID | 正向引物/反向引物 Forward primers/Reverse primers |
---|---|
HSP17.6II | TGTGAGGATGGAGAGGAGGATGG/GGAGCCACCTTCTGAGCAGTAAC |
HSP23.6 | AGATGGTTAGGGCTGACGATGATG/CTGGCTCACGCTCCGAGTTG |
HSP21 | CGAAGGCTCCTTGATGTCTCTCC/CCCGTTCCTCCTGGCATTGTC |
HSP17.4 | TCGGGAGAAGGAGGAGAAGACC/TCGGAACGGTCACAGTCAACAC |
HSP17.8 | AGCATAACCACCATCATCGGAAGG/AGCATACGAACCGCCCAAGTC |
HSP18.2 | GGAGGTCAAAGTGGAGGTGGAAG/GCATTCTCAGGGAGGCGGAAC |
HSP22.0 | TTGGACTCGGTCAAGGCTAAGC/CACTACCTTCACCACCTTCAATGC |
HSP17.6C | CTCCCACTCCGCCCTCTCTC/TCCACCTTGACCTCCTCCTTCC |
HSP17.6B | CCCTGATTCCCACATCTACTCTGC/GTCTTCCGCCTCCACCTTGATC |
HSP23.5 | AGATGGTTAGGGCTGACGATGATG/CTGGCTCACGCTCCGAGTTG |
基因名称 Gene ID | 正向引物/反向引物 Forward primers/Reverse primers(5'—3') |
---|---|
HSFB2B | AGGAGGAGGAGGAGGATGAATGTC/TTGTTCTGGAGGCGTCTGTAGTG |
HSFA3 | CCTCAATCTCAGCAGCTCACTACC/GCACTCTTCTCCCTCCTCAACTTC |
HSFA2 | TGGGCTGGAAGAAGAGGTAGAGAG/AGTTGCCTGCTGCTGCTGTC |
HSFB2A | AGCAGCAACAATAACAGCAGCAG/CTCAACCTCTCGTTCTCGTCCATC |
HSF4 | ACAGACGAAGAGACAGTGTGACG/TGACATTCCAACTCCGCCCTTG |
HSFA7A | AGTGGGTAGATTCGGGTTTGATGG/TGCTCTTGTGTTCTGCTGTTGTTG |
HSFA8 | GCTGGATGGGGTGATGGTGAG/ACAATGGAGCCGGAGTTGATGAG |
Table 2 Primers of the 7 HSF genes used for expression detection
基因名称 Gene ID | 正向引物/反向引物 Forward primers/Reverse primers(5'—3') |
---|---|
HSFB2B | AGGAGGAGGAGGAGGATGAATGTC/TTGTTCTGGAGGCGTCTGTAGTG |
HSFA3 | CCTCAATCTCAGCAGCTCACTACC/GCACTCTTCTCCCTCCTCAACTTC |
HSFA2 | TGGGCTGGAAGAAGAGGTAGAGAG/AGTTGCCTGCTGCTGCTGTC |
HSFB2A | AGCAGCAACAATAACAGCAGCAG/CTCAACCTCTCGTTCTCGTCCATC |
HSF4 | ACAGACGAAGAGACAGTGTGACG/TGACATTCCAACTCCGCCCTTG |
HSFA7A | AGTGGGTAGATTCGGGTTTGATGG/TGCTCTTGTGTTCTGCTGTTGTTG |
HSFA8 | GCTGGATGGGGTGATGGTGAG/ACAATGGAGCCGGAGTTGATGAG |
样品编号 Sample ID | Reads数量 Reads number | GC含量 GC content/% | Q30/% | 比对率 Mapping rate/% |
---|---|---|---|---|
25 ℃-1 | 35 028 564 | 45.27 | 96.78 | 81.35 |
25 ℃-2 | 36 523 020 | 45.65 | 96.89 | 78.29 |
25 ℃-3 | 30 664 466 | 45.47 | 96.74 | 80.98 |
40 ℃-1 | 31 077 180 | 44.84 | 96.79 | 79.60 |
40 ℃-2 | 31 374 155 | 44.25 | 96.73 | 77.03 |
40 ℃-3 | 33 091 371 | 44.74 | 96.71 | 76.99 |
Table 3 Statistics of the transcriptome sequencing result
样品编号 Sample ID | Reads数量 Reads number | GC含量 GC content/% | Q30/% | 比对率 Mapping rate/% |
---|---|---|---|---|
25 ℃-1 | 35 028 564 | 45.27 | 96.78 | 81.35 |
25 ℃-2 | 36 523 020 | 45.65 | 96.89 | 78.29 |
25 ℃-3 | 30 664 466 | 45.47 | 96.74 | 80.98 |
40 ℃-1 | 31 077 180 | 44.84 | 96.79 | 79.60 |
40 ℃-2 | 31 374 155 | 44.25 | 96.73 | 77.03 |
40 ℃-3 | 33 091 371 | 44.74 | 96.71 | 76.99 |
基因名称 Gene ID | 上调倍数 Up-regulated | 基因名称 Gene ID | 下调倍数 Down-regulated |
---|---|---|---|
HSP22.0 | 587.071 4 | Lipoprotein | -23.272 97 |
HSP21 | 558.786 2 | GH9B8 | -24.179 93 |
HSP17.6C | 541.206 3 | HISTONE 3.1 | -24.574 07 |
HSP17.4 | 531.965 9 | PPT2 | -24.814 61 |
HSP18.2 | 500.420 2 | IPMI1 | -27.424 14 |
HSP23.5 | 404.966 4 | ATLP-1 | -31.941 21 |
HSP17.6B | 392.680 5 | FMO GS-OX3 | -34.497 69 |
HSP17.8 | 267.216 9 | ENODL15 | -38.873 75 |
HSP23.6 | 215.171 0 | HTA6 | -39.878 57 |
HSP17.6II | 177.829 3 | DIR1-LIKE | -59.320 59 |
Table 4 The top 10 genes with the highest fold change in expression levels
基因名称 Gene ID | 上调倍数 Up-regulated | 基因名称 Gene ID | 下调倍数 Down-regulated |
---|---|---|---|
HSP22.0 | 587.071 4 | Lipoprotein | -23.272 97 |
HSP21 | 558.786 2 | GH9B8 | -24.179 93 |
HSP17.6C | 541.206 3 | HISTONE 3.1 | -24.574 07 |
HSP17.4 | 531.965 9 | PPT2 | -24.814 61 |
HSP18.2 | 500.420 2 | IPMI1 | -27.424 14 |
HSP23.5 | 404.966 4 | ATLP-1 | -31.941 21 |
HSP17.6B | 392.680 5 | FMO GS-OX3 | -34.497 69 |
HSP17.8 | 267.216 9 | ENODL15 | -38.873 75 |
HSP23.6 | 215.171 0 | HTA6 | -39.878 57 |
HSP17.6II | 177.829 3 | DIR1-LIKE | -59.320 59 |
Fig.4 Expression trends of the main HSP genes The X-axis represents the sampling time, and the Y-axis represents the fold change of gene expression in the treatment group (40℃) relative to the control group (25℃)
[1] | FRANTA B. Early oil industry disinformation on global warming[J]. Environmental Politics, 2021, 30(4): 663-668. |
[2] | JHA U C, NAYYAR H, JHA R, et al. Heat stress and cowpea: genetics, breeding and modern tools for improving genetic gains[J]. Plant Physiology Reports, 2020, 25(4): 645-653. |
[3] | DWIVEDI S L, ORTIZ R. Raising productivity of cereal crops in dry and heat stress environments remains a breeding challenge[J]. CABI Reviews, 2021: 16. |
[4] | BATCHO A A, SARWAR M B, RASHID B, et al. Heat shock protein gene identified from Agave sisalana(AsHSP70) confers heat stress tolerance in transgenic cotton (Gossypium hirsutum)[J]. Theoretical and Experimental Plant Physiology, 2021, 33(2): 141-156. |
[5] | RAHMAN M A, WOO J H, SONG Y, et al. Heat shock proteins and antioxidant genes involved in heat combined with drought stress responses in perennial rye grass[J]. Life, 2022, 12(9): 1426. |
[6] | SONG P, JIA Q R, XIAO X K, et al. HSP70-3 interacts with phospholipase dδ and participates in heat stress defense[J]. Plant Physiology, 2021, 185(3): 1148-1165. |
[7] | SAINZ M, DÍAZ P, MONZA J, et al. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus[J]. Physiologia Plantarum, 2010, 140(1): 46-56. |
[8] | RAMAKRISHNA G, KAUR P, SINGH A, et al. Comparative transcriptome analyses revealed different heat stress responses in pigeonpea (Cajanus cajan) and its crop wild relatives[J]. Plant Cell Reports, 2021, 40(5): 881-898. |
[9] | OUYANG K X, LI J C, HUANG H, et al. A simple method for RNA isolation from various tissues of the tree Neolamarckia cadamba[J]. Biotechnology, Biotechnological Equipment, 2014, 28(6): 1008-1013. |
[10] | LI J C, WANG Y L, DAI H F, et al. Global transcriptome dissection of pollen-pistil interactions induced self-incompatibility in dragon fruit (Selenicereus spp.)[J]. PeerJ, 2022, 10: e14165. |
[11] | HASANUZZAMAN M, NAHAR K, ALAM M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684. |
[12] | MAHDAVI MASHAKI K, GARG V, NASROLLAHNEZHAD GHOMI A A, et al. RNA-Seq analysis revealed genes associated with drought stress response in Kabuli chickpea (Cicer arietinum L.)[J]. PLoS One, 2018, 13(6): e0199774. |
[13] | SHUMAYLA, SHARMA S, TANEJA M, et al. Survey of high throughput RNA-seq data reveals potential roles for lncRNAs during development and stress response in bread wheat[J]. Frontiers in Plant Science, 2017, 8: 1019. |
[14] | WAN X L, ZHOU Q, WANG Y Y, et al. Identification of heat-responsive genes in carnation (Dianthus caryophyllus L.) by RNA-seq[J]. Frontiers in Plant Science, 2015, 6: 519. |
[15] | LOHANI N, SINGH M B, BHALLA P L. RNA-seq highlights molecular events associated with impaired pollen-pistil interactions following short-term heat stress in Brassica napus[J]. Frontiers in Plant Science, 2020, 11: 622748. |
[16] | YE B B, SHANG G D, PAN Y, et al. AP2/ERF transcription factors integrate age and wound signals for root regeneration[J]. The Plant Cell, 2020, 32(1): 226-241. |
[17] | HE J, LIU Y Q, YUAN D Y, et al. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1): 271-277. |
[18] | LIU X H, LYU Y S, YANG W P, et al. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice[J]. Plant Biotechnology Journal, 2020, 18(5): 1317-1329. |
[19] | XIE Z L, NOLAN T M, JIANG H, et al. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J]. Frontiers in Plant Science, 2019, 10: 228. |
[20] | 王彬, 陈敏氡, 林亮, 等. 植物干旱胁迫的信号通路及相关转录因子研究进展[J]. 西北植物学报, 2020, 40(10): 1792-1806. |
WANG B, CHEN M D, LIN L, et al. Signal pathways and related transcription factors of drought stress in plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1792-1806. (in Chinese with English abstract) | |
[21] | 董勤勇, 张圆圆, 魏景芳, 等. MYB转录因子在水稻抗逆基因工程中的研究进展[J]. 江苏农业学报, 2021, 37(2): 525-530. |
DONG Q Y, ZHANG Y Y, WEI J F, et al. Research progress of MYB transcription factor in stress-resistant genetic engineering of rice[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(2): 525-530. (in Chinese with English abstract) | |
[22] | JIANG J J, MA S H, YE N H, et al. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 2017, 59(2): 86-101. |
[23] | BANERJEE A, ROYCHOUDHURY A. Small heat shock proteins[M]//Plant Metabolites and Regulation Under Environmental Stress. Amsterdam: Elsevier, 2018: 367-376. |
[24] | QU A L, DING Y F, JIANG Q, et al. Molecular mechanisms of the plant heat stress response[J]. Biochemical and Biophysical Research Communications, 2013, 432(2): 203-207. |
[1] | XIE Meiqiong, WANG Longjiang, HE Yurong, LYU Lihua. Transcriptome sequencing and analysis of potential pathogenicity-related genes in Isaria fumosorosea [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2169-2180. |
[2] | XU Hongxia, LI Xiaoying, GE Hang, ZHU Qixuan, CHEN Junwei. Transcriptome-based analysis of the role of endogenous hormones in regulating flower development in loquat (Eriobotrya japonica Lindl.) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1648-1661. |
[3] | ZHANG Shuhong, ZHANG Yunfeng, WU Qiuying, GAO Fengju, LI Yazi, JI Jingxin, XU Ke, FAN Yongshan. Identification and bioinformatics analysis of alcohol dehydrogenase gene family of Setosphaeria turcica [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1108-1115. |
[4] | LI Xiaojuan, ZHAO Wenju, ZHAO Mengliang, SHAO Dengkui, MA Yidong, REN Yanjing. Development and application of SSR markers based on transcriptome sequencing of turnip (Brassica rapa ssp. rapa) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 319-328. |
[5] | XU Yue, WANG Shaomin, TAN Xiaojing, LUO Yingjie, CHANG Jingyi, DENG Hui, LIU Xiuli, CUI Weijun, ZHOU Jie, WU Yueyan, YAN Chengqi, WANG Xuming. Effects of the D3 gene on transcriptional regulation and its role in defense responses [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2763-2774. |
[6] | HE Rong, ZHAO Kai, HE Yujiao, ALATENG Suhe, WANG Aijun, NING Jing, HAN Ruoshuang, SUN Guirong, ZHANG Guosheng. Preliminary screening of Northern Salix (Salix psammophila) architecture related genes based on RNA-Seq analysis and quantitative PCR technique [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2332-2345. |
[7] | YE Meirong, HUANG Shoucheng, WANG Xiaopeng, LIU Airong, CUI Feng, KANG Jian. Transcriptome analysis of leaves of wild Portulaca oleracea L. based on Iso-Seq technology [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 67-78. |
[8] | XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102. |
[9] | GU Xianbin, LU Linghong, SONG Genhua, XIAO Jinping, ZHANG Huiqin. Regulation effect of melatonin pretreatment on waterlogging tolerance in peach seedling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1911-1924. |
[10] | WANG Siliang, SHAO Yue, YAN Chengjin. Transcriptome analysis of Spodoptera furgiperda during corn-wheat host alternation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1236-1247. |
[11] | LIU Chen, XU Haobo, SI Yuyang, LI Yapeng, GUO Yuting, DU Changxia. Research progress on regulation mechanism of plant response to salt stress based on transcriptomics [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 870-878. |
[12] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[13] | LAN Guoxiang, JIN Siqi, LI Xingrun, LIU Xiyu, LI Guomei, DONG Xinxing. Screening and functional analysis of differentially expressed genes in breast muscle transcriptome between Plateau raindrop pigeon and Janssen pigeon [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 507-516. |
[14] | YANG Xinxia, TANG Mansheng, ZHANG Bin. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 207-220. |
[15] | LIANG Qianrong, ZHENG Tianlun, CHEN Xiaoming, ZHU Ningyu, ZHENG Xiaoye, HE Runzhen, CAO Feifei, XUE Huili, DING Xueyan. Effects of feeding with maggot protein added dietaries on immune and metabolic responses in liver and serum of soft-shelled turtles Pelodiscus sinensis [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2172-2181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||