Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (3): 717-726.DOI: 10.3969/j.issn.1004-1524.2023.03.25
• Review • Previous Articles
QIU Mei(), DENG Qi*(
), FANG Zhijia, WANG Yaling, SUN Lijun
Received:
2021-06-09
Online:
2023-03-25
Published:
2023-04-07
CLC Number:
QIU Mei, DENG Qi, FANG Zhijia, WANG Yaling, SUN Lijun. Research progress on harm of mycotoxins in feed to aquatic animals[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 717-726.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.03.25
Fig.1 Global map of mycotoxin prevalence in different regions in 2020[11] The value above the bars indicates the positive rate of mycotoxins detected in samples from the area.
种类 | 剂量 | 染毒方式 | 毒性效应 | 参考文献 |
---|---|---|---|---|
Species | Exposure dose | Administration | Toxic effect | Reference |
尼罗罗非鱼 Oreochromis niloticus L. | 5~38.62 μg·kg-1 | 经口饲喂10周 Feedborne exposure for 10 weeks | 降低67%的存活率,体表黄化 Reduced survival rate by 67%, yellowing surface | [ |
200 μg·kg-1 | 红细胞、白细胞总数、血红蛋白和存活率降低;体重 增加缓慢 Decreased total erythrocyte count, total leucocyte count, hemoglobin count and survival rate; Slow weight gain | [ | ||
2, 4 μg·kg-1 | 体重增长缓慢,饲料利用率、肝指数、肌肉率、全身粗 脂肪和蛋白质保留率下降 Reduced weight gain, feed utilization, hepatosomatic index, muscle ratio, whole-body crude lipid and protein retention efficiency | [ | ||
3 mg·kg-1 | 经口饲喂84 d Feedborne exposure for 84 days | 降低生长、饲料利用率、消化酶活性和抗氧化酶 活性,DNA损伤 Reduced the growth, feed utilization, digestive enzyme activities, and antioxidant enzyme activities, DNA damage | [ | |
罗非鱼 Oreochromis niloticus×O. aureus | 793, 1 641 μg·kg-1 | 经口饲喂15周 Feedborne exposure for 15 weeks | 体表变黑,体重增长缓慢 Darkening surface and slow weight gain | [ |
2.5 mg·kg-1 | 经口饲喂20周 Feedborne exposure for 20 weeks | 行为反常 Abnormal behavior | ||
露斯塔野鲮 Labeo rohita | 2.5, 5.0 mg·kg-1 | 腹腔注射 Intraperitoneal (i.p.) | 总蛋白、球蛋白水平、细菌凝集滴度降低 Reduced total protein, globulin levels, bacterial agglutination titre | [ |
50 μg·kg-1 | 经口饲喂60 d Feedborne exposure for 60 days | 体重、肝脏指数,肝和肠道消化酶下降 Decreased body weight, hepatosomatic index, digestive enzyme activities of hepatopancreas and intestine | [ | |
虹鳟鱼 Oncorhynchus mykiss | 50 mg·kg-1 | 经口饲喂56 d Feedborne exposure for 56 days | 血清总蛋白、白蛋白和球蛋白水平下降 Decreased serum total protein, albumin and globulin levels | [ |
鲶鱼 Rhamdia quelen | 1 177 μg·kg-1 | 经口饲喂14 d Feedborne exposure for 14 days | 运动过度,血脑屏障损伤,Na+, K+-ATP酶活力 降低,乙酰胆碱酶升高 Behavioral impairment, disrupted blood-brain barrier, decreased Na+, K+-ATPase activity, increased acetylcholinesterase activity | [ |
黄颡鱼 Pelteobagrus fulvidraco | 44, 234 μg·kg-1 | 经口饲喂8周 Feedborne exposure for 8 weeks | 降低肌肉蛋白含量,肌肉纤维结构损伤,降低鱼肉 营养价值 Decreased total protein, muscle fiber structure damage, impaired the nutritional value | [ |
金头鲷 Sparus aurata | 1, 2 mg·kg-1 | 经口饲喂85 d Feedborne exposure for 85 days | 体重下降,代谢紊乱,器官组织损伤 Weight loss, metabolic disorder, tissue architecture damage | [ |
种类 | 剂量 | 染毒方式 | 毒性效应 | 参考文献 |
Species | Exposure dose | Administration | Toxic effect | Reference |
大菱鲆 Scophthalmus maximus | 20 μg·kg-1 | 经口饲喂10 d Feedborne exposure for 10 days | 血液系统损伤,肝抗氧化能力降低 Blood system injury, reduced liver antioxidant capacity | [ |
凡纳滨对虾 Litopenaeus vannamei | 4.8 mg·kg-1 | 经口饲喂8 d Feedborne exposure for 8 days | 成活率下降,肌肉、肠道和肝胰腺结构损伤严重 Reduced survival rate, severe muscle, intestinal and hepatopancreas damage | [ |
15 μg·kg-1 | 成活率下降,抗氧化酶活升高,肝胰腺结构损伤严重 Decreased survival rate, increased antioxidant enzyme activities, severe hepatopancreas damage | [ | ||
5 μg·kg-1 | 经口饲喂30 d Feedborne exposure for 30 days | 肠道菌群失调,抗氧化系统损伤 Intestinal flora disorder, antioxidant system damage | [ | |
1.2~6.075 mg·kg-1 | 经口饲喂20 d Feedborne exposure for 20 days | 降低肌肉营养成分,肌肉结构损伤 Reduce muscle nutrition, muscle structure damage | [ |
Table 1 Toxic effects of aflatoxins B1 on aquatic animals
种类 | 剂量 | 染毒方式 | 毒性效应 | 参考文献 |
---|---|---|---|---|
Species | Exposure dose | Administration | Toxic effect | Reference |
尼罗罗非鱼 Oreochromis niloticus L. | 5~38.62 μg·kg-1 | 经口饲喂10周 Feedborne exposure for 10 weeks | 降低67%的存活率,体表黄化 Reduced survival rate by 67%, yellowing surface | [ |
200 μg·kg-1 | 红细胞、白细胞总数、血红蛋白和存活率降低;体重 增加缓慢 Decreased total erythrocyte count, total leucocyte count, hemoglobin count and survival rate; Slow weight gain | [ | ||
2, 4 μg·kg-1 | 体重增长缓慢,饲料利用率、肝指数、肌肉率、全身粗 脂肪和蛋白质保留率下降 Reduced weight gain, feed utilization, hepatosomatic index, muscle ratio, whole-body crude lipid and protein retention efficiency | [ | ||
3 mg·kg-1 | 经口饲喂84 d Feedborne exposure for 84 days | 降低生长、饲料利用率、消化酶活性和抗氧化酶 活性,DNA损伤 Reduced the growth, feed utilization, digestive enzyme activities, and antioxidant enzyme activities, DNA damage | [ | |
罗非鱼 Oreochromis niloticus×O. aureus | 793, 1 641 μg·kg-1 | 经口饲喂15周 Feedborne exposure for 15 weeks | 体表变黑,体重增长缓慢 Darkening surface and slow weight gain | [ |
2.5 mg·kg-1 | 经口饲喂20周 Feedborne exposure for 20 weeks | 行为反常 Abnormal behavior | ||
露斯塔野鲮 Labeo rohita | 2.5, 5.0 mg·kg-1 | 腹腔注射 Intraperitoneal (i.p.) | 总蛋白、球蛋白水平、细菌凝集滴度降低 Reduced total protein, globulin levels, bacterial agglutination titre | [ |
50 μg·kg-1 | 经口饲喂60 d Feedborne exposure for 60 days | 体重、肝脏指数,肝和肠道消化酶下降 Decreased body weight, hepatosomatic index, digestive enzyme activities of hepatopancreas and intestine | [ | |
虹鳟鱼 Oncorhynchus mykiss | 50 mg·kg-1 | 经口饲喂56 d Feedborne exposure for 56 days | 血清总蛋白、白蛋白和球蛋白水平下降 Decreased serum total protein, albumin and globulin levels | [ |
鲶鱼 Rhamdia quelen | 1 177 μg·kg-1 | 经口饲喂14 d Feedborne exposure for 14 days | 运动过度,血脑屏障损伤,Na+, K+-ATP酶活力 降低,乙酰胆碱酶升高 Behavioral impairment, disrupted blood-brain barrier, decreased Na+, K+-ATPase activity, increased acetylcholinesterase activity | [ |
黄颡鱼 Pelteobagrus fulvidraco | 44, 234 μg·kg-1 | 经口饲喂8周 Feedborne exposure for 8 weeks | 降低肌肉蛋白含量,肌肉纤维结构损伤,降低鱼肉 营养价值 Decreased total protein, muscle fiber structure damage, impaired the nutritional value | [ |
金头鲷 Sparus aurata | 1, 2 mg·kg-1 | 经口饲喂85 d Feedborne exposure for 85 days | 体重下降,代谢紊乱,器官组织损伤 Weight loss, metabolic disorder, tissue architecture damage | [ |
种类 | 剂量 | 染毒方式 | 毒性效应 | 参考文献 |
Species | Exposure dose | Administration | Toxic effect | Reference |
大菱鲆 Scophthalmus maximus | 20 μg·kg-1 | 经口饲喂10 d Feedborne exposure for 10 days | 血液系统损伤,肝抗氧化能力降低 Blood system injury, reduced liver antioxidant capacity | [ |
凡纳滨对虾 Litopenaeus vannamei | 4.8 mg·kg-1 | 经口饲喂8 d Feedborne exposure for 8 days | 成活率下降,肌肉、肠道和肝胰腺结构损伤严重 Reduced survival rate, severe muscle, intestinal and hepatopancreas damage | [ |
15 μg·kg-1 | 成活率下降,抗氧化酶活升高,肝胰腺结构损伤严重 Decreased survival rate, increased antioxidant enzyme activities, severe hepatopancreas damage | [ | ||
5 μg·kg-1 | 经口饲喂30 d Feedborne exposure for 30 days | 肠道菌群失调,抗氧化系统损伤 Intestinal flora disorder, antioxidant system damage | [ | |
1.2~6.075 mg·kg-1 | 经口饲喂20 d Feedborne exposure for 20 days | 降低肌肉营养成分,肌肉结构损伤 Reduce muscle nutrition, muscle structure damage | [ |
毒素 | 物种 | 剂量 | 染毒方式 | 毒性效应 | 参考文献 |
---|---|---|---|---|---|
Toxin | Species | Exposure dose | Administration | Toxic effect | Reference |
T-2 | 鲤鱼 Cyprinus carpio L. | 5.3 mg·kg-1 | 经口饲喂4周 Feedborne exposure for 4 weeks | 贫血,免疫抑制,肝脂质过氧化水平升高 Anemia, immunosuppression, elevated lipid peroxidation in the liver | [ |
凡纳滨对虾 Litopenaeus vannamei | 2.4 mg·kg-1 | 经口饲喂20 d Feedborne exposure for 20 days | 体重增长率下降,死亡率升高,血液白蛋白水平和 转氨酶活力降低 Decreased weight gain, serum albumin level and transaminase activity, increased mortality | [ | |
尼罗罗非鱼 Oreochromis niloticus | 4.8~24.3 mg·kg-1 | 降低成活率和体重,肝细胞和肌肉纤维结构受损 Decreased survival rate and weight gain, liver and muscle myofiber damage | [ | ||
中华绒螯蟹 Eriocheir sinensis | 0.6~5.0 mg·kg-1 | 经口饲喂8周 Feedborne exposure for 8 weeks | 肠道菌群紊乱,氧化应激,免疫抑制和细胞凋亡 Intestinal flora disorder, oxidative stress, immunosuppression and cell apoptosis | [ | |
DON | 鲤鱼 Cyprinus carpio L. | 352~0.953 μg·kg-1 | 经口饲喂4周 Feedborne exposure for 4 weeks | 肝细胞充血和脂肪堆积,AST、ALT活力下降 Increased fat disposition and severe hyperaemia in liver, AST and ALT decreased | [ |
虹鳟鱼 Oncorhynchus mykiss | 4, 6 mg·kg-1 | 食欲下降,死亡率升高 Decreased appetite and increased mortality | [ | ||
大口黑鲈 Micropterus salmoides | 0.3, 0.6 mg·kg-1 | 肠道菌群失调,肠道超微结构损伤 Intestinal flora disorder, intestine ultrastructure damaged | [ | ||
凡纳滨对虾 Litopenaeus vannamei | 0.25~1.0 mg·kg-1 | 经口饲喂5周 Feedborne exposure for 5 weeks | 降低体重和存活率,肠道细胞损伤 Reduced weight gain and survival, intestinal cell damage | [ | |
ZEN | 斑马鱼 Danio rerio | 100~1 000 μg·L-1 | 水体染毒5 d Waterborne exposure for 5 days | 水肿,尾鳍畸形和色素沉着减少 Edemas, caudal fin malformation and reduced pigmentation | [ |
虹鳟鱼 Oncorhynchus mykiss | 10 mg·kg-1 | 腹腔注射 Intraperitoneal | 血液凝固时间延长,肝和卵巢缺铁 Prolonged blood clotting time, iron deficiency in liver and ovary | [ | |
毒素 | 物种 | 剂量 | 染毒方式 | 毒性效应 | 参考文献 |
Toxin | Species | Exposure dose | Administration | Toxic effect | Reference |
2 mg·kg-1 | 经口饲喂96周 Feedborne exposure for 96 weeks | 增加后代的死亡率,干扰性腺发育 Increased offspring mortality, interfered with gonad development. | [ | ||
OTA | 斑点叉尾鮰 Ictalurus punctatus | 0.5~8 mg·kg-1 | 经口饲喂8周 Feedborne exposure for 8 weeks | 降低体重增长率饲料转化率和存活率,后肾黑色 素巨噬细胞中心增加 Reduction in weight gain, feed conversion ratio and survival rate; melanomacrophage centers in posterior kidney increased | [ |
4, 8 mg·kg-1 | 经口饲喂56 d Feedborne exposure for 56 days | 生长抑制,食欲下降,免疫抑制 Growth inhibition, appetite decreased, immunosuppression | [ | ||
凡纳滨对虾 Litopenaeus vannamei | 1.78~9.018 mg·kg-1 | 经口饲喂20 d Feedborne exposure for 20 days | 肌肉脂质过氧化,鲜度下降 Lipid peroxidation in muscle, and freshness decreased | [ | |
AFB1 | 斑点叉尾鮰 Ictalurus punctatus | 20 mg·kg-1 | 经口饲喂10周 Feedborne exposure for 10 weeks | 体重增长率下降 Reduction in weight gain | [ |
尖齿胡鲶 Clarias gariepinus | 5~15 mg·kg-1 | 经口饲喂6周 Feedborne exposure for 6 weeks | 体重增长率、红细胞压积、红细胞、血红蛋白和 血清蛋白成分降低 Reduction in weight gain, haematocrit, erythrocytes, haemoglobin and the serum protein constituents | [ | |
斑马鱼 Danio rerio | 0.87 mg·kg-1 | 水体染毒96 h Waterborne exposure for 96 hours | 胚胎畸形,死亡率增高 Embryo malformation, increased mortality | [ |
Table 2 Toxic effects of others mycotoxins related in different species of aquatic animals
毒素 | 物种 | 剂量 | 染毒方式 | 毒性效应 | 参考文献 |
---|---|---|---|---|---|
Toxin | Species | Exposure dose | Administration | Toxic effect | Reference |
T-2 | 鲤鱼 Cyprinus carpio L. | 5.3 mg·kg-1 | 经口饲喂4周 Feedborne exposure for 4 weeks | 贫血,免疫抑制,肝脂质过氧化水平升高 Anemia, immunosuppression, elevated lipid peroxidation in the liver | [ |
凡纳滨对虾 Litopenaeus vannamei | 2.4 mg·kg-1 | 经口饲喂20 d Feedborne exposure for 20 days | 体重增长率下降,死亡率升高,血液白蛋白水平和 转氨酶活力降低 Decreased weight gain, serum albumin level and transaminase activity, increased mortality | [ | |
尼罗罗非鱼 Oreochromis niloticus | 4.8~24.3 mg·kg-1 | 降低成活率和体重,肝细胞和肌肉纤维结构受损 Decreased survival rate and weight gain, liver and muscle myofiber damage | [ | ||
中华绒螯蟹 Eriocheir sinensis | 0.6~5.0 mg·kg-1 | 经口饲喂8周 Feedborne exposure for 8 weeks | 肠道菌群紊乱,氧化应激,免疫抑制和细胞凋亡 Intestinal flora disorder, oxidative stress, immunosuppression and cell apoptosis | [ | |
DON | 鲤鱼 Cyprinus carpio L. | 352~0.953 μg·kg-1 | 经口饲喂4周 Feedborne exposure for 4 weeks | 肝细胞充血和脂肪堆积,AST、ALT活力下降 Increased fat disposition and severe hyperaemia in liver, AST and ALT decreased | [ |
虹鳟鱼 Oncorhynchus mykiss | 4, 6 mg·kg-1 | 食欲下降,死亡率升高 Decreased appetite and increased mortality | [ | ||
大口黑鲈 Micropterus salmoides | 0.3, 0.6 mg·kg-1 | 肠道菌群失调,肠道超微结构损伤 Intestinal flora disorder, intestine ultrastructure damaged | [ | ||
凡纳滨对虾 Litopenaeus vannamei | 0.25~1.0 mg·kg-1 | 经口饲喂5周 Feedborne exposure for 5 weeks | 降低体重和存活率,肠道细胞损伤 Reduced weight gain and survival, intestinal cell damage | [ | |
ZEN | 斑马鱼 Danio rerio | 100~1 000 μg·L-1 | 水体染毒5 d Waterborne exposure for 5 days | 水肿,尾鳍畸形和色素沉着减少 Edemas, caudal fin malformation and reduced pigmentation | [ |
虹鳟鱼 Oncorhynchus mykiss | 10 mg·kg-1 | 腹腔注射 Intraperitoneal | 血液凝固时间延长,肝和卵巢缺铁 Prolonged blood clotting time, iron deficiency in liver and ovary | [ | |
毒素 | 物种 | 剂量 | 染毒方式 | 毒性效应 | 参考文献 |
Toxin | Species | Exposure dose | Administration | Toxic effect | Reference |
2 mg·kg-1 | 经口饲喂96周 Feedborne exposure for 96 weeks | 增加后代的死亡率,干扰性腺发育 Increased offspring mortality, interfered with gonad development. | [ | ||
OTA | 斑点叉尾鮰 Ictalurus punctatus | 0.5~8 mg·kg-1 | 经口饲喂8周 Feedborne exposure for 8 weeks | 降低体重增长率饲料转化率和存活率,后肾黑色 素巨噬细胞中心增加 Reduction in weight gain, feed conversion ratio and survival rate; melanomacrophage centers in posterior kidney increased | [ |
4, 8 mg·kg-1 | 经口饲喂56 d Feedborne exposure for 56 days | 生长抑制,食欲下降,免疫抑制 Growth inhibition, appetite decreased, immunosuppression | [ | ||
凡纳滨对虾 Litopenaeus vannamei | 1.78~9.018 mg·kg-1 | 经口饲喂20 d Feedborne exposure for 20 days | 肌肉脂质过氧化,鲜度下降 Lipid peroxidation in muscle, and freshness decreased | [ | |
AFB1 | 斑点叉尾鮰 Ictalurus punctatus | 20 mg·kg-1 | 经口饲喂10周 Feedborne exposure for 10 weeks | 体重增长率下降 Reduction in weight gain | [ |
尖齿胡鲶 Clarias gariepinus | 5~15 mg·kg-1 | 经口饲喂6周 Feedborne exposure for 6 weeks | 体重增长率、红细胞压积、红细胞、血红蛋白和 血清蛋白成分降低 Reduction in weight gain, haematocrit, erythrocytes, haemoglobin and the serum protein constituents | [ | |
斑马鱼 Danio rerio | 0.87 mg·kg-1 | 水体染毒96 h Waterborne exposure for 96 hours | 胚胎畸形,死亡率增高 Embryo malformation, increased mortality | [ |
毒素 Toxins | 物种 Species | 剂量/染毒方式 Dose/Administration | 毒素残留浓度Toxin residual concentration/(μg·kg-1) | 检测方法 Detection method | 参考文献 Reference | ||
---|---|---|---|---|---|---|---|
肝 Liver | 肌肉 Muscle | 其他 Other | |||||
T-2 | 凡纳滨对虾 Litopenaeus vannamei | 12.2 mg·kg-1,经口饲喂20 d Feedborne exposure for 20 days | 26.65 | 2.87 | 头部Head-8.47, 血液Blood-14.04 | 免疫磁珠酶联免疫法IMB-ELISA | [ |
19.2 mg·kg-1,经口饲喂4天 Feedborne exposure for 4 days | 36.8 | 9.65 | 头部Head-10.88, 血液Blood-81.15 | LC-MS/MS | [ | ||
ZEN | 虹鳟鱼 | 自然发生Natural occurrence | n.d. | n.d. | 卵巢Ovary-7.1 | HPLC | [ |
Oncorhynchus mykiss | |||||||
OTA | 金头鲷 Sparus aurata | 自然发生Natural occurrence | 0.11 | n.d. | 肾Kidney-0.91 | HPLC | [ |
欧洲舌齿鲈 Dicentrarchus labrax | 自然发生Natural occurrence | 0.74 | 0.28 | 肾Kidney-0.79 | |||
DON | 大西洋鲑 Salmo salar | 2 mg·kg-1,经口饲喂8周 Feedborne exposure for 8 weeks | 18.1 | 6 | 肾Kidney-12.3 | LC-MS/MS | [ |
AFB1 | 黄颡鱼 Pelteobagrus fulvidraco | 44 μg·kg-1,经口饲喂8周 Feedborne exposure for 8 weeks | N | 3 | N | 未说明 Unspecified | [ |
大菱鲆 Scophthalmus maximus | 20 μg·kg-1,经口饲喂10 d Feedborne exposure for 10 days | N | 0.58 | 血液Blood-1.6 | LC-MS/MS | [ | |
尼罗罗非鱼 Oreochromis niloticus L. | 3 μg·kg-1,经口饲喂84 d Feedborne exposure for 8 days | N | 600 | N | LC-MS/MS | [ |
Table 3 Different mycotoxins residues in tissues or organs of aquatic animals
毒素 Toxins | 物种 Species | 剂量/染毒方式 Dose/Administration | 毒素残留浓度Toxin residual concentration/(μg·kg-1) | 检测方法 Detection method | 参考文献 Reference | ||
---|---|---|---|---|---|---|---|
肝 Liver | 肌肉 Muscle | 其他 Other | |||||
T-2 | 凡纳滨对虾 Litopenaeus vannamei | 12.2 mg·kg-1,经口饲喂20 d Feedborne exposure for 20 days | 26.65 | 2.87 | 头部Head-8.47, 血液Blood-14.04 | 免疫磁珠酶联免疫法IMB-ELISA | [ |
19.2 mg·kg-1,经口饲喂4天 Feedborne exposure for 4 days | 36.8 | 9.65 | 头部Head-10.88, 血液Blood-81.15 | LC-MS/MS | [ | ||
ZEN | 虹鳟鱼 | 自然发生Natural occurrence | n.d. | n.d. | 卵巢Ovary-7.1 | HPLC | [ |
Oncorhynchus mykiss | |||||||
OTA | 金头鲷 Sparus aurata | 自然发生Natural occurrence | 0.11 | n.d. | 肾Kidney-0.91 | HPLC | [ |
欧洲舌齿鲈 Dicentrarchus labrax | 自然发生Natural occurrence | 0.74 | 0.28 | 肾Kidney-0.79 | |||
DON | 大西洋鲑 Salmo salar | 2 mg·kg-1,经口饲喂8周 Feedborne exposure for 8 weeks | 18.1 | 6 | 肾Kidney-12.3 | LC-MS/MS | [ |
AFB1 | 黄颡鱼 Pelteobagrus fulvidraco | 44 μg·kg-1,经口饲喂8周 Feedborne exposure for 8 weeks | N | 3 | N | 未说明 Unspecified | [ |
大菱鲆 Scophthalmus maximus | 20 μg·kg-1,经口饲喂10 d Feedborne exposure for 10 days | N | 0.58 | 血液Blood-1.6 | LC-MS/MS | [ | |
尼罗罗非鱼 Oreochromis niloticus L. | 3 μg·kg-1,经口饲喂84 d Feedborne exposure for 8 days | N | 600 | N | LC-MS/MS | [ |
[1] | SANTOS G, NAEHRER K, ENCARNACAO P. Prevalence of mycotoxins in major aquafeed ingredients: an update[J]. International Aqua Feed, 2013, 16(6):14-17. |
[2] |
BOSTOCK J, MCANDREW B, RICHARDS R J, et al. Aquaculture: global status and trends[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1554):2897-2912
DOI URL |
[3] |
NAYLOR R L, GOLDBURG R J, PRIMAVERA J H, et al. Effect of aquaculture on world fish supplies[J]. Nature, 2000, 405(6790): 1017-1024.
DOI |
[4] |
LITI D, CHEROP L, MUNGUTI J, et al. Growth and economic performance of Nile tilapia (Oreochromis niloticus L.) fed on two formulated diets and two locally available feeds in fertilized ponds[J]. Aquaculture Research, 2005, 36(8): 746-752.
DOI URL |
[5] | CAST (Council for Agricultural Science and Technology). Mycotoxins: risks in plant, animal, and human systems[C]. Ames, Iowa, USA:CAST, 2003, 139. |
[6] | MARIJANI E, NASIMOLO J, KIGADYE E, et al. Sex-related differences in hematological parameters and organosomatic indices of Oreochromis niloticus exposed to aflatoxin B1 diet[J]. Scientifica, 2017, 2017: 4268926. |
[7] |
MWIHIA E W, MBUTHIA P G, ERIKSEN G S, et al. Occurrence and levels of aflatoxins in fish feeds and their potential effects on fish in nyeri, Kenya[J]. Toxins, 2018, 10(12): 543.
DOI URL |
[8] | KHOLIFE M, MOAWAD A, DIAB A, et al. Mycological examination of fish feed stuff with special reference to mycotoxin production[J]. Slovenian Veterinary Research, 2019, 56(22-Suppl): 303-312. |
[9] |
GONÇALVES R A, NAEHRER K, SANTOS G A. Occurrence of mycotoxins in commercial aquafeeds in Asia and Europe: a real risk to aquaculture?[J]. Reviews in Aquaculture, 2018, 10(2): 263-280.
DOI URL |
[10] | 王小博, 王雅玲, 王润东, 等. 我国南粤地区霉变水产饲料真菌毒素污染现状及毒性评价[J]. 浙江农业学报, 2016, 28(6): 951-958. |
WANG X B, WANG Y L, WANG R D, et al. Mycotoxins contamination situation and toxicity evaluation of moldy aquatic feed in southern Guangdong of China[J]. Acta Agriculturae Zhejiangensis, 2016, 28(6): 951-958. (in Chinese with English abstract) | |
[11] | BIOMIN. BIOMIN world mycotoxin survey 2020[EB/OL]. [2021-05-06]. https://www.biomin.net/downloads/2020-biomin-world-mycotoxin-survey-report/ |
[12] | IARC Working Group on the Evaluation of Carcinogenic Risks To Humans, International Agency For Research On Cancer. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins[M]. Lyon: World Health Organization, International Agency for Research on Cancer, 1993. |
[13] |
LANZA G M, WASHBURN K W, WYATT R D. Variation with age in response of broilers to aflatoxin[J]. Poultry Science, 1980, 59(2): 282-288.
PMID |
[14] |
WANG E, NORRED W P, BACON C W, et al. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme[J]. Journal of Biological Chemistry, 1991, 266(22): 14486-14490.
DOI URL |
[15] |
BRACARENSE A P F L, LUCIOLI J, GRENIER B, et al. Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets[J]. The British Journal of Nutrition, 2012, 107(12): 1776-1786.
DOI PMID |
[16] | CAGAUAN A G, TAYABAN R H, SOMGA J R, et al. Effect of aflatoxin-contaminated feeds in Nile tilapia (Oreochromis niloticus L.)[M]//REMEDIOS R B, MAIR G C, FITZSIMMONS K. Proceedings of the Sixth International Symposium on Tilapia in Aquaculture, 2004, 172-178. |
[17] |
DENG S X, TIAN L X, LIU F J, et al. Toxic effects and residue of aflatoxin B1 in tilapia (Oreochromis niloticus×O. aureus) during long-term dietary exposure[J]. Aquaculture, 2010, 307(3/4): 233-240.
DOI URL |
[18] |
PIETSCH C, SCHULZ C, ROVIRA P, et al. Organ damage and hepatic lipid accumulation in carp (Cyprinus carpio L.) after feed-borne exposure to the mycotoxin, deoxynivalenol (DON)[J]. Toxins, 2014, 6(2): 756-778.
DOI URL |
[19] |
ZHANG Z Y, JIANG Z Y, LV H B, et al. Dietary aflatoxin impairs flesh quality through reducing nutritional value and changing myofiber characteristics in yellow catfish (Pelteobagrus fulvidraco)[J]. Animal Feed Science and Technology, 2021, 274: 114764.
DOI URL |
[20] |
YANG J Z, WANG T T, LIN G, et al. The assessment of diet contaminated with aflatoxin B1 in juvenile turbot (Scophthalmus maximus) and the evaluation of the efficacy of mitigation of a yeast cell wall extract[J]. Toxins, 2020, 12(9): 597.
DOI URL |
[21] |
SELIM K M, EL-HOFY H, KHALIL R H. The efficacy of three mycotoxin adsorbents to alleviate aflatoxin B1-induced toxicity in Oreochromis niloticus[J]. Aquaculture International, 2014, 22(2): 523-540.
DOI URL |
[22] |
HUSSAIN D, MATEEN A, GATLIN D M. Alleviation of aflatoxin B1 (AFB1) toxicity by calcium bentonite clay: effects on growth performance, condition indices and bioaccumulation of AFB1 residues in Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2017, 475: 8-15.
DOI URL |
[23] |
HASSAAN M S, NSSAR K M, MOHAMMADY E Y, et al. Nano-zeolite efficiency to mitigate the aflatoxin B1 (AFB1) toxicity: effects on growth, digestive enzymes, antioxidant, DNA damage and bioaccumulation of AFB1 residues in Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2020, 523: 735123.
DOI URL |
[24] | SAHOO P K, MUKHERJEE S C. Immunosuppressive effects of aflatoxin B1 in Indian major carp (Labeo rohita)[J]. Comparative Immunology, Microbiology and Infectious Diseases, 2001, 24(3): 143-149. |
[25] |
FAN Y, LIU L T, ZHAO L H, et al. Influence of Bacillus subtilis ANSB060 on growth, digestive enzyme and aflatoxin residue in Yellow River carp fed diets contaminated with aflatoxin B1[J]. Food and Chemical Toxicology, 2018, 113: 108-114.
DOI URL |
[26] | ALINEZHAD S, FARIDI M, FALAHATKAR B, et al. Effects of nanostructured zeolite and aflatoxin B1 in growth performance, immune parameters and pathological conditions of rainbow trout Oncorhynchus mykiss[J]. Fish & Shellfish Immunology, 2017, 70: 648-655. |
[27] |
BALDISSERA M D, SOUZA C F, ZEPPENFELD C C, et al. Aflatoxin B1-contaminated diet disrupts the blood-brain barrier and affects fish behavior: involvement of neurotransmitters in brain synaptosomes[J]. Environmental Toxicology and Pharmacology, 2018, 60: 45-51.
DOI URL |
[28] |
BARANY A, GUILLOTO M, COSANO J, et al. Dietary aflatoxin B1 (AFB1) reduces growth performance, impacting growth axis, metabolism, and tissue integrity in juvenile gilthead sea bream (Sparus aurata)[J]. Aquaculture, 2021, 533: 736189.
DOI URL |
[29] | 吕鹏莉. Ⅱ相关键解毒酶介导的对虾中常见真菌毒素危害控制效应[D]. 湛江: 广东海洋大学, 2016. |
LYU P L. The effect of phase Ⅱ detoxification enzymes in regulating the hazard control of common mycotoxins in shrimp (Litopenaeus vannamei)[D]. Zhanjiang: Guangdong Ocean University, 2016. (in Chinese with English abstract) | |
[30] | ZHAO W, WANG L, LIU M, et al. Transcriptome, antioxidant enzyme activity and histopathology analysis of hepatopancreas from the white shrimp Litopenaeus vannamei fed with aflatoxin B1 (AFB1)[J]. Developmental & Comparative Immunology, 2017, 74: 69-81. |
[31] |
WANG Y L, WANG B J, LIU M, et al. Aflatoxin B1 (AFB1) induced dysregulation of intestinal microbiota and damage of antioxidant system in Pacific white shrimp (Litopenaeus vannamei)[J]. Aquaculture, 2018, 495: 940-947.
DOI URL |
[32] |
HUANG Z R, SUN L J, WANG Y L, et al. Protective mechanism of tea polyphenols against muscle quality deterioration of shrimp (Penaeus vannamei) induced by aflatoxin B1[J]. Aquaculture, 2021, 532: 736093.
DOI URL |
[33] | MATEJOVA I, FALDYNA M, MODRA H, et al. Effect of T-2 toxin-contaminated diet on common carp (Cyprinus carpio L.)[J]. Fish & Shellfish Immunology, 2017, 60: 458-465. |
[34] |
QIU M, WANG Y L, WANG X B, et al. Effects of T-2 toxin on growth, immune function and hepatopancreas microstructure of shrimp (Litopenaeus vannamei)[J]. Aquaculture, 2016, 462: 35-39.
DOI URL |
[35] |
DENG Y J, QIU M, WANG Y L, et al. Protective effect of antioxidant-enriched diets on T-2-toxin-induced damage in tilapia (Oreochromis niloticus)[J]. Aquaculture, 2019, 506: 341-349.
DOI URL |
[36] | WANG C L, WANG X D, HUANG Y X, et al. Effects of dietary T-2 toxin on gut health and gut microbiota composition of the juvenile Chinese mitten crab (Eriocheir sinensis)[J]. Fish & Shellfish Immunology, 2020, 106: 574-582. |
[37] | WANG C L, WANG X D, XIAO S S, et al. T-2 toxin in the diet suppresses growth and induces immunotoxicity in juvenile Chinese mitten crab (Eriocheir sinensis)[J]. Fish & Shellfish Immunology, 2020, 97: 593-601. |
[38] |
WANG C L, PAN J Y, WANG X D, et al. N-acetylcysteine provides protection against the toxicity of dietary T-2 toxin in juvenile Chinese mitten crab (Eriocheir sinensis)[J]. Aquaculture, 2021, 538: 736531.
DOI URL |
[39] |
RYERSE I A, HOOFT J M, BUREAU D P, et al. Diets containing corn naturally contaminated with deoxynivalenol reduces the susceptibility of rainbow trout (Oncorhynchus mykiss)to experimental Flavobacterium psychrophilum infection[J]. Aquaculture Research, 2016, 47(3): 787-796.
DOI URL |
[40] |
YU Y Y, LIU Y, TAN Y S, et al. Effects of deoxynivalenol-contaminated diet on the composition and diversity of the intestinal microbial community and intestinal ultrastructure of juvenile largemouth bass (Micropterus salmoides)[J]. Aquaculture, 2021, 538: 736544.
DOI URL |
[41] | XIE S W, ZHENG L, WAN M G, et al. Effect of deoxynivalenol on growth performance, histological morphology, anti-oxidative ability and immune response of juvenile Pacific white shrimp, Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2018, 82: 442-452. |
[42] | BAKOS K, KOVÁCS R, STASZNY Á, et al. Developmental toxicity and estrogenic potency of zearalenone in zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2013, 136: 13-21. |
[43] |
WOĆNY M, BRZUZAN P, GUSIATIN M, et al. Influence of Zearalenone on selected biochemical parameters in juvenile rainbow trout (Oncorhynchus mykiss)[J]. Polish Journal of Veterinary Sciences, 2012, 15(2): 221-225.
PMID |
[44] |
WOĆNY M, DOBOSZ S, HLIWA P, et al. Feed-borne exposure to zearalenone impairs reproduction of rainbow trout[J]. Aquaculture, 2020, 528: 735522.
DOI URL |
[45] |
MANNING B B, ULLOA R M, LI M H, et al. Ochratoxin A fed to channel catfish (Ictalurus punctatus) causes reduced growth and lesions of hepatopancreatic tissue[J]. Aquaculture, 2003, 219(1/2/3/4): 739-750.
DOI URL |
[46] | ZAHRAN E, MANNING B, SEO J K, et al. The effect of Ochratoxin A on antimicrobial polypeptide expression and resistance to water mold infection in channel catfish (Ictalurus punctatus)[J]. Fish & Shellfish Immunology, 2016, 57: 60-67. |
[47] |
FANG Z J, ZHOU L H, WANG Y L, et al. Evaluation the effect of mycotoxins on shrimp (Litopenaeus vannamei) muscle and their limited exposure dose for preserving the shrimp quality[J]. Journal of Food Processing and Preservation, 2019, 43(4): e13902.
DOI URL |
[48] |
YILDIRIM M, MANNING B B, LOVELL R T, et al. Toxicity of moniliformin and fumonisin B1 fed singly and in combination in diets for young channel catfish Ictalurus punctatus[J]. Journal of the World Aquaculture Society, 2007, 31(4): 599-608.
DOI URL |
[49] |
GBORE F A, ADEWOLE A M, OGINNI O, et al. Growth performance, haematology and serum biochemistry of African catfish (Clarias gariepinus) fingerlings fed graded levels of dietary fumonisin B1[J]. Mycotoxin Research, 2010, 26(4): 221-227.
DOI PMID |
[50] |
AZMAN N, ZAINUDIN N A I M, IBRAHIM W N W. Fumonisin B1 production by Fusarium species and mycotoxigenic effect on larval zebrafish[J]. Tropical Life Sciences Research, 2020, 31(3): 91-107.
DOI URL |
[51] | LEESON S, DÍAZ G, SUMMERS J D. Poultry metabolic disorders and mycotoxins[M]//LEESON S, SUMMERS J D, DÍAZ G. Poultry metabolic disorders and mycotoxins. Guelph: University books, 1995. |
[52] |
PLAKAS S M, LOVELAND P M, BAILEY G S, et al. Tissue disposition and excretion of 14C-labelled aflatoxin B1 after oral administration in channel catfish[J]. Food and Chemical Toxicology, 1991, 29(12): 805-808.
DOI URL |
[53] |
DENG Q, QIU M, WANG Y L, et al. A sensitive and validated immunomagnetic-bead based enzyme-linked immunosorbent assay for analyzing total T-2 (free and modified) toxins in shrimp tissues[J]. Ecotoxicology and Environmental Safety, 2017, 142: 441-447.
DOI PMID |
[54] | WOŹNY M, OBREMSKI K, JAKIMIUK E, et al. Zearalenone contamination in rainbow trout farms in north-eastern Poland[J]. Aquaculture, 2013, 416: 209-211. |
[55] |
MEUCCI V, ARMANI A, TINACCI L, et al. Natural occurrence of ochratoxin A (OTA) in edible and not edible tissue of farmed gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) sold on the Italian market[J]. Food Control, 2021, 120: 107537.
DOI URL |
[56] | BERNHOFT A, HØGÅSEN H R, ROSENLUND G, et al. Tissue distribution and elimination of deoxynivalenol and ochratoxin A in dietary-exposed Atlantic salmon (Salmo salar)[J]. Food Additives & Contaminants: Part A, 2017, 34(7): 1211-1224. |
[57] | 陈茹. 国内外饲料真菌毒素限量规定及评析[J]. 中国饲料, 2013(17): 38-42. |
CHEN R. Comparison of domestic and foreign regulation on mycotoxin in feed[J]. China Feed, 2013(17): 38-42. (in Chinese with English abstract) | |
[58] |
HUONG B T M, TUYEN L D, TUAN D H, et al. Dietary exposure to aflatoxin B1, ochratoxin A and fuminisins of adultsin Lao Cai Province, Viet Nam: a total dietary study approach[J]. Food and Chemical Toxicology, 2016, 98: 127-133.
DOI URL |
[59] |
FERRARA M, MAGISTÀ D, LIPPOLIS V, et al. Effect of Penicillium nordicum contamination rates on ochratoxin A accumulation in dry-cured salami[J]. Food Control, 2016, 67: 235-239.
DOI URL |
[1] | WANG Siliang, SHAO Yue, YAN Chengjin. Transcriptome analysis of Spodoptera furgiperda during corn-wheat host alternation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1236-1247. |
[2] | DENG Tao, YANG Hua, XIAO Yingping, WANG Wen, LYU Wentao, WANG Xiaoli, WU Zhen, JI Xiaofeng. Simultaneous determination of five Alternaria toxins by QuEChERS-ultra-performance liquid chromatography-tandem mass spectrometry in fruit puree for infants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2728-2739. |
[3] | CAI Yilong, ZHANG Libing, HU Gaoyu, XIAO Guoqiang, CAI Jingbo, ZHANG Xiang. Effects of different diets on growth performance and environmental water quality of Scylla paramamosain cultured in carb apartment [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2404-2415. |
[4] | HE Xiu, XU Meiyu, XIN Weigang, ZHANG Qilin, WANG Feng, LIN Lianbing. Effects of soybean meal addition and fermentation time on nutritional quality and bacterial diversity of Pennisetum purpureum silage [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2160-2171. |
[5] | JIANG Yuhang, XIN Weigang, ZHANG Qili, DENG Xianyu, WANG Feng, LIN Lianbing. Isolation and identification of fungi from mildewed feed corn and study on anti-mildew and antifungal effects of lactobacillin [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1283-1291. |
[6] | JI Xiaofeng, LYU Wentao, WANG Jianmei, LIAO Linhui, XU Jie, QIAN Mingrong. Determination of fipronil and its metabolites in fresh eggs by ultra high performance liquid chromatography-tandem mass spectrometry [J]. , 2020, 32(10): 1849-1854. |
[7] | LIU Jiangying, ZHU Jianjin, JIANG Rong, LIU Ziwei. Effect of multi-strain co-fermented feed on anti-Salmonella infection in broilers [J]. , 2019, 31(2): 229-234. |
[8] | HU Lin, SHI Zhen, ZHAO Li, LIU Xiaosong, DONG Yuying, JIANG Mengyuan, LI Wenting. Simultaneous detection and analysis of 16 kinds of mycotoxins in Pu-erh tea [J]. , 2019, 31(10): 1700-1708. |
[9] | WANG Anbang, HE Ke, ZHANG Junbiao. Effect of health consciousness on pro-environmental behavior of scale breeding farmers: based on payment willingness for environmentally friendly feed [J]. , 2019, 31(10): 1745-1757. |
[10] | FANG Qi, ZHANG Jun, ZHOU Jinyun. Effect of processing on carbendazim residue in canned citrus [J]. , 2018, 30(9): 1599-1603. |
[11] | WANG Xiaobo1, WANG Yaling1,*, WANG Rundong1, LYU Pengli1, SUN Lijun1, LIU Xiaoyan1, SHI Qi2, BI Siyuan3. Mycotoxins contamination situation and toxicity evaluation of moldy aquatic feed in southern Guangdong of China [J]. , 2016, 28(6): 951-. |
[12] | WU Yi-fei, SUN Hong, LI Yuan-cheng, WANG Xin, LIU Yong, YAO Xiao-hong, TANG Jiang-wu. Effects of microbial solid-state fermentation on nutritional value of feeds [J]. , 2016, 28(12): 2014-2020. |
[13] | LIAO Qian1,2, ZHANG Zhi\|jun2, ZHANG Yu\|xiu2, LYU Yao\|bin1, 2,*. The relationship between Tomato spotted wilt virus disease occurrence and the numbers of Frankliniella occidentalis#br# [J]. , 2015, 27(9): 1601-. |
[14] | HE Jian\|hong1, HU Xuan\|xiang1, ZHAO Shuai\|feng1, KE Han\|yun1, WU Yan\|jun2, ZHAO Li2. Degradation of bifenazate residue in strawberry and its safe application [J]. , 2014, 26(5): 1268-. |
[15] | ZHANG Yuxiu;ZHANG Zhijun;LYU Yaobin;*. Analysis of the feeding behavior of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on four host plants by electrical penetration graph [J]. , 2014, 26(3): 0-714721. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||