Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (8): 1960-1974.DOI: 10.3969/j.issn.1004-1524.20230387
• Review • Previous Articles Next Articles
WANG Di1(), YANG Hanmei2, LI Yangqian3, JIA Mengting1, ZOU Liang4,*(
), YANG Fan5,*(
)
Received:
2023-03-27
Online:
2023-08-25
Published:
2023-08-29
CLC Number:
WANG Di, YANG Hanmei, LI Yangqian, JIA Mengting, ZOU Liang, YANG Fan. Multidimensional evaluation of “variety, quality, efficiency and application” of Tartary buckwheat and research progress of high-value utilization of active ingredients[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1960-1974.
序号 Number | 省级区域 Provincial region | 编目材料数 Number of catalogued | 保存数 Preserve number | 区域代表品种 Regional representative varieties | 多见区 Main distributing areas | 参考文献 References |
---|---|---|---|---|---|---|
1 | 四川 Sichuan | 171 | 146 | 川荞1号、川荞2号、西荞2号、西荞3号、凉苦3号、老鸦苦荞、额洛乌且、苦刺荞、火麻荞、额曲、额阿母 Chuanqiao No.1, Chuanqiao No.2, Xiqiao No.2, Xiqiao No.3, Liangku No.3, Laoyakuqiao, Eluowuqie, Eluomuerlie, Huomaqiao, Equ, E’amu | 汶川、茂县、红原、松潘、理县、九寨沟、凉山州、金堂 Wenchuan, Maoxian, Hongyuan, Songpan, Lixian, Jiuzhaigou, Liangshan, Jintang | [ [ [ [ |
2 | 贵州 Guizhou | 68 | 54 | 六苦2号、六苦3号、黔苦4号、黔威3号、毕苦2号、威宁苦荞、大方苦荞、遵义苦荞、纳雍苦荞、盘县苦荞、清镇苦荞、赫章黑苦荞、尖咀苦荞、细白苦荞 Liuku No.2, Liuku No.3, Qianku No.4, Qianwei No.3, Biku No.2, Weiningkuqiao, Dafangkuqiao, Zunyikuqiao, Nayongkuqiao, Panxiankuqiao, Qingzhenkuqiao, Hezhangheikuqiao, Jiazuikuqiao, Xibaikuqiao | 威宁、遵义、盘县、清镇、赫章、纳雍、册亨、望谟、兴义 Weining, Zunyi, Panxian, Qingzhen, Hezhang, Nayong, Ceheng, Wangmo, Xingyi | [ [ [ |
3 | 云南 Yunnan | 131 | 117 | 云荞1号、云苦67、滇宁1号、昭苦2号、迪苦2号、格务、怒江苦荞、巍山苦荞、武定苦荞、彝良苦荞、金源苦荞、昭通苦荞、红土地苦荞、泸西苦荞 Yunqiao No.1, Yunku 67, Dianning No.2, Zhaoku No.2, Diku No.1, Gewu, NuJiangkuqiao, Weishankuqiao, Wudingkuqiao, Yiliangkuqiao, Jinyuankuqiao, Zhaotongkuqiao, Hongtudikuqiao, Luxikuqiao | 迪庆、怒江、大理、丽江、保山、临沧、巍山 Diqing, Nujiang, Dali, Lijiang, Baoshan, Lincang, Weishan | [ [ [ [ |
4 | 山西 Shanxi | 113 | 104 | 晋苦2号、晋苦4号、兴苦2号、广灵苦荞、五台苦荞 Jinku No.2, Jinku No.4, Xingku No.2, Guanglingkuqiao, Wutaikuqiao | 广灵、太原、左云、五台、大同 Guangling, Taiyuan, Zuoyun, Wutai, Datong | [ [ [ |
5 | 重庆 Chongqing | / | / | 酉苦1号 Youku No.1 | 彭水、酉阳、城口、黔江、秀山、巫山 Pengshui, Youyang, Chengkou, Qianjiang, Xiushan, Wushan | [ |
6 | 内蒙古 Inner Mongolia | 8 | 8 | 蒙1210-8、赤峰苦荞、通荞1号、通荞4号 Meng 1210-8, Chifengkuqiao, Tongqiao No.1, Tongqiao No.4 | 通辽、库伦旗、赤峰、乌兰察布 Tongliao, Kulunqi, Chifeng, Ulanqab, | [ |
7 | 陕西 Shaanxi | 93 | 93 | 榆5-7、榆6-21、KP9920、边苦1号、镇巴苦荞、西农9909、西农9940 Yu 5-7, Yu 6-21, KP9920, Bianku No.1, Zhenbakuqiao, Xinong 9909, Xinong 9940 | 榆林、靖边、定边、镇巴 Yulin, Jingbian, Dingbian, Zhenba | [ [ |
8 | 湖南 Hunan | 4 | 4 | 凤凰苦荞、塘湾苦荞 Fenghuangkuqiao, Tangwankuqiao | 安化、凤凰、塘湾 Anhua, Fenghuang, Tangwan | [ [ |
9 | 宁夏 Ningxia | 9 | / | 宁荞2号 Ningqiao No.2 | 盐池、固原、中卫 Yanchi, Guyuan, Zhongwei | [ |
10 | 甘肃 Gansu | 94 | 91 | 陇南苦荞、定99-3、甘荞1号、定引1号、Ⅲ平苦14-3 Longnankuqiao, Ding 99-3, Ganqiao No.1, Dingying No.1, ⅢPingku 14-3 | 定西、陇南、环县、平凉 Dingxi, Longnan, Huanxian, Pingliang | [ |
11 | 江西 Jiangxi | 2 | 2 | 九江苦荞 Jiujiangkuqiao | 九江 Jiujiang | [ |
12 | 海南 Hainan | / | / | 三亚18 Sanya 18 | 三亚 Sanya | [ |
13 | 辽宁 Liaoning | 1 | 1 | / | 建平 Jianping | / |
14 | 北京 Beijing | 98 | 43 | / | / | / |
15 | 青海 Qinghai | 45 | 45 | 互荞1号 Huqiao No.1 | / | / |
16 | 安徽 Anhui | 5 | 5 | / | / | [ |
17 | 湖北 Hubei | 35 | 35 | 五峰苦荞 Wufengkuqiao | 五峰 Wufeng | [ |
18 | 广西 Guangxi | 6 | 6 | / | / | [ |
合计 | / | 883 | 754 | / | / | / |
Total |
Table 1 Variety resources of Tartary buckwheat in different provinces
序号 Number | 省级区域 Provincial region | 编目材料数 Number of catalogued | 保存数 Preserve number | 区域代表品种 Regional representative varieties | 多见区 Main distributing areas | 参考文献 References |
---|---|---|---|---|---|---|
1 | 四川 Sichuan | 171 | 146 | 川荞1号、川荞2号、西荞2号、西荞3号、凉苦3号、老鸦苦荞、额洛乌且、苦刺荞、火麻荞、额曲、额阿母 Chuanqiao No.1, Chuanqiao No.2, Xiqiao No.2, Xiqiao No.3, Liangku No.3, Laoyakuqiao, Eluowuqie, Eluomuerlie, Huomaqiao, Equ, E’amu | 汶川、茂县、红原、松潘、理县、九寨沟、凉山州、金堂 Wenchuan, Maoxian, Hongyuan, Songpan, Lixian, Jiuzhaigou, Liangshan, Jintang | [ [ [ [ |
2 | 贵州 Guizhou | 68 | 54 | 六苦2号、六苦3号、黔苦4号、黔威3号、毕苦2号、威宁苦荞、大方苦荞、遵义苦荞、纳雍苦荞、盘县苦荞、清镇苦荞、赫章黑苦荞、尖咀苦荞、细白苦荞 Liuku No.2, Liuku No.3, Qianku No.4, Qianwei No.3, Biku No.2, Weiningkuqiao, Dafangkuqiao, Zunyikuqiao, Nayongkuqiao, Panxiankuqiao, Qingzhenkuqiao, Hezhangheikuqiao, Jiazuikuqiao, Xibaikuqiao | 威宁、遵义、盘县、清镇、赫章、纳雍、册亨、望谟、兴义 Weining, Zunyi, Panxian, Qingzhen, Hezhang, Nayong, Ceheng, Wangmo, Xingyi | [ [ [ |
3 | 云南 Yunnan | 131 | 117 | 云荞1号、云苦67、滇宁1号、昭苦2号、迪苦2号、格务、怒江苦荞、巍山苦荞、武定苦荞、彝良苦荞、金源苦荞、昭通苦荞、红土地苦荞、泸西苦荞 Yunqiao No.1, Yunku 67, Dianning No.2, Zhaoku No.2, Diku No.1, Gewu, NuJiangkuqiao, Weishankuqiao, Wudingkuqiao, Yiliangkuqiao, Jinyuankuqiao, Zhaotongkuqiao, Hongtudikuqiao, Luxikuqiao | 迪庆、怒江、大理、丽江、保山、临沧、巍山 Diqing, Nujiang, Dali, Lijiang, Baoshan, Lincang, Weishan | [ [ [ [ |
4 | 山西 Shanxi | 113 | 104 | 晋苦2号、晋苦4号、兴苦2号、广灵苦荞、五台苦荞 Jinku No.2, Jinku No.4, Xingku No.2, Guanglingkuqiao, Wutaikuqiao | 广灵、太原、左云、五台、大同 Guangling, Taiyuan, Zuoyun, Wutai, Datong | [ [ [ |
5 | 重庆 Chongqing | / | / | 酉苦1号 Youku No.1 | 彭水、酉阳、城口、黔江、秀山、巫山 Pengshui, Youyang, Chengkou, Qianjiang, Xiushan, Wushan | [ |
6 | 内蒙古 Inner Mongolia | 8 | 8 | 蒙1210-8、赤峰苦荞、通荞1号、通荞4号 Meng 1210-8, Chifengkuqiao, Tongqiao No.1, Tongqiao No.4 | 通辽、库伦旗、赤峰、乌兰察布 Tongliao, Kulunqi, Chifeng, Ulanqab, | [ |
7 | 陕西 Shaanxi | 93 | 93 | 榆5-7、榆6-21、KP9920、边苦1号、镇巴苦荞、西农9909、西农9940 Yu 5-7, Yu 6-21, KP9920, Bianku No.1, Zhenbakuqiao, Xinong 9909, Xinong 9940 | 榆林、靖边、定边、镇巴 Yulin, Jingbian, Dingbian, Zhenba | [ [ |
8 | 湖南 Hunan | 4 | 4 | 凤凰苦荞、塘湾苦荞 Fenghuangkuqiao, Tangwankuqiao | 安化、凤凰、塘湾 Anhua, Fenghuang, Tangwan | [ [ |
9 | 宁夏 Ningxia | 9 | / | 宁荞2号 Ningqiao No.2 | 盐池、固原、中卫 Yanchi, Guyuan, Zhongwei | [ |
10 | 甘肃 Gansu | 94 | 91 | 陇南苦荞、定99-3、甘荞1号、定引1号、Ⅲ平苦14-3 Longnankuqiao, Ding 99-3, Ganqiao No.1, Dingying No.1, ⅢPingku 14-3 | 定西、陇南、环县、平凉 Dingxi, Longnan, Huanxian, Pingliang | [ |
11 | 江西 Jiangxi | 2 | 2 | 九江苦荞 Jiujiangkuqiao | 九江 Jiujiang | [ |
12 | 海南 Hainan | / | / | 三亚18 Sanya 18 | 三亚 Sanya | [ |
13 | 辽宁 Liaoning | 1 | 1 | / | 建平 Jianping | / |
14 | 北京 Beijing | 98 | 43 | / | / | / |
15 | 青海 Qinghai | 45 | 45 | 互荞1号 Huqiao No.1 | / | / |
16 | 安徽 Anhui | 5 | 5 | / | / | [ |
17 | 湖北 Hubei | 35 | 35 | 五峰苦荞 Wufengkuqiao | 五峰 Wufeng | [ |
18 | 广西 Guangxi | 6 | 6 | / | / | [ |
合计 | / | 883 | 754 | / | / | / |
Total |
Fig.2 Key technologies of high-value utilization of active ingredients in Tartary buckwheat A, Green cultivation techniques; B, Nanosynergy technology; C, Biological fermentation technology; D, Hydrolysis improvement technology; E, Innovative extraction technology.
[1] | LUTHAR Z, GOLOB A, GERM M, et al. Tartary buckwheat in human nutrition[J]. Plants, 2021, 10(4): 700. |
[2] | 郑俊青, 黎瑞源, 郑冉, 等. 苦荞重组自交系群体粒重、粒形与蛋白组分含量的变异[J]. 浙江农业学报, 2021, 33(4): 565-575. |
ZHENG J Q, LI R Y, ZHENG R, et al. Variation analysis of grain weight, grain shape and protein content in recombinant inbred lines population of Tartary buckwheat[J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 565-575. (in Chinese with English abstract) | |
[3] | 范昱. 中国苦荞种质资源性状评价和荞麦属植物亲缘关系分析[D]. 成都: 成都大学, 2019. |
FAN Y. Evaluation of traits of Tartary buckwheat germplasm resources in China and analysis of genetic relationship of buckwheat plants[D]. Chengdu: Chengdu University, 2019. (in Chinese with English abstract) | |
[4] | 李时珍. 本草纲目[M]. 北京: 京华出版社, 2010. |
[5] | YAO P F, HUANG Y J, DONG Q X, et al. FtMYB6, a light-induced SG7 R2R3-MYB transcription factor, promotes flavonol biosynthesis in Tartary buckwheat (Fagopyrum tataricum)[J]. Journal of Agricultural and Food Chemistry, 2020, 68(47): 13685-13696. |
[6] | 彭国照, 曹艳秋, 阮俊. 凉山州春苦荞产量与气候条件的关系及模型研究[J]. 西南大学学报(自然科学版), 2014, 36(9): 147-153. |
PENG G Z, CAO Y Q, RUAN J. A study on the relational model of spring buckwheat yield and climatic conditions in Liangshan prefecture[J]. Journal of Southwest University(Natural Science Edition), 2014, 36(9): 147-153. (in Chinese with English abstract) | |
[7] | ZHU F. Chemical composition and health effects of Tartary buckwheat[J]. Food Chemistry, 2016, 203: 231-245. |
[8] | 董雪妮, 唐宇, 丁梦琦, 等. 中国荞麦种质资源及其饲用价值[J]. 草业科学, 2017, 34(2): 378-388. |
DONG X N, TANG Y, DING M Q, et al. Germplasm resources of buckwheat in China and their forage value[J]. Pratacultural Science, 2017, 34(2): 378-388. (in Chinese with English abstract) | |
[9] | 范昱, 丁梦琦, 张凯旋, 等. 荞麦种质资源概况[J]. 植物遗传资源学报, 2019, 20(4): 813-828. |
FAN Y, DING M Q, ZHANG K X, et al. Germplasm resource of the genus Fagopyrum mill[J]. Journal of Plant Genetic Resources, 2019, 20(4): 813-828. (in Chinese with English abstract) | |
[10] | 赵建栋, 李秀莲, 史兴海, 等. 苦荞品种(系)聚类分析[J]. 农学学报, 2016, 6(8): 12-17. |
ZHAO J D, LI X L, SHI X H, et al. Cluster analysis of Fagopyrum tataricum varieties (lines)[J]. Journal of Agriculture, 2016, 6(8): 12-17. (in Chinese with English abstract) | |
[11] | 吕丹, 黎瑞源, 郑冉, 等. 213份苦荞种质资源主要农艺性状分析及高产种质筛选[J]. 南方农业学报, 2020, 51(10): 2429-2439. |
LYU D, LI R Y, ZHENG R, et al. Main agronomic traits and selection of high seed yield germplasms in 213 Tartary buckwheat materials[J]. Journal of Southern Agriculture, 2020, 51(10): 2429-2439. (in Chinese with English abstract) | |
[12] | 李昌远, 李长亮, 魏世杰, 等. 云南苦荞品种资源综合评价[J]. 现代农业科技, 2013(24): 71. |
LI C Y, LI C L, WEI S J, et al. Comprehensive evaluation of Yunnan Tartary buckwheat variety resources[J]. Modern Agricultural Science and Technology, 2013(24): 71. (in Chinese) | |
[13] | 赵鑫, 陈少锋, 王慧, 等. 晋北地区不同苦荞品种产量和品质研究[J]. 作物杂志, 2018(5): 27-32. |
ZHAO X, CHEN S F, WANG H, et al. Research on the yield and quality of different tartaty buckwheat varieties in northern Shanxi area[J]. Crops, 2018(5): 27-32. (in Chinese with English abstract) | |
[14] | WANG D, YANG T, LI Y Q, et al. Light intensity: a key factor affecting flavonoid content and expression of key enzyme genes of flavonoid synthesis in Tartary buckwheat[J]. Plants, 2022, 11(16): 2165. |
[15] | 李海平, 李灵芝, 任彩文, 等. 温度、光照对苦荞麦种子萌发、幼苗产量及品质的影响[J]. 西南师范大学学报(自然科学版), 2009, 34(5): 158-161. |
LI H P, LI L Z, REN C W, et al. Effects of temperature and light on seed germination and seedling yield and quality of Tartary buckwheat (Fagopyrum tartaricum)[J]. Journal of Southwest China Normal University(Natural Science Edition), 2009, 34(5): 158-161. (in Chinese with English abstract) | |
[16] | 程佳丽, 刘军, 毛佳奇, 等. 不同光照对荞麦芽黄酮类化合物及相关代谢酶基因表达的影响[J]. 食品科学, 2021, 42(23): 72-79. |
CHENG J L, LIU J, MAO J Q, et al. Effects of different illumination treatments on flavonoids and gene expression of related metabolic enzymes in buckwheat sprouts[J]. Food Science, 2021, 42(23): 72-79. (in Chinese with English abstract) | |
[17] | 时政, 黄凯丰. 不同光照强度对苦荞产量和品质的影响[J]. 成都大学学报(自然科学版), 2018, 37(2): 150-154. |
SHI Z, HUANG K F. Effects of different light intensities on yield and quality of Tartary buckwheat[J]. Journal of Chengdu University (Natural Science Edition), 2018, 37(2): 150-154. (in Chinese with English abstract) | |
[18] | NAM T G, KIM D O, EOM S H. Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts[J]. Food Science and Biotechnology, 2018, 27(1): 169-176. |
[19] | 胡丽雪, 彭镰心, 黄凯丰, 等. 温度和光照对荞麦影响的研究进展[J]. 成都大学学报(自然科学版), 2013, 32(4): 320-324. |
HU L X, PENG L X, HUANG K F, et al. Effects of temperature and light on buckwheat[J]. Journal of Chengdu University(Natural Science Edition), 2013, 32(4): 320-324. (in Chinese with English abstract) | |
[20] | 何俊星, 何平, 张益锋, 等. 温度和盐胁迫对金荞麦和荞麦种子萌发的影响[J]. 西南师范大学学报(自然科学版), 2010, 35(3): 181-185. |
HE J X, HE P, ZHANG Y F, et al. Effects of temperature and salt stress on the seeds germination of Fagopyrum dibotrys and Fagopyrum emarginatum[J]. Journal of Southwest China Normal University(Natural Science Edition), 2010, 35(3): 181-185. (in Chinese with English abstract) | |
[21] | AUBERT L, KONRÁDOVÁ D, KEBBAS S, et al. Comparison of high temperature resistance in two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum[J]. Journal of Plant Physiology, 2020, 251: 153222. |
[22] | 黄凯丰, 时政, 韩承华, 等. 不同产地苦荞籽粒中总黄酮含量比较[J]. 河南农业科学, 2011, 40(9): 38-40. |
HUANG K F, SHI Z, HAN C H, et al. Variation of flavonoid content in Tartary buckwheat seeds from different areas[J]. Journal of Henan Agricultural Sciences, 2011, 40(9): 38-40. (in Chinese with English abstract) | |
[23] | 李敏, 刘志雄, 方正武. 不同海拔高度对苦荞子粒营养成分的影响[J]. 湖北农业科学, 2016, 55(23): 6076-6078. |
LI M, LIU Z X, FANG Z W. Effects of different altitudes on seed nutrient content of Fagopyrum tataricum[J]. Hubei Agricultural Sciences, 2016, 55(23): 6076-6078. (in Chinese with English abstract) | |
[24] | QIN P Y, WANG Q A, SHAN F, et al. Nutritional composition and flavonoids content of flour from different buckwheat cultivars[J]. International Journal of Food Science & Technology, 2010, 45(5): 951-958. |
[25] | 孙坤坤, 侯泽豪, 魏淑东, 等. 低海拔地区黑苦荞酚类物质含量、组成及抗氧化活性研究[J]. 广西植物, 2020, 40(2): 210-217. |
SUN K K, HOU Z H, WEI S D, et al. Contents, compositions and antioxidant activities of phenolic compounds in seeds of black Tartary buckwheat planted in low-elevation regions[J]. Guihaia, 2020, 40(2): 210-217. (in Chinese with English abstract) | |
[26] | GOLOB A, LUZAR N, KREFT I, et al. Adaptative responses of common and Tartary buckwheat to different altitudes[J]. Plants, 2022, 11(11): 1439. |
[27] | 黄元射, 何绍红, 张启堂. 不同海拔高度对苦荞品系黄酮含量的影响[J]. 安顺学院学报, 2012, 14(5): 126-128. |
HUANG Y S, HE S H, ZHANG Q T. Effects of altitudes on the flavonoid contient of Fagopyrum tataricum[J]. Journal of Anshun University, 2012, 14(5): 126-128. (in Chinese with English abstract) | |
[28] | 李振东. 栽培措施对不施氮处理下苦荞生长及产量的影响[D]. 贵阳: 贵州师范大学, 2022. |
LI Z D. Effect of cultivation measures on growth and yield of Tartary buckwheat without nitrogen application[D]. Guiyang: Guizhou Normal University, 2022. (in Chinese with English abstract) | |
[29] | 李春花, 加央多拉, 王春龙, 等. 种植密度与施肥量对白城地区苦荞农艺性状及产量的影响[J]. 作物研究, 2021, 35(4): 336-342. |
LI C H, JIA Y D L, WANG C L, et al. Effects of planting density and fertilizer quantity on agronomic characters and yield of Tartary buckwheat in Baicheng district[J]. Crop Research, 2021, 35(4): 336-342. (in Chinese with English abstract) | |
[30] | 曹丽霞, 周海涛, 张新军, 等. 播种量对冀北地区2个荞麦品种产量的影响[J]. 作物杂志, 2021(5): 140-145. |
CAO L X, ZHOU H T, ZHANG X J, et al. Effects of sowing rates on yield of two buckwheat varieties in northern Hebei[J]. Crops, 2021(5): 140-145. (in Chinese with English abstract) | |
[31] | 张余, 龙梦千, 何佩云, 等. 减氮密植对苦荞灌浆特性及产量形成的影响[J]. 应用与环境生物学报, 2021, 27(5): 1334-1340. |
ZHANG Y, LONG M Q, HE P Y, et al. Effect of increased planting density with reduced nitrogen application on grain filling characteristics and yield formation of Tartary buckwheat[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(5): 1334-1340. (in Chinese with English abstract) | |
[32] | CHOI S S, PARK H R, LEE K A. A comparative study of rutin and rutin glycoside: antioxidant activity, anti-inflammatory effect, effect on platelet aggregation and blood coagulation[J]. Antioxidants, 2021, 10(11): 1696. |
[33] | 薛长勇, 张月红, 刘英华, 等. 苦荞黄酮降低血糖和血脂的作用途径[J]. 中国临床康复, 2005, 9(35): 111-113. |
XUE C Y, ZHANG Y H, LIU Y H, et al. Effective way of Tartary buckwheat flavone reducing the level of blood glucose and blood lipid[J]. Chinese Journal of Clinical Rehabilitation, 2005, 9(35): 111-113. (in Chinese with English abstract) | |
[34] | LUTHAR Z, GERM M, LIKAR M, et al. Breeding buckwheat for increased levels of rutin, quercetin and other bioactive compounds with potential antiviral effects[J]. Plants, 2020, 9(12): 1638. |
[35] | WU W J, LI Z G, QIN F, et al. Anti-diabetic effects of the soluble dietary fiber from Tartary buckwheat bran in diabetic mice and their potential mechanisms[J/OL]. Food & Nutrition Research, 2021, 65: 4998. https://pubmed.ncbi.nlm.nih.gov/33613154/#:-:text=Anti-diabetic%20effects%20of%20the%20soluble%20dietary%20fiber%20from,contributing%20to%20the%20anti-diabetic%20mechanisms%20of%20tartary%20buckwheat. |
[36] | 王世霞. 甜荞和苦荞降血脂及抗氧化作用的差异化研究[D]. 天津: 天津科技大学, 2016. |
WANG S X. Study on the difference of hypolipidemic and antioxidant effects between buckwheat and buckwheat[D]. Tianjin: Tianjin University of Science & Technology, 2016. (in Chinese with English abstract) | |
[37] | QIU J, LIU Y P, YUE Y F, et al. Dietary Tartary buckwheat intake attenuates insulin resistance and improves lipid profiles in patients with type 2 diabetes: a randomized controlled trial[J]. Nutrition Research, 2016, 36(12): 1392-1401. |
[38] | 蒋彤, 王亚雯, 李裕倩, 等. 苦荞低聚肽体外抗氧化活性及其对运动小鼠自由基代谢与疲劳恢复的影响[J]. 营养学报, 2022, 44(1): 79-85. |
JIANG T, WANG Y W, LI Y Q, et al. Antioxidant capacity of Tartary buckwheat oligopeptides and its effect on free radical metabolism and fatigue recovery in exercise training mice[J]. Acta Nutrimenta Sinica, 2022, 44(1): 79-85. (in Chinese with English abstract) | |
[39] | ZHOU Y M, JIANG Y E, SHI R H, et al. Structural and antioxidant analysis of Tartary buckwheat (Fagopyrum tartaricum Gaertn.) 13S globulin[J]. Journal of the Science of Food and Agriculture, 2020, 100(3): 1220-1229. |
[40] | LI F H, ZHANG X L, LI Y, et al. Phenolics extracted from Tartary (Fagopyrum tartaricum L. Gaerth) buckwheat bran exhibit antioxidant activity, and an antiproliferative effect on human breast cancer MDA-MB-231 cells through the p38/MAP kinase pathway[J]. Food & Function, 2017, 8(1): 177-188. |
[41] | GUO X N, ZHU K X, ZHANG H, et al. Anti-tumor activity of a novel protein obtained from Tartary buckwheat[J]. International Journal of Molecular Sciences, 2010, 11(12): 5201-5211. |
[42] | ZHOU Y M, WEI Y, YAN B B, et al. Regulation of Tartary buckwheat-resistant starch on intestinal microflora in mice fed with high-fat diet[J]. Food Science & Nutrition, 2020, 8(7): 3243-3251. |
[43] | LIU Y, TAN M L, ZHU W J, et al. In vitro effects of Tartary buckwheat-derived nanovesicles on gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2616-2629. |
[44] | YE Y Y, LI P, ZHOU J J, et al. The improvement of sensory and bioactive properties of yogurt with the introduction of Tartary buckwheat[J]. Foods, 2022, 11(12): 1774. |
[45] | 汤莉莉. 苦荞雪花酥的加工工艺及品质分析[D]. 成都: 成都大学, 2021. |
TANG L L. Processing technology and quality analysis of Tartary buckwheat snowflake crisp[D]. Chengdu: Chengdu University, 2021. (in Chinese with English abstract) | |
[46] | 李珊. 高纤维全谷物苦荞馒头研制及消化功能评价[D]. 杨凌: 西北农林科技大学, 2020. |
LI S. Development and digestive function evaluation of high fiber whole grain Tartary buckwheat steamed bread[D]. Yangling: Northwest A & F University, 2020. (in Chinese with English abstract) | |
[47] | 任昱灿, 姚波, 郭雨, 等. 苦荞叶荷叶排毒保健代餐粉的研究及工艺优化[J]. 农产品加工, 2017(4): 25-28. |
REN Y C, YAO B, GUO Y, et al. Study on the formulation and process optimization of the buckwheat leaf and lotus leaf detoxification health care meal replacement powder[J]. Farm Products Processing, 2017(4): 25-28. (in Chinese with English abstract) | |
[48] | 李谣, 周海媚, 黄丹丹, 等. 苦荞红曲保健酒的研制[J]. 食品工业科技, 2014, 35(17): 201-205. |
LI Y, ZHOU H M, HUANG D D, et al. Development of Tartary buckwheat red starter health wine[J]. Science and Technology of Food Industry, 2014, 35(17): 201-205. (in Chinese with English abstract) | |
[49] | 李云龙, 李红梅, 胡俊君, 等. 抗氧化苦荞酒加工工艺的研究[J]. 酿酒科技, 2014(12): 5-7. |
LI Y L, LI H M, HU J J, et al. Processing techniques of oxidation resisting Tartary buckwheat liquor[J]. Liquor-Making Science & Technology, 2014(12): 5-7. (in Chinese with English abstract) | |
[50] | 李云龙, 何永吉, 胡红娟, 等. 萌动苦荞醋抗氧化活性及抗栓、溶栓作用研究[J]. 中国食品学报, 2018, 18(12): 46-51. |
LI Y L, HE Y J, HU H J, et al. Study of antioxidant, thrombolytic and antithrombus activities of Tartary buckwheat vinegar[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(12): 46-51. (in Chinese with English abstract) | |
[51] | 葛瑞宏, 李鹏冲, 王永, 等. 黑苦荞黄酮提取工艺及其胶囊制备研究[J]. 农产品加工, 2020(5): 36-42. |
GE R H, LI P C, WANG Y, et al. Extraction of flavonoid from black Tartary buckwheat and preparation of the capsule[J]. Farm Products Processing, 2020(5): 36-42. (in Chinese with English abstract) | |
[52] | 刘晓龙. 苦荞咀嚼片的研制[D]. 保定: 河北农业大学, 2015. |
LIU X L. Development of bitter buckwheat chewable tablets[D]. Baoding: Hebei Agricultural University, 2015. (in Chinese with English abstract) | |
[53] | 孙亚利, 周文美, 黄永光, 等. 以聚合乳清蛋白为壁材的苦荞黄酮微胶囊化及其品质分析[J]. 食品科学, 2020, 41(12): 259-266. |
SUN Y L, ZHOU W M, HUANG Y G, et al. Microencapsulation and quality analysis of Tartary buckwheat flavonoids using polymerized whey protein as wall material[J]. Food Science, 2020, 41(12): 259-266. (in Chinese with English abstract) | |
[54] | 彭泽信, 瞿翔, 彭益稳, 等. 苦荞绿色增产增效栽培技术[J]. 农村科学实验, 2018(4): 75. |
PENG Z X, QU X, PENG Y W, et al. Green cultivation techniques for increasing yield and increasing efficiency of Tartary buckwheat[J]. Rural Scientific Experiment, 2018(4): 75. (in Chinese) | |
[55] | 吴兴慧, 张余, 李振宙, 等. 不同耕作方式对苦荞衰老和籽粒灌浆特性的影响[J]. 浙江农业学报, 2019, 31(12): 1963-1970. |
WU X H, ZHANG Y, LI Z Z, et al. Effect of different tillage methods on senescence and grain filling characteristics of Tartary buckwheat[J]. Acta Agriculturae Zhejiangensis, 2019, 31(12): 1963-1970. (in Chinese with English abstract) | |
[56] | 刘福长. 小杂粮苦荞栽培技术[J]. 现代农业科技, 2011(4): 58. |
LIU F C. Cultivation techniques of Tartary buckwheat with minor grains[J]. Modern Agricultural Science and Technology, 2011(4): 58. (in Chinese) | |
[57] | 宋毓雪, 郭肖, 杨龙云, 等. 不同氮磷钾肥料处理对苦荞籽粒充实度及产量的影响[J]. 浙江农业学报, 2014, 26(6): 1568-1572. |
SONG Y X, GUO X, YANG L Y, et al. Effects of different NPK treatments on the yield and plumpness of Tartary buckwheat[J]. Acta Agriculturae Zhejiangensis, 2014, 26(6): 1568-1572. (in Chinese with English abstract) | |
[58] | 何佩云, 张余, 周良, 等. 干旱胁迫及氮肥调控对苦荞植株形态、生理特性及产量的影响[J]. 应用与环境生物学报, 2022, 28(1): 128-134. |
HE P Y, ZHANG Y, ZHOU L, et al. Effects of drought stress and nitrogen fertilizer regulation on morphology, physiological characteristics, and yield of Fagopyrum tataricum[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(1): 128-134. (in Chinese with English abstract) | |
[59] | DEVI S. Fall armyworm threatens food security in southern Africa[J]. The Lancet, 2018, 391(10122): 727. |
[60] | 洪文英, 吴燕君, 林文彩, 等. 绿色防控模式对叶菜害虫的控制作用及综合效益评价[J]. 浙江农业学报, 2014, 26(4): 986-993. |
HONG W Y, WU Y J, LIN W C, et al. Control efficacy and benefit assessment of the control mode based on “green techniques”against leafy vegetable pests[J]. Acta Agriculturae Zhejiangensis, 2014, 26(4): 986-993. (in Chinese with English abstract) | |
[61] | BILIA A N, PIAZZINI V, GUCCIONE C, et al. Improving on nature: the role of nanomedicine in the development of clinical natural drugs[J]. Planta Medica, 2017, 83(5): 366-381. |
[62] | ZHANG J M, WANG D, WU Y H, et al. Lipid-polymer hybrid nanoparticles for oral delivery of Tartary buckwheat flavonoids[J]. Journal of Agricultural and Food Chemistry, 2018, 66(19): 4923-4932. |
[63] | PRIDGEN E M, ALEXIS F, FAROKHZAD O C. Polymeric nanoparticle drug delivery technologies for oral delivery applications[J]. Expert Opinion on Drug Delivery, 2015, 12(9): 1459-1473. |
[64] | AHMAD N, AHMAD R, NAQVI A A, et al. Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia[J]. International Journal of Biological Macromolecules, 2016, 91: 640-655. |
[65] | LIU C Y, SUN L, SUN Y X, et al. Integrating transcriptome and physiological analyses to elucidate the molecular responses of buckwheat to graphene oxide[J]. Journal of Hazardous Materials, 2022, 424: 127443. |
[66] | 冯小飞, 马建鹏, 郎丹, 等. 3种食药用真菌固体发酵对苦荞营养成分、总黄酮含量和抗氧化活性的影响[J]. 福建农林大学学报(自然科学版), 2021, 50(2): 276-282. |
FENG X F, MA J P, LANG D, et al. Effects of solid fermentation of 3 edible and medicinal fungi on nutritional components, flavonoid contents and antioxidant activity of Fagopyrum tataricum[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2021, 50(2): 276-282. (in Chinese with English abstract) | |
[67] | 唐田园, 陈旋, 宋风霞, 等. 固态发酵苦荞制备多肽菌种的筛选[J]. 微生物学通报, 2017, 44(3): 655-663. |
TANG T Y, CHEN X, SONG F X, et al. Screening of strains producing peptides from Tartary buckwheat by solid-state fermentation[J]. Microbiology China, 2017, 44(3): 655-663. (in Chinese with English abstract) | |
[68] | DZAH C S, DUAN Y Q, ZHANG H H, et al. Effects of pretreatment and type of hydrolysis on the composition, antioxidant potential and HepG2 cytotoxicity of bound polyphenols from Tartary buckwheat (Fagopyrum tataricum L. Gaerth) hulls[J]. Food Research International, 2021, 142: 110187. |
[69] | 郑瑾, 卓虹伊, 宋雨, 等. 水解工艺对苦荞提取物中槲皮素含量的影响及其药代动力学研究[J]. 食品工业科技, 2018, 39(10): 231-235. |
ZHENG J, ZHUO H Y, SONG Y, et al. Effect of hydrolysis process on quercetin content in Tartary buckwheat extract and its pharmacokinetics[J]. Science and Technology of Food Industry, 2018, 39(10): 231-235. (in Chinese with English abstract) | |
[70] | 段浩平, 张冬英, 龚舒静, 等. 苦荞茶黄酮类成份及茶渣营养成份研究[J]. 西南农业学报, 2014, 27(3): 1260-1263. |
DUAN H P, ZHANG D Y, GONG S J, et al. Study on total flavonoids of buckwheat(Fagopyrum tataricum)tea and nutrients of tea residue[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(3): 1260-1263. (in Chinese with English abstract) | |
[71] | 张欢, 杨芙莲, 董丹. 微波辅助同步提取苦荞中黄酮和多糖的工艺优化[J]. 中国调味品, 2020, 45(9): 165-170. |
ZHANG H, YANG F L, DONG D. Optimization of microwave-assisted simultaneous extraction of flavonoids and polysaccharides from Tartary buckwheat[J]. China Condiment, 2020, 45(9): 165-170. (in Chinese with English abstract) | |
[72] | 谭光迅, 李净. 苦荞黄酮的超临界二氧化碳萃取[J]. 酿酒, 2017, 44(1): 43-46. |
TAN G X, LI J. Supercritical carbon dioxide extraction of flavonoids from Tartary buckwheat[J]. Liquor Making, 2017, 44(1): 43-46. (in Chinese with English abstract) | |
[73] | 杨海涛, 曹小燕. 酶-超声辅助提取苦荞秆中总黄酮及抗氧化活性研究[J]. 中国酿造, 2016, 35(9): 72-76. |
YANG H T, CAO X Y. Enzymatic-ultrasonic assisted extraction of total flavonoids from Fagopyrum tataricum straw and its antioxidant activity[J]. China Brewing, 2016, 35(9): 72-76. (in Chinese with English abstract) |
[1] | ZHANG Bo, LIU Zeci, WANG Jie, LI Zhaozhuang, LI Lushan, HU Linli, YU Jihua. Effects of different fertilizer formulations of agricultural wastes on growth, yield and quality of cabbage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1782-1792. |
[2] | ZHANG Ning, TAO Ronghao, LIU Peishi, HU Hanxiu, GAO Linlin, GUO Long, ZHU Zunyou, MA Youhua. Effects of organic fertilizer coupled with chemical fertilizer on growth and quality of tea and soil fertility [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1844-1852. |
[3] | TIAN Yugang, WAN Sumei, LIN Jiao, CHEN Guodong, LI Hao, HU Yukai, LI Yanfang, HU Shoulin, MAO Tingyong, ZHAO Shuzhen. Effect of mulch types and irrigation amounts on photosynthetic parameters, yield and quality of cotton [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1523-1531. |
[4] | YANG Kun, HOU Guanjun, ZHAO Xiuxia, FANG Ting, WANG Lijun. Effects of aquatic animals-plants synergistic purification system on water quality and economic benefit in mandarin fish pond [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1709-1719. |
[5] | BU Yuanpeng, LIU Na, ZHANG Guwen, FENG Zhijuan, WANG Bin, GONG Yaming, XU Linying. Diversity evaluation of agronomic traits and construction of core collection and taste quality evaluation system in vegetable soybean germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1307-1314. |
[6] | WU Wenting, WANG Yimin, QIN Xinzi, SUI Yan, REN Yi. Application status and optimization strategy of bamboo resources in rain gardens in Hangzhou,China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1338-1348. |
[7] | CHAI Guanqun, ZHOU Wei, LIANG Hong, FAN Feifei, ZHU Dayan, FAN Chengwu. Effect of foliar spraying of zinc fertilizer and citric acid on yield, quality and Cd absorption and transport ation of pepper [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1069-1079. |
[8] | XIAO Lihan, XIN Meiguo, LU Wenjing, YE Qin, ZHANG Cen, XIAO Chaogeng, CHEN Di. Effects of different storage conditions on quality of royal jelly from three pollen sources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1161-1167. |
[9] | MA Yihu, ZENG Xiaoyuan, HE Xianbiao, ZHOU Naidi, CHEN Jian. Response of grain yield and quality of high quality rice to climate factors at different sowing dates in southeastern Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 736-751. |
[10] | ZENG Xiaochun, LI Suicheng, SHI Guanqing, XING Zeyu. Comprehensive evaluation of China’s regional agricultural quality development level based on entropy weight TOPSIS under background of carbon peaking and carbon neutrality goals: from perspective of change speed [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 962-972. |
[11] | MENG Yusha, WANG Yin, LAI Qixian, LIU Lei, XIANG Chao, WU Yonghua, ZHENG Yanran, GU Xingguo, FANG Hao, MIAO Miao, WU Liehong, TANG Yong. Assessment of genetic diversity and variety identification based on insertion site-based polymorphism (ISBP) markers developed in wild species related to sweet potato [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 489-498. |
[12] | WANG Jinfeng, ZHOU Qi, LYU Yulong, CHEN Zhuomei. Effects of intercropping tea with landscape trees on ecosystem of tea garden and tea production [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 523-533. |
[13] | WANG Longwei, BAI Junyan, JIA Xiaoping, LEI Ying, CHEN Mengke, FAN Hongdeng, LU Xiaoning, HE Yuhan, ZENG Fanlin, ZHANG Rongkai. Association analysis between GnRH-1 gene polymorphism and egg quality in quail [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 565-574. |
[14] | LIN Yong, DAI Weiwei, BAO Encai, WANG Qiang, BAI Zongchun, XIA Liru, ZHANG Yao, SUN Yulun, OUYANG Lihu. Optimization and computational fluid dynamics analysis of fan operation for cascading cage-rearing meat duck house in summer [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 666-675. |
[15] | ZHANG Yanbin, GENG Bin, LIANG Ying, XU Tiaojuan, XU Baogen, ZENG Xin, ZHANG Yueyue. Research on promotion mechanism of “standard land” reform to high quality development of modern agriculture [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 688-697. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 638
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 221
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||