Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (6): 1243-1252.DOI: 10.3969/j.issn.1004-1524.2023.06.02
• Crop Science • Previous Articles Next Articles
WANG Xintong(), WAN Zuliang, YANG Zhenzhong, WANG Guojiao*(
)
Received:
2022-08-01
Online:
2023-06-25
Published:
2023-07-04
CLC Number:
WANG Xintong, WAN Zuliang, YANG Zhenzhong, WANG Guojiao. Effects of rice straw returning to fields by wet harrow in autumn on leaf-soil ecological stoichiometry of rice at different growth stages[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1243-1252.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.06.02
处理 Treatment | 有机碳 Organic carbon/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 全磷 Total phosphorus/ (g·kg-1) | 全钾 Total potassium/ (g·kg-1) | 硝态氮 Nitrate nitrogen/ (mg·kg-1) | 铵态氮 Ammonium nitrogen/ (mg·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
CK | 15.81±0.74 | 1.60±0.04 | 0.65±0.02 | 22.37±0.38 | 14.84±0.61 | 3.14±0.12 | 40.23±1.56 | 283.04±5.16 |
S1 | 15.92±0.14 | 1.60±0.05 | 0.71±0.02 | 22.88±0.43 | 16.40±0.87 | 3.34±0.15 | 39.86±2.06 | 320.26±5.75 |
S2 | 17.05±0.14 | 1.69±0.04 | 0.73±0.03 | 22.94±0.34 | 16.20±0.69 | 3.41±0.21 | 40.93±2.15 | 326.82±2.52 |
Table 1 Basic physiochemical properties of test soils
处理 Treatment | 有机碳 Organic carbon/ (g·kg-1) | 全氮 Total nitrogen/ (g·kg-1) | 全磷 Total phosphorus/ (g·kg-1) | 全钾 Total potassium/ (g·kg-1) | 硝态氮 Nitrate nitrogen/ (mg·kg-1) | 铵态氮 Ammonium nitrogen/ (mg·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
CK | 15.81±0.74 | 1.60±0.04 | 0.65±0.02 | 22.37±0.38 | 14.84±0.61 | 3.14±0.12 | 40.23±1.56 | 283.04±5.16 |
S1 | 15.92±0.14 | 1.60±0.05 | 0.71±0.02 | 22.88±0.43 | 16.40±0.87 | 3.34±0.15 | 39.86±2.06 | 320.26±5.75 |
S2 | 17.05±0.14 | 1.69±0.04 | 0.73±0.03 | 22.94±0.34 | 16.20±0.69 | 3.41±0.21 | 40.93±2.15 | 326.82±2.52 |
Fig.1 Effects of different treatments on contents of organic carbon, total nitrogen and total phosphorus in soil Bars marked without the same uppercase letters indicate significant (P<0.05) differences within treatments at the same growth stage, while bars marked without the same lowercase letters indicate significant (P<0.05) differences within different stages under the same treatment. The same as below.
生育时期Growth stage | 处理Treatment | C/(g·kg-1) | N/(g·kg-1) | P/(g·kg-1) |
---|---|---|---|---|
分蘖期Tillering | CK | 507.24±25.99 Aa | 46.73±1.78 Aa | 4.27±0.40 Aa |
S1 | 503.00±25.77 Aa | 48.71±1.02 Aa | 4.24±0.29 Aa | |
S2 | 509.68±16.16 Aa | 47.25±1.56 Aa | 4.23±0.16 Aa | |
拔节期Jointing | CK | 524.31±24.70 Aa | 37.08±1.53 Ab | 3.81±0.09 Ab |
S1 | 520.38±26.96 Aa | 39.48±1.85 Ab | 3.79±0.20 Ab | |
S2 | 534.95±25.65 Aa | 39.67±1.02 Ab | 4.04±0.19 Ab | |
抽穗期Heading | CK | 524.89±17.60 Aa | 28.45±1.76 Ac | 2.80±0.12 Ac |
S1 | 530.01±25.19 Aa | 27.94±1.25 Ac | 2.65±0.08 Ac | |
S2 | 508.13±20.24 Aa | 28.25±1.67 Ac | 2.86±0.12 Ac | |
成熟期Maturity | CK | 529.07±20.92 Aa | 18.79±1.4 Ad | 2.02±0.10 Ad |
S1 | 526.97±21.53 Aa | 16.80±0.85 Bd | 1.95±0.15 Ad | |
S2 | 504.75±23.48 Aa | 17.93±0.41 ABd | 1.96±0.22 Ad |
Table 2 Effect of different treatments on C, N, P contents of leaves
生育时期Growth stage | 处理Treatment | C/(g·kg-1) | N/(g·kg-1) | P/(g·kg-1) |
---|---|---|---|---|
分蘖期Tillering | CK | 507.24±25.99 Aa | 46.73±1.78 Aa | 4.27±0.40 Aa |
S1 | 503.00±25.77 Aa | 48.71±1.02 Aa | 4.24±0.29 Aa | |
S2 | 509.68±16.16 Aa | 47.25±1.56 Aa | 4.23±0.16 Aa | |
拔节期Jointing | CK | 524.31±24.70 Aa | 37.08±1.53 Ab | 3.81±0.09 Ab |
S1 | 520.38±26.96 Aa | 39.48±1.85 Ab | 3.79±0.20 Ab | |
S2 | 534.95±25.65 Aa | 39.67±1.02 Ab | 4.04±0.19 Ab | |
抽穗期Heading | CK | 524.89±17.60 Aa | 28.45±1.76 Ac | 2.80±0.12 Ac |
S1 | 530.01±25.19 Aa | 27.94±1.25 Ac | 2.65±0.08 Ac | |
S2 | 508.13±20.24 Aa | 28.25±1.67 Ac | 2.86±0.12 Ac | |
成熟期Maturity | CK | 529.07±20.92 Aa | 18.79±1.4 Ad | 2.02±0.10 Ad |
S1 | 526.97±21.53 Aa | 16.80±0.85 Bd | 1.95±0.15 Ad | |
S2 | 504.75±23.48 Aa | 17.93±0.41 ABd | 1.96±0.22 Ad |
生育时期Growth stage | 处理Treatment | 碳氮比C/N ratio | 碳磷比C/P ratio | 氮磷比N/P ratio |
---|---|---|---|---|
分蘖期Tillering | CK | 10.85±0.14 Ad | 119.07±5.05 Ad | 10.98±0.61 Aa |
S1 | 10.32±0.31 Bd | 118.59±1.91 Ad | 11.50±0.54 Aa | |
S2 | 10.79±0.02 Ad | 120.38±0.76 Ad | 11.16±0.06 Aa | |
拔节期Jointing | CK | 14.14±0.08 Ac | 137.59±3.22 Ac | 9.73±0.17 Bbc |
S1 | 13.18±0.07 Bc | 137.20±0.29 Ac | 10.41±0.07 Ab | |
S2 | 13.48±0.30 Bc | 132.46±0.03 Bc | 9.83±0.22 Bb | |
抽穗期Heading | CK | 18.47±0.53 ABb | 187.66±1.79 Bb | 10.16±0.19 ABb |
S1 | 18.97±0.05 Ab | 199.60±3.74 Ab | 10.52±0.17 Ab | |
S2 | 18.00±0.35 Bb | 177.87±0.22 Cb | 9.88±0.18 Bb | |
成熟期Maturity | CK | 28.20±0.75 Ba | 262.09±2.65 Aa | 9.30±0.15 Ac |
S1 | 31.22±0.29 Aa | 271.13±9.53 Aa | 8.68±0.22 Ac | |
S2 | 28.14±0.67 Ba | 258.93±17.27 Aa | 9.21±0.84 Ac |
Table 3 Effect of different treatments on ecological stoichiometry of rice leaves
生育时期Growth stage | 处理Treatment | 碳氮比C/N ratio | 碳磷比C/P ratio | 氮磷比N/P ratio |
---|---|---|---|---|
分蘖期Tillering | CK | 10.85±0.14 Ad | 119.07±5.05 Ad | 10.98±0.61 Aa |
S1 | 10.32±0.31 Bd | 118.59±1.91 Ad | 11.50±0.54 Aa | |
S2 | 10.79±0.02 Ad | 120.38±0.76 Ad | 11.16±0.06 Aa | |
拔节期Jointing | CK | 14.14±0.08 Ac | 137.59±3.22 Ac | 9.73±0.17 Bbc |
S1 | 13.18±0.07 Bc | 137.20±0.29 Ac | 10.41±0.07 Ab | |
S2 | 13.48±0.30 Bc | 132.46±0.03 Bc | 9.83±0.22 Bb | |
抽穗期Heading | CK | 18.47±0.53 ABb | 187.66±1.79 Bb | 10.16±0.19 ABb |
S1 | 18.97±0.05 Ab | 199.60±3.74 Ab | 10.52±0.17 Ab | |
S2 | 18.00±0.35 Bb | 177.87±0.22 Cb | 9.88±0.18 Bb | |
成熟期Maturity | CK | 28.20±0.75 Ba | 262.09±2.65 Aa | 9.30±0.15 Ac |
S1 | 31.22±0.29 Aa | 271.13±9.53 Aa | 8.68±0.22 Ac | |
S2 | 28.14±0.67 Ba | 258.93±17.27 Aa | 9.21±0.84 Ac |
处理 Treatment | 穗数 Ear number/ (104 hm-2) | 穗粒数 Number of spikes | 千粒重 Thousand seeds weight/g | 结实率 Seeding rate/% | 理论产量 Theoretical yield/(t·hm-2) | 实测产量 Actual yield/ (t·hm-2) |
---|---|---|---|---|---|---|
CK | 498.14±22.49 A | 123.30±4.48 A | 24.08±0.81 B | 85.05±0.62 B | 12.47±0.15 B | 11.82±0.16 B |
S1 | 500.89±25.24 A | 113.16±1.93 B | 24.97±0.15 A | 88.11±0.53 A | 12.31±0.16 B | 11.58±0.18 B |
S2 | 526.68±20.12 A | 117.72±4.61 AB | 23.90±0.47 B | 87.52±1.72 A | 13.20±0.14 A | 12.52±0.20 A |
Table 4 Effects of different treatments on on grain yield and its components
处理 Treatment | 穗数 Ear number/ (104 hm-2) | 穗粒数 Number of spikes | 千粒重 Thousand seeds weight/g | 结实率 Seeding rate/% | 理论产量 Theoretical yield/(t·hm-2) | 实测产量 Actual yield/ (t·hm-2) |
---|---|---|---|---|---|---|
CK | 498.14±22.49 A | 123.30±4.48 A | 24.08±0.81 B | 85.05±0.62 B | 12.47±0.15 B | 11.82±0.16 B |
S1 | 500.89±25.24 A | 113.16±1.93 B | 24.97±0.15 A | 88.11±0.53 A | 12.31±0.16 B | 11.58±0.18 B |
S2 | 526.68±20.12 A | 117.72±4.61 AB | 23.90±0.47 B | 87.52±1.72 A | 13.20±0.14 A | 12.52±0.20 A |
Fig.3 Correlation within soil-leaf carbon, nitrogen and phosphorus contents, stoichiometric characteristics and rice yield C, Soil organic carbon; N, Soil total nitrogen; P, Soil total phosphorus; C∶N, C/N ratio of soil; C∶P, C/P ratio of soil; N∶P, N/P ratio of soil; LC, C content of rice leaves; LN, N content of rice leaves; LP, P content of rice leaves; LC∶N, C/N ratio of rice leaves; LC∶P, C/P ratio of rice leaves; LN∶P, N/P ratio of rice leaves; T, Theoretical yield; A, Actual yield. “*” “**” represent significant correlations at P<0.05 and P<0.01, respectively.
[1] | CHAI R S, HUANG J, LUO L C, et al. Distribution of rice straw phosphorus resources in China and its utilization potential under straw return[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1095-1104. |
[2] | 李亚鑫, 张娟霞, 刘伟刚, 等. 玉米秸秆还田配施氮肥对冬小麦产量和土壤硝态氮的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(7): 38-44. |
LI Y X, ZHANG J X, LIU W G, et al. Effects of maize straw return with nitrogen fertilizer on winter wheat yield and nitrate nitrogen[J]. Journal of Northwest A & F University(Natural Science Edition), 2018, 46(7): 38-44. (in Chinese with English abstract) | |
[3] | 王忍, 黄璜, 伍佳, 等. 稻草还田对土壤养分及水稻生物量和产量的影响[J]. 作物研究, 2020, 34(1): 8-15. |
WANG R, HUANG H, WU J, et al. Effects of rice straw returning on soil nutrients, rice biomass and yield[J]. Crop Research, 2020, 34(1): 8-15. (in Chinese with English abstract) | |
[4] | 成臣, 汪建军, 程慧煌, 等. 秸秆还田与耕作方式对双季稻产量及土壤肥力质量的影响[J]. 土壤学报, 2018, 55(1): 247-257. |
CHENG C, WANG J J, CHENG H H, et al. Effects of straw returning and tillage system on crop yield and soil fertility quality in paddy field under double-cropping-rice system[J]. Acta Pedologica Sinica, 2018, 55(1): 247-257. (in Chinese with English abstract) | |
[5] | 栾天浩, 刘云强, 高阳, 等. 不同秸秆还田方式对玉米产量及土壤理化性质的影响[J]. 东北农业科学, 2020, 45(6): 64-67. |
LUAN T H, LIU Y Q, GAO Y, et al. Effects of different straw returning methods on maize yield and soil physical and chemical properties[J]. Journal of Northeast Agricultural Sciences, 2020, 45(6): 64-67. (in Chinese with English abstract) | |
[6] | 唐海明, 肖小平, 汤文光, 等. 冬季覆盖作物秸秆还田对水稻植株养分积累与转运的影响[J]. 中国农业科技导报, 2018, 20(8): 63-73. |
TANG H M, XIAO X P, TANG W G, et al. Effects of covering paddy field by crop straw in winter on nutrition accumulation and translocation of rice plant[J]. Journal of Agricultural Science and Technology, 2018, 20(8): 63-73. (in Chinese with English abstract) | |
[7] | 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. |
WANG S Q, YU G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. (in Chinese with English abstract) | |
[8] | DU C J, GAO Y H. Grazing exclusion alters ecological stoichiometry of plant and soil in degraded alpine grassland[J]. Agriculture, Ecosystems & Environment, 2021, 308: 107256. |
[9] | 田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说[J]. 植物生态学报, 2021, 45(7): 682-713. |
TIAN D, YAN Z B, FANG J Y. Review on characteristics and main hypotheses of plant ecological stoichiometry[J]. Chinese Journal of Plant Ecology, 2021, 45(7): 682-713. (in Chinese with English abstract) | |
[10] | 林少颖, 赖清志, 刘旭阳, 等. 秸秆及配施生物炭对福州茉莉园土壤碳、氮、磷、铁含量及其生态化学计量学特征影响[J]. 环境科学学报, 2021, 41(9): 3777-3791. |
LIN S Y, LAI Q Z, LIU X Y, et al. Effects of straw and biochar on soil carbon, nitrogen, phosphorus and iron contents and ecological stoichiometric characteristics of jasmine garden in Fuzhou[J]. Acta Scientiae Circumstantiae, 2021, 41(9): 3777-3791. (in Chinese with English abstract) | |
[11] | 彭亚敏, 武均, 蔡立群, 等. 免耕及秸秆覆盖对春小麦-土壤碳氮磷生态化学计量特征的影响[J]. 生态学杂志, 2021, 40(4): 1062-1072. |
PENG Y M, WU J, CAI L Q, et al. Effects of no-tillage and straw mulching on carbon, nitrogen, and phosphorus ecological stoichiometry in spring wheat and soil[J]. Chinese Journal of Ecology, 2021, 40(4): 1062-1072. (in Chinese with English abstract) | |
[12] | 盘礼东, 李瑞, 张玉珊, 等. 西南喀斯特区坡耕地秸秆覆盖对土壤生态化学计量特征及产量的影响[J]. 生态学报, 2022, 42(11): 4428-4438. |
PAN L D, LI R, ZHANG Y S, et al. Effects of straw mulching on soil ecological stoichiometry characteristics and yield on sloping farmland in Karst area, Southwestern China[J]. Acta Ecologica Sinica, 2022, 42(11): 4428-4438. (in Chinese with English abstract) | |
[13] | 孟祥宇, 冉成, 刘宝龙, 等. 秸秆还田配施氮肥对东北黑土稻区土壤养分及水稻产量的影响[J]. 作物杂志, 2021(3): 167-172. |
MENG X Y, RAN C, LIU B L, et al. Effects of straw returning to field and nitrogen application on soil nutrients and rice yield in black soil areas of northeast China[J]. Crops, 2021(3): 167-172. (in Chinese with English abstract) | |
[14] | 卞景阳, 刘琳帅, 孙兴荣, 等. 施氮对寒地粳稻还田秸秆腐解及养分释放的影响[J]. 黑龙江八一农垦大学学报, 2019, 31(5): 22-28. |
BIAN J Y, LIU L S, SUN X R, et al. Effect of nitrogen application on straw decomposition and nutrient release of japonica rice in cold region[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(5): 22-28. (in Chinese with English abstract) | |
[15] | SARDANS J, ALONSO R, JANSSENS I A, et al. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth[J]. Functional Ecology, 2016, 30(5): 676-689. |
[16] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[17] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[18] | 张聪, 慕平, 尚建明. 长期持续秸秆还田对土壤理化特性、酶活性和产量性状的影响[J]. 水土保持研究, 2018, 25(1): 92-98. |
ZHANG C, MU P, SHANG J M. Effects of continuous returning corn straw on soil chemical properties, enzyme activities and yield trait[J]. Research of Soil and Water Conservation, 2018, 25(1): 92-98. (in Chinese with English abstract) | |
[19] | 金强, 安婉丽, 刘旭阳, 等. 模拟酸雨对福州沿江稻田水稻叶片碳氮磷含量及其生态化学计量学特征的影响[J]. 生态学报, 2020, 40(9): 3085-3095. |
JIN Q, AN W L, LIU X Y, et al. Effects of simulated acid rain on carbon, nitrogen, phosphorus contents and the ecological stoichiometry of rice leaves in Fuzhou rice fields along the river[J]. Acta Ecologica Sinica, 2020, 40(9): 3085-3095. (in Chinese with English abstract) | |
[20] | 刘迪, 邓强, 时新荣, 等. 黄土高原刺槐人工林根际和非根际土壤磷酸酶活性对模拟降水变化的响应[J]. 水土保持研究, 2020, 27(1): 95-103. |
LIU D, DENG Q, SHI X R, et al. Responses of phosphatase activity in rhizosphere and non-rhizosphere soils to simulated precipitation changes in planted Robinia pseudoacacia forest on the Loess Plateau[J]. Research of Soil and Water Conservation, 2020, 27(1): 95-103. (in Chinese with English abstract) | |
[21] | TESSIER J T, RAYNAL D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003, 40(3): 523-534. |
[22] | 陈小雪, 李红丽, 董智, 等. 滨海盐碱地土壤化学计量特征与群落物种多样性及其相关关系[J]. 水土保持研究, 2020, 27(6): 37-45. |
CHEN X X, LI H L, DONG Z, et al. Characteristics of soil stoichiometry and species diversity of community and their coupling relationship in coastal saline-alkali land[J]. Research of Soil and Water Conservation, 2020, 27(6): 37-45. (in Chinese with English abstract) | |
[23] | 唐美玲, 肖谋良, 袁红朝, 等. CO2倍增条件下不同生育期水稻碳氮磷含量及其计量比特征[J]. 环境科学, 2018, 39(12): 5708-5716. |
TANG M L, XIAO M L, YUAN H Z, et al. Effect of CO2 doubling and different plant growth stages on rice carbon, nitrogen, and phosphorus and their stoichiometric ratios[J]. Environmental Science, 2018, 39(12): 5708-5716. (in Chinese with English abstract) | |
[24] | 武红艳, 王岩, 赵天宏, 等. 臭氧浓度升高条件下秸秆还田对大豆叶片生态化学计量特征的影响[J]. 土壤通报, 2019, 50(2): 355-364. |
WU H Y, WANG Y, ZHAO T H, et al. Effects of straw returning on the ecological stoichiometry of soybean leaves under elevated ozone concentration[J]. Chinese Journal of Soil Science, 2019, 50(2): 355-364. (in Chinese with English abstract) | |
[25] | 李婷, 邓强, 袁志友, 等. 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征[J]. 环境科学, 2015, 36(8): 2988-2996. |
LI T, DENG Q, YUAN Z Y, et al. Latitudinal changes in plant stoichiometric and soil C, N, P stoichiometry in Loess Plateau[J]. Environmental Science, 2015, 36(8): 2988-2996. (in Chinese with English abstract) | |
[26] | 冯斌, 杨晓霞, 刘文亭, 等. 不同放牧方式对高寒草地功能群生态化学计量特征的影响[J]. 草地学报, 2022, 30(5): 1063-1070. |
FENG B, YANG X X, LIU W T, et al. Effects of different livestock assembly on the stoichiometry of alpine grassland functional groups[J]. Acta Agrestia Sinica, 2022, 30(5): 1063-1070. (in Chinese with English abstract) | |
[27] | 陈云, 李玉强, 王旭洋, 等. 中国典型生态脆弱区生态化学计量学研究进展[J]. 生态学报, 2021, 41(10): 4213-4225. |
CHEN Y, LI Y Q, WANG X Y, et al. Advances in ecological stoichiometry in typically and ecologically vulnerable regions of China[J]. Acta Ecologica Sinica, 2021, 41(10): 4213-4225. (in Chinese with English abstract) | |
[28] | KOERSELMAN W, MEULEMAN A F M. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation[J]. The Journal of Applied Ecology, 1996, 33(6): 1441. |
[29] | 盖霞普, 刘宏斌, 杨波, 等. 不同施肥年限下作物产量及土壤碳氮库容对增施有机物料的响应[J]. 中国农业科学, 2019, 52(4): 676-689. |
GAI X P, LIU H B, YANG B, et al. Responses of crop yields, soil carbon and nitrogen stocks to additional application of organic materials in different fertilization years[J]. Scientia Agricultura Sinica, 2019, 52(4): 676-689. (in Chinese with English abstract) | |
[30] | 吴科生, 车宗贤, 包兴国, 等. 河西绿洲灌区灌漠土长期秸秆还田土壤肥力和作物产量特征分析[J]. 草业学报, 2021, 30(12): 59-70. |
WU K S, CHE Z X, BAO X G, et al. Analysis of soil fertility and crop yield characteristics following long-term straw return to the field in a Hexi Oasis irrigated area[J]. Acta Prataculturae Sinica, 2021, 30(12): 59-70. (in Chinese with English abstract) |
[1] | TIE Jianzhong, LIU Yayu, GAO Xueqin, XU Zhiqi, HU Linli, YU Jihua. Effects of planting and breeding waste composting on nutrient utilization and soil properties of zucchini in greenhouse [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1427-1439. |
[2] | WU Chuanmei, HE Ji, WU Wenshan, CAI Jun, XIANG Yangzhou. Effects of intercropping on stoichiometric characteristics and nutrients contribution rate of soil aggregates in Rosa roxbunghii Tratt. orchard [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1132-1143. |
[3] | ZHANG Chaozheng, ZHANG Xupeng, CHEN Danling. Does labor force aging and cultivated land fragmentation increase rice production cost?: based on microscopic investigation in southeast Hubei Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1211-1222. |
[4] | XIA Xiaodong, ZHANG Xiaobo, SHI Yongfeng, XU Rugen. Research progress in gene cloning and molecular mechanism of rice lethal mutants [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1223-1234. |
[5] | JIANG Yingying, ZHANG Hua, LEI Zhiwei, XU Heng, ZHANG Heng, ZHU Ying. OsMYC2, a key transcription factor in jasmonic acid signaling pathway, regulates the induction and differentiation of embryogenic callus in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 973-982. |
[6] | MA Yihu, ZENG Xiaoyuan, HE Xianbiao, ZHOU Naidi, CHEN Jian. Response of grain yield and quality of high quality rice to climate factors at different sowing dates in southeastern Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 736-751. |
[7] | ZHANG Bin, FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie. OsPUT5 silencing reduced low temperature resistance in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 780-788. |
[8] | LU Shuai, LUO Xiaogang, LIU Quanwei, ZHANG Yi, MENG Yanghao, LI Jie, ZHANG Jinglai. Effect of organic-inorganic compound fertilizer on wheat growth, nutrients and heavy metal content of soil and wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 922-930. |
[9] | ZHU Shijun, WANG Lili, JIN Shuquan, ZHOU Jinbo, WANG Feng, LU Xiaohong. Effects of different soil disinfection methods on soil fungal diversity and community structure [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 639-646. |
[10] | LI Yanan, YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili. LC-MS/MS-based study on effect of rice straw instead of partial corn silage on plasma metabolites of dairy cows [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 266-274. |
[11] | YUAN Taiyan, YAN Zhengjuan, HUANG Chengdong, ZHANG Zhiye, WANG Xinlong. Adsorption-desorption characteristics of ammonium polyphosphate in purple soils [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 403-416. |
[12] | WU Shaofu, NI Yuanjun, ZHAN Lichuan, PENG Lu, WU Yingjie. Effects of different soil amendments on safe production and iron and zinc contents of rice in cadmium and mercury compound polluted soil [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 417-424. |
[13] | FAN Chuang, ZHAO Zihao, ZHANG Xuesong, YANG Shenbin. Prediction model of one season rice development period based on BP neural network [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 434-444. |
[14] | YOU Cuicui, HE Yizhe, XU Peng, HUANG Yaru, WANG Hui, HE Haibing, KE Jian, WU Liquan. Injury effect of high temperature stress on growth and development of rice and its defense countermeasures [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 10-22. |
[15] | YANG Shengzhu, LI Xiang, LI Chaowen, CHEN Hainian, LIU Li, LU Yingang, CAO Zhuoyang. Characteristics of soil nutrients and enzyme activities in rhizosphere of tobacco affected by bacterial wilt in Guizhou Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 146-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||