Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (12): 2763-2774.DOI: 10.3969/j.issn.1004-1524.20221667
• Crop Science • Previous Articles Next Articles
XU Yue1,2(), WANG Shaomin3, TAN Xiaojing1,2, LUO Yingjie1,2, CHANG Jingyi2, DENG Hui2, LIU Xiuli2, CUI Weijun2, ZHOU Jie2, WU Yueyan1, YAN Chengqi1,4,*(
), WANG Xuming2,*(
)
Received:
2022-11-22
Online:
2023-12-25
Published:
2023-12-27
CLC Number:
XU Yue, WANG Shaomin, TAN Xiaojing, LUO Yingjie, CHANG Jingyi, DENG Hui, LIU Xiuli, CUI Weijun, ZHOU Jie, WU Yueyan, YAN Chengqi, WANG Xuming. Effects of the D3 gene on transcriptional regulation and its role in defense responses[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2763-2774.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221667
株系 Line | 突变方式 Mutation | 处理组 Treatment group | 对照组 Control group(Nip) |
---|---|---|---|
GEM1 | -AT | A-1、A-2、A-3 | CK-1 |
GEM2 | -AGT | B-1、B-2、B-3 | CK-2 |
GEM3 | -CAGTTGCG | C-1、C-2、C-3 | CK-3 |
Table 1 D3 gene-edited transgenic GEM line
株系 Line | 突变方式 Mutation | 处理组 Treatment group | 对照组 Control group(Nip) |
---|---|---|---|
GEM1 | -AT | A-1、A-2、A-3 | CK-1 |
GEM2 | -AGT | B-1、B-2、B-3 | CK-2 |
GEM3 | -CAGTTGCG | C-1、C-2、C-3 | CK-3 |
基因Gene | 正向引物Forward primer(5'→3') | 反向引物Reverse primer(3'→5') |
---|---|---|
Os02g0462800 | AAGGCTCGCCTTATCCACGC | CAGTCGTCCTGTGCTCCGTC |
Os01g0884300 | GAAGCCGGTGGCGATCAAGA | GAAGCCGGTGGCGATCAAGA |
Os04g0118800 | TGGTTTTGCAAACGAGCGAG | ACCTTCACACCTGCCAACAA |
Os06g0521900 | CACAGCTGCGAGCACTACGA | TTGTCGAACTTGGCTGGCGT |
Os12g0528801 | CGCCACCTTCTCTCCGGTTC | GCTGAGCAGCAGGAGACACT |
Table 2 Primers used for qRT-PCR
基因Gene | 正向引物Forward primer(5'→3') | 反向引物Reverse primer(3'→5') |
---|---|---|
Os02g0462800 | AAGGCTCGCCTTATCCACGC | CAGTCGTCCTGTGCTCCGTC |
Os01g0884300 | GAAGCCGGTGGCGATCAAGA | GAAGCCGGTGGCGATCAAGA |
Os04g0118800 | TGGTTTTGCAAACGAGCGAG | ACCTTCACACCTGCCAACAA |
Os06g0521900 | CACAGCTGCGAGCACTACGA | TTGTCGAACTTGGCTGGCGT |
Os12g0528801 | CGCCACCTTCTCTCCGGTTC | GCTGAGCAGCAGGAGACACT |
Fig.3 Overall characterization of sample relationship A, Venn diagrams of differentially expressed genes among the gene editing groups and the control group; B, Numbers of differentially expressed genes among the gene editing groups and the control group; C, qRT-PCR analysis of relative expression levels of differentitally genes among the gene editing groups and the control group.
Fig.4 GO enrichment analysis of DEGs with significant expression difference These genes with significant difference are summarized into three main GO categories (biological processes, molecular function, and cellular components). Orange is the up regulated, green is the down regulated.
Fig.5 KEGG enrichment pathway analysis of differentially expressed genes among gene editing treatment groups and control group The size of the circle represents the number of DEG enriched in the corresponding pathway, and the color of the circle represents the corresponding pathway.
[1] | 陈功友, 徐正银, 杨阳阳, 等. 我国水稻白叶枯病菌致病型划分和水稻抗病育种中应注意的问题[J]. 上海交通大学学报(农业科学版), 2019, 37(1): 67-73. |
CHEN G Y, XU Z Y, YANG Y Y, et al. Classification of pathotypes of Chinese Xanthomonas oryzae pv. oryzae and resistance breeding strategies for bacterial blight[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2019, 37(1): 67-73. (in Chinese with English abstract) | |
[2] | YASMINE NADY HASSAN ABDALLAH. 多粘类芽孢杆菌Sx3和生物合成的4种纳米颗粒抑制水稻白叶枯病菌及促进水稻生长的研究[D]. 杭州: 浙江大学, 2019. |
YASMINE NADY HASSAN ABDALLAH. Studies on plant growth promotion and suppression of bacterial leaf blight pathogen in rice by Paenibacillus polymyxa Sx3 and four biosynthesized nanoparticles[D]. Hangzhou: Zhejiang University, 2019.(in English with Chinese abstract) | |
[3] | 吴水祥, 徐抗冬, 狄蕊, 等. 几种药剂防治水稻白叶枯病效果试验[J]. 湖北植保, 2022(2): 38-40. |
WU S X, XU K D, DI R, et al. Experiment on the effect of several pesticides against bacterial blight in rice[J]. Hubei Plant Protection, 2022(2): 38-40. (in Chinese) | |
[4] | NIÑO-LIU D O, RONALD P C, BOGDANOVE A J. Xanthomonas oryzae pathovars: model pathogens of a model crop[J]. Molecular Plant Pathology, 2006, 7(5): 303-324. |
[5] | MIZUKAMI T, WAKIMOTO S. Epidemiology and control of bacterial leaf blight of rice[J]. Annual Review of Phytopathology, 1969, 7: 51-72. |
[6] | 吴芝花. 南方稻作区农户专业化统防统治决策行为研究: 以鄱阳湖生态经济区为例[D]. 南昌: 江西财经大学, 2019. |
WU Z H. Research on the decision behavior of farmers’ specialized integrated control in southern rice-growing areas[D]. Nanchang: Jiangxi University of Finance and Economics, 2019. (in Chinese with English abstract) | |
[7] | DODDS P N, RATHJEN J P. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics, 2010, 11(8): 539-548. |
[8] | 王志卫, 贝学军, 朱世平, 等. 植物激素在植物抗病过程中的作用研究进展[J]. 安徽农业科学, 2011, 39(15): 9035-9038, 9041. |
WANG Z W, BEI X J, ZHU S P, et al. Recent advances in phytohormone regulated plant resistance to pathogens[J]. Journal of Anhui Agricultural Sciences, 2011, 39(15): 9035-9038, 9041. (in Chinese with English abstract) | |
[9] | 何金环, 王延方. 水杨酸诱导植物抗病性作用机制研究[J]. 郑州牧业工程高等专科学校学报, 2015, 35(3): 8-11. |
HE J H, WANG Y F. Studies on the mechanism of salicylic acid induced disease resistance in plants[J]. Journal of Zhengzhou College of Animal Husbandry Engineering, 2015, 35(3): 8-11. (in Chinese with English abstract) | |
[10] | 钟庆燕. 外源乙烯和茉莉酸诱导水稻对纹枯病的抗性机理研究[D]. 哈尔滨: 东北农业大学, 2019. |
ZHONG Q Y. Mechanism of resistance of rice to sheath blight induced by exogenous ethylene and jasmonic acid[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese with English abstract) | |
[11] | 张灿. 外源独脚金内酯缓解大麦镉毒害的机理研究[D]. 杭州: 浙江大学, 2019. |
ZHANG C. Mechanisms of alleviation effects of exogenous GR24 on cadmium toxicity in barely(Hordeum vulgare)seedlings[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract) | |
[12] | JIANG L A, LIU X E, XIONG G S, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013, 504(7480): 401-405. |
[13] | CHENG H T, LIU H B, DENG Y, et al. The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen[J]. Plant Physiology, 2015, 167(3): 1087-1099. |
[14] | ZHOU F, LIN Q B, ZHU L H, et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013, 504(7480): 406-410. |
[15] | ZHANG Y X, VAN DIJK A D J, SCAFFIDI A, et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis[J]. Nature Chemical Biology, 2014, 10(12): 1028-1033. |
[16] | UMEHARA M, HANADA A, YOSHIDA S, et al. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210): 195-200. |
[17] | YANG Z, SUN X, WANG S, et al. Genetic and physical mapping of a new gene for bacterial blight resistance in rice[J]. Theoretical and Applied Genetics, 2003, 106(8): 1467-1472. |
[18] | 原文霞, 王栩鸣, 李冬月, 等. 利用CRISPR/Cas9技术靶向编辑水稻基因[J]. 浙江农业学报, 2017, 29(5): 685-693. |
YUAN W X, WANG X M, LI D Y, et al. Application of the technology of CRISPR/Cas9 edit rice gene[J]. Acta Agriculturae Zhejiangensis, 2017, 29(5): 685-693. (in Chinese with English abstract) | |
[19] | ISHIKAWA S, MAEKAWA M, ARITE T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant and Cell Physiology, 2005, 46(1): 79-86. |
[20] | YAN H F, SAIKA H, MAEKAWA M, et al. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death[J]. Genes & Genetic Systems, 2007, 82(4): 361-366. |
[21] | CHOI J, LEE T, CHO J, et al. The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice[J]. Nature Communications, 2020, 11: 2114. |
[22] | 许秋健, 王松标, 马小卫, 等. 代谢组和转录组联合分析园艺植物生理机制研究进展[R]// 2019年全国热带作物学术年会论文集, 西安, 2019. |
[23] | 刘永振, 李构思, 王晓宇, 等. 利用二代测序技术高通量分析水稻品种间抗病性差异的分子基础[J]. 西北植物学报, 2014, 34(9): 1742-1748. |
LIU Y Z, LI G S, WANG X Y, et al. Exploration on the molecular basis of different resistance in rice using next-generation sequencing[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(9): 1742-1748. (in Chinese with English abstract) | |
[24] | 荣河江, 王亚东. 基于基因本体的相似度计算方法[J]. 智能计算机与应用, 2019, 9(1): 108-113, 118. |
RONG H J, WANG Y D. Computation method for semantic similarity based on gene ontology[J]. Intelligent Computer and Applications, 2019, 9(1): 108-113, 118. (in Chinese with English abstract) | |
[25] | OGATA H, GOTO S, SATO K, et al. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 1999, 27(1): 29-34. |
[26] | KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360. |
[27] | LIU H H, LIU S M, YU H, et al. An engineered platform for reconstituting functional multisubunit SCF E3 ligase in vitro[J]. Molecular Plant, 2022, 15(8): 1285-1299. |
[28] | PIETERSE C M J, VAN DER DOES D, ZAMIOUDIS C, et al. Hormonal modulation of plant immunity[J]. Annual Review of Cell and Developmental Biology, 2012, 28: 489-521. |
[29] | 尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径[J]. 中国生物化学与分子生物学报, 2022, 38(11): 1467-1476. |
SHANG J, WU W Z, MA Y G. Phenylpropanoid metabolism pathway in plants[J]. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38(11): 1467-1476. (in Chinese with English abstract) | |
[30] | 陈启锋, 高汉芳, 陈璋, 等. 生物工程应用于作物育种的试验研究第5报水稻抗稻瘟病细胞突变体的筛选[J]. 福建农学院学报, 1989, 18(4): 479-486. |
CHEN Q F, GAO H F, CHEN Z, et al. Studies on the biotechnology applied in crop breeding ⅴ. screening of rice somaclonal mutants with resistance to Pyricularia oryzae[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 1989, 18(4): 479-486. (in Chinese with English abstract) | |
[31] | 王煜, 李文新, 徐宁淳. 水稻植保素的生物化学研究进展[J]. 武汉植物学研究, 1999, 17(S1): 111-114, 116. |
WANG Y, LI W X, XU N C. Progress on biosynthesis of phytoalexins in rice[J]. Journal of Wuhan Botanical Research, 1999, 17(S1): 111-114, 116. (in Chinese with English abstract) | |
[32] | 郝向阳, 孙雪丽, 王天池, 等. 植物PAL基因及其编码蛋白的特征与功能研究进展[J]. 热带作物学报, 2018, 39(7): 1452-1461. |
HAO X Y, SUN X L, WANG T C, et al. Characteristics and functions of plant phenylalanine ammonia lyase genes and the encoded proteins[J]. Chinese Journal of Tropical Crops, 2018, 39(7): 1452-1461. (in Chinese with English abstract) | |
[33] | YUAN X, WANG Z Y, HUANG J Z, et al. Phospholipidase dδ negatively regulates the function of resistance to Pseudomonas syringae pv. Maculicola 1(RPM1)[J]. Frontiers in Plant Science, 2019, 9: 1991. |
[34] | 杨俊. OsCaM1-1和OsCML16调控水稻耐逆性机制的研究[D]. 武汉: 华中农业大学, 2018. |
YANG J. Study on the mechanisms of OsCaM1-1 and OsCML16 to regulate stress tolerance in rice[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract) | |
[35] | PERSECHINI A, MONCRIEF N D, KRETSINGER R H. The EF-hand family of calcium-modulated proteins[J]. Trends in Neurosciences, 1989, 12(11): 462-467. |
[36] | TANAKA M, TAKEI K, KOJIMA M, et al. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance[J]. The Plant Journal, 2006, 45(6): 1028-1036. |
[37] | 李辉, 左钦月, 涂升斌. 油菜素内酯生物合成和代谢研究进展[J]. 植物生理学报, 2015, 51(11): 1787-1798. |
LI H, ZUO Q Y, TU S B. Advances in brassinosteroid biosynthesis and metabolism[J]. Plant Physiology Journal, 2015, 51(11): 1787-1798. (in Chinese with English abstract) | |
[38] | 袁梦, 李冰, 尹航, 等. 不同激素和环境胁迫调控水稻分蘖的研究进展[J]. 黑龙江农业科学, 2019(2): 134-139. |
YUAN M, LI B, YIN H, et al. Advances in tillering regulation of rice by different hormones and environmental stresses[J]. Heilongjiang Agricultural Sciences, 2019(2): 134-139. (in Chinese with English abstract) | |
[39] | ÖZDEMIR F, BOR M, DEMIRAL T, et al. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress[J]. Plant Growth Regulation, 2004, 42(3): 203-211. |
[40] | NAKASHITA H, YASUDA M, NITTA T, et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice[J]. The Plant Journal, 2003, 33(5): 887-898. |
[41] | CHEN X W, ZUO S M, SCHWESSINGER B, et al. An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors[J]. Molecular Plant, 2014, 7(5): 874-892. |
[42] | BI G Z, ZHOU J M. MAP kinase signaling pathways: a hub of plant-microbe interactions[J]. Cell Host & Microbe, 2017, 21(3): 270-273. |
[43] | XU M R, HUANG L Y, ZHANG F, et al. Genome-wide phylogenetic analysis of stress-activated protein kinase genes in rice (OsSAPKs) and expression profiling in response to Xanthomonas oryzae pv. oryzicola infection[J]. Plant Molecular Biology Reporter, 2013, 31(4): 877-885. |
[1] | ZHANG Siyu, LIN Chaoyang, YE Yuxuan, SHEN Zhicheng. Characterization of transgenic insect resistance and glyphosate tolerance rice expressing cry1Ab-vip3Af2 and cp4-epsps [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1823-1833. |
[2] | WANG Xintong, WAN Zuliang, YANG Zhenzhong, WANG Guojiao. Effects of rice straw returning to fields by wet harrow in autumn on leaf-soil ecological stoichiometry of rice at different growth stages [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1243-1252. |
[3] | ZHANG Chaozheng, ZHANG Xupeng, CHEN Danling. Does labor force aging and cultivated land fragmentation increase rice production cost?: based on microscopic investigation in southeast Hubei Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1211-1222. |
[4] | XIA Xiaodong, ZHANG Xiaobo, SHI Yongfeng, XU Rugen. Research progress in gene cloning and molecular mechanism of rice lethal mutants [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1223-1234. |
[5] | JIANG Yingying, ZHANG Hua, LEI Zhiwei, XU Heng, ZHANG Heng, ZHU Ying. OsMYC2, a key transcription factor in jasmonic acid signaling pathway, regulates the induction and differentiation of embryogenic callus in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 973-982. |
[6] | MA Yihu, ZENG Xiaoyuan, HE Xianbiao, ZHOU Naidi, CHEN Jian. Response of grain yield and quality of high quality rice to climate factors at different sowing dates in southeastern Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 736-751. |
[7] | ZHANG Bin, FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie. OsPUT5 silencing reduced low temperature resistance in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 780-788. |
[8] | LI Yanan, YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili. LC-MS/MS-based study on effect of rice straw instead of partial corn silage on plasma metabolites of dairy cows [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 266-274. |
[9] | WU Shaofu, NI Yuanjun, ZHAN Lichuan, PENG Lu, WU Yingjie. Effects of different soil amendments on safe production and iron and zinc contents of rice in cadmium and mercury compound polluted soil [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 417-424. |
[10] | FAN Chuang, ZHAO Zihao, ZHANG Xuesong, YANG Shenbin. Prediction model of one season rice development period based on BP neural network [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 434-444. |
[11] | ZHANG Hongmei, WANG Baojun, SHEN Yaqiang, CHENG Wangda. Response of yield and quality of high-quality japonica rice with different grain shapes to regulation of sowing date in northern Zhejiang, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2751-2762. |
[12] | HAO Liuliu, DAI Lili, PENG Liang, CHEN Siyuan, TAO Ling, LI Gu, ZHANG Hui. Active organic carbon, microbial community structure and their relationship in rice rhizosphere soil of rice-crayfish co-culture systems [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2901-2913. |
[13] | LIN Xiaobing, ZHANG Hongyan, ZHANG Qiumei, ZHOU Lijun, XU Desheng, GUO Naijia, QIU Xiangfeng, HUANG Haiping. Screening of rice varieties with low cadmium accumulation based on multiple indicators [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2507-2515. |
[14] | ZHU Yating, NI Yuanzhi, ZHANG Min, WANG Zhenqi, SHEN Genxiang, HUANG Na. Effects of straw returning amount on methane emission from paddy fields in Shanghai, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2436-2445. |
[15] | YOU Cuicui, HE Yizhe, XU Peng, HUANG Yaru, WANG Hui, HE Haibing, KE Jian, WU Liquan. Injury effect of high temperature stress on growth and development of rice and its defense countermeasures [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 10-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||