Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (11): 2558-2565.DOI: 10.3969/j.issn.1004-1524.20231086
• Environmental Science • Previous Articles Next Articles
AI Ran1,2(), HE Jie3, LIN Haizhong3, WENG Liqing4, CHEN Zhaoming2, MA Junwei2, WANG Qiang2,*(
)
Received:
2023-09-11
Online:
2024-11-25
Published:
2024-11-27
CLC Number:
AI Ran, HE Jie, LIN Haizhong, WENG Liqing, CHEN Zhaoming, MA Junwei, WANG Qiang. Soil organic carbon content and structural characteristics in water bamboo fields with different cultivation time[J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2558-2565.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231086
土层 Soil layer/cm | 种植年限 Cultivation time/a | SOC/(g·kg-1) | POC/(g·kg-1) | POC/SOC |
---|---|---|---|---|
0~20 | 0 | 35.67±3.88 c | 12.81±1.14 b | 0.36±0.00 b |
5 | 46.26±2.32 ab | 21.24±1.14 a | 0.45±0.01 a | |
15 | 41.26±2.54 b | 14.93±1.00 b | 0.36±0.04 b | |
30 | 50.05±2.09 a | 23.88±1.80 a | 0.48±0.02 a | |
>20~40 | 0 | 29.51±5.67 a | 6.68±0.07 a | 0.25±0.05 a |
5 | 33.00±3.48 a | 8.20±4.91 a | 0.24±0.13 a | |
15 | 30.05±8.39 a | 6.55±0.00 a | 0.22±0.08 a | |
30 | 24.74±2.53 a | 3.59±1.18 a | 0.14±0.03 a |
Table 1 Characteristics of organic carbon content and physical components in Huangyan
土层 Soil layer/cm | 种植年限 Cultivation time/a | SOC/(g·kg-1) | POC/(g·kg-1) | POC/SOC |
---|---|---|---|---|
0~20 | 0 | 35.67±3.88 c | 12.81±1.14 b | 0.36±0.00 b |
5 | 46.26±2.32 ab | 21.24±1.14 a | 0.45±0.01 a | |
15 | 41.26±2.54 b | 14.93±1.00 b | 0.36±0.04 b | |
30 | 50.05±2.09 a | 23.88±1.80 a | 0.48±0.02 a | |
>20~40 | 0 | 29.51±5.67 a | 6.68±0.07 a | 0.25±0.05 a |
5 | 33.00±3.48 a | 8.20±4.91 a | 0.24±0.13 a | |
15 | 30.05±8.39 a | 6.55±0.00 a | 0.22±0.08 a | |
30 | 24.74±2.53 a | 3.59±1.18 a | 0.14±0.03 a |
土层 Soil layer/cm | 种植年限 Cultivation time/a | SOC/(g·kg-1) | POC/(g·kg-1) | POC/SOC |
---|---|---|---|---|
0~20 | 1 | 27.98±0.58 b | 6.88±0.58 b | 0.25±0.02 b |
5 | 39.46±4.25 a | 12.87±1.23 a | 0.35±0.01 a | |
15 | 33.50±2.87 ab | 11.74±0.50 a | 0.33±0.02 a | |
>20~40 | 1 | 28.03±2.22 a | 7.62±0.11 a | 0.26±0.00 a |
5 | 28.69±1.43 a | 6.92±1.71 a | 0.25±0.05 a | |
15 | 32.21±4.86 a | 8.84±0.00 a | 0.29±0.05 a |
Table 2 Characteristics of organic carbon content and physical components in Yuyao
土层 Soil layer/cm | 种植年限 Cultivation time/a | SOC/(g·kg-1) | POC/(g·kg-1) | POC/SOC |
---|---|---|---|---|
0~20 | 1 | 27.98±0.58 b | 6.88±0.58 b | 0.25±0.02 b |
5 | 39.46±4.25 a | 12.87±1.23 a | 0.35±0.01 a | |
15 | 33.50±2.87 ab | 11.74±0.50 a | 0.33±0.02 a | |
>20~40 | 1 | 28.03±2.22 a | 7.62±0.11 a | 0.26±0.00 a |
5 | 28.69±1.43 a | 6.92±1.71 a | 0.25±0.05 a | |
15 | 32.21±4.86 a | 8.84±0.00 a | 0.29±0.05 a |
土层 Soil layer/cm | 种植年限 Cultivation time/a | 烷基碳比例 Proportion of alkyl C/% | 烷氧碳比例 Proportion of O-alkyl C/% | 芳香碳比例 Proportion of aromatic C/% | 羰基碳比例 Proportion of carboxyl C/% | 烷基度 Alkylation | 疏水度 Hydrophobicity |
---|---|---|---|---|---|---|---|
0~20 | 0 | 39.23±1.81 a | 39.16±9.37 a | 11.52±2.50 a | 10.08±8.76 a | 1.03±0.21 a | 1.03±0.03 a |
5 | 38.38±0.91 a | 37.53±4.04 a | 9.74±1.07 a | 14.35±2.20 a | 1.03±0.14 a | 0.93±0.07 b | |
15 | 36.66±0.84 a | 37.79±1.27 a | 11.33±0.36 a | 14.22±0.88 a | 0.97±0.05 a | 0.92±0.02 b | |
30 | 33.27±3.53 b | 39.03±1.22 a | 12.49±1.93 a | 15.21±1.06 a | 0.85±0.11 a | 0.85±0.06 b | |
>20~40 | 0 | 43.38±4.87 a | 41.16±8.40 a | 6.88±2.43 b | 8.58±7.47 a | 1.10±0.35 a | 1.02±0.14 a |
5 | 35.00±5.16 b | 38.22±5.08 a | 11.79±1.71 a | 15.00±1.63 a | 0.94±0.26 a | 0.88±0.12 a | |
15 | 38.94±1.48 ab | 37.08±4.56 a | 9.80±0.42 a | 14.18±2.71 a | 1.06±0.16 a | 0.95±0.07 a | |
30 | 33.85±2.60 b | 42.12±3.02 a | 11.19±1.23 a | 12.85±1.62 a | 0.81±0.12 a | 0.82±0.05 a |
Table 3 Proportions of organic carbon functional groups in soils in Huangyan
土层 Soil layer/cm | 种植年限 Cultivation time/a | 烷基碳比例 Proportion of alkyl C/% | 烷氧碳比例 Proportion of O-alkyl C/% | 芳香碳比例 Proportion of aromatic C/% | 羰基碳比例 Proportion of carboxyl C/% | 烷基度 Alkylation | 疏水度 Hydrophobicity |
---|---|---|---|---|---|---|---|
0~20 | 0 | 39.23±1.81 a | 39.16±9.37 a | 11.52±2.50 a | 10.08±8.76 a | 1.03±0.21 a | 1.03±0.03 a |
5 | 38.38±0.91 a | 37.53±4.04 a | 9.74±1.07 a | 14.35±2.20 a | 1.03±0.14 a | 0.93±0.07 b | |
15 | 36.66±0.84 a | 37.79±1.27 a | 11.33±0.36 a | 14.22±0.88 a | 0.97±0.05 a | 0.92±0.02 b | |
30 | 33.27±3.53 b | 39.03±1.22 a | 12.49±1.93 a | 15.21±1.06 a | 0.85±0.11 a | 0.85±0.06 b | |
>20~40 | 0 | 43.38±4.87 a | 41.16±8.40 a | 6.88±2.43 b | 8.58±7.47 a | 1.10±0.35 a | 1.02±0.14 a |
5 | 35.00±5.16 b | 38.22±5.08 a | 11.79±1.71 a | 15.00±1.63 a | 0.94±0.26 a | 0.88±0.12 a | |
15 | 38.94±1.48 ab | 37.08±4.56 a | 9.80±0.42 a | 14.18±2.71 a | 1.06±0.16 a | 0.95±0.07 a | |
30 | 33.85±2.60 b | 42.12±3.02 a | 11.19±1.23 a | 12.85±1.62 a | 0.81±0.12 a | 0.82±0.05 a |
土层 Soil layer/cm | 种植年限 Cultivation time/a | 烷基碳比例 Proportion of alkyl C/% | 烷氧碳比例 Proportion of O-alkyl C/% | 芳香碳比例 Proportion of aromatic C/% | 羰基碳比例 Proportion of carboxyl C/% | 烷基度 Alkylation | 疏水度 Hydrophobicity |
---|---|---|---|---|---|---|---|
0~20 | 0 | 38.33±1.59 a | 31.22±4.64 a | 15.43±1.26 a | 15.01±5.18 a | 1.25±0.20 a | 1.16±0.05 a |
5 | 37.99±2.92 a | 31.15±2.09 a | 15.47±1.76 a | 15.38±1.03 a | 1.23±0.17 a | 1.15±0.09 a | |
15 | 41.78±5.16 a | 29.23±3.50 a | 14.75±1.67 a | 14.24±2.63 a | 1.46±0.34 a | 1.31±0.22 a | |
>20~40 | 0 | 38.40±4.60 a | 31.44±7.62 a | 13.47±0.15 a | 16.69±3.10 a | 1.29±0.40 a | 1.09±0.19 a |
5 | 41.44±9.20 a | 36.40±7.28 a | 12.06±6.08 a | 10.10±8.75 a | 1.15±0.25 a | 1.16±0.16 a | |
15 | 37.45±1.25 a | 34.39±2.15 a | 15.12±0.28 a | 13.04±2.49 a | 1.09±0.07 a | 1.11±0.05 a |
Table 4 Proportions of organic carbon functional groups in soils in Yuyao
土层 Soil layer/cm | 种植年限 Cultivation time/a | 烷基碳比例 Proportion of alkyl C/% | 烷氧碳比例 Proportion of O-alkyl C/% | 芳香碳比例 Proportion of aromatic C/% | 羰基碳比例 Proportion of carboxyl C/% | 烷基度 Alkylation | 疏水度 Hydrophobicity |
---|---|---|---|---|---|---|---|
0~20 | 0 | 38.33±1.59 a | 31.22±4.64 a | 15.43±1.26 a | 15.01±5.18 a | 1.25±0.20 a | 1.16±0.05 a |
5 | 37.99±2.92 a | 31.15±2.09 a | 15.47±1.76 a | 15.38±1.03 a | 1.23±0.17 a | 1.15±0.09 a | |
15 | 41.78±5.16 a | 29.23±3.50 a | 14.75±1.67 a | 14.24±2.63 a | 1.46±0.34 a | 1.31±0.22 a | |
>20~40 | 0 | 38.40±4.60 a | 31.44±7.62 a | 13.47±0.15 a | 16.69±3.10 a | 1.29±0.40 a | 1.09±0.19 a |
5 | 41.44±9.20 a | 36.40±7.28 a | 12.06±6.08 a | 10.10±8.75 a | 1.15±0.25 a | 1.16±0.16 a | |
15 | 37.45±1.25 a | 34.39±2.15 a | 15.12±0.28 a | 13.04±2.49 a | 1.09±0.07 a | 1.11±0.05 a |
[1] | OECHAIYAPHUM K, ULLAH H, SHRESTHA R P, et al. Impact of long-term agricultural management practices on soil organic carbon and soil fertility of paddy fields in Northeastern Thailand[J]. Geoderma Regional, 2020, 22: e00307. |
[2] | WIESMEIER M, URBANSKI L, HOBLEY E, et al. Soil organic carbon storage as a key function of soils: a review of drivers and indicators at various scales[J]. Geoderma, 2019, 333: 149-162. |
[3] | LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627. |
[4] | LAN X J, SHAN J, HUANG Y, et al. Effects of long-term manure substitution regimes on soil organic carbon composition in a red paddy soil of Southern China[J]. Soil and Tillage Research, 2022, 221: 105395. |
[5] | AHN J H, CHOI M Y, KIM B Y, et al. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil[J]. Microbial Ecology, 2014, 68(2): 271-283. |
[6] | ZHAO Z Z, ZHAO Z Y, FU B, et al. Characteristics of soil organic carbon fractions under different land use patterns in a tropical area[J]. Journal of Soils and Sediments, 2021, 21(2): 689-697. |
[7] | KAMRAN M, HUANG L, NIE J, et al. Effect of reduced mineral fertilization (NPK) combined with green manure on aggregate stability and soil organic carbon fractions in a fluvo-aquic paddy soil[J]. Soil and Tillage Research, 2021, 211: 105005. |
[8] | TANG H M, CHENG K K, SHI L H, et al. Effects of long-term organic matter application on soil carbon accumulation and nitrogen use efficiency in a double-cropping rice field[J]. Environmental Research, 2022, 213: 113700. |
[9] | 寿森炎, 姜芳, 陈可可, 等. 浙江设施茭白栽培技术综述与发展趋势[J]. 长江蔬菜, 2009(16): 102-103. |
SHOU S Y, JIANG F, CHEN K K, et al. Summarization and development orientation of Zizania latifolia Turcz. in Zhejiang in greenhouse[J]. Journal of Changjiang Vegetables, 2009(16): 102-103. (in Chinese) | |
[10] | CHENG H M, SHU K X, ZHU T Y, et al. Effects of alternate wetting and drying irrigation on yield, water and nitrogen use, and greenhouse gas emissions in rice paddy fields[J]. Journal of Cleaner Production, 2022, 349: 131487. |
[11] | 俞晓平, 李建荣, 施建苗, 等. 水生蔬菜茭白及其无害化生产技术[J]. 浙江农业学报, 2003, 15(3): 109-117. |
YU X P, LI J R, SHI J M, et al. The aquatic vegetable, Jiaobai (Zizania caduciflora L.) and its safe production in Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 2003, 15(3): 109-117. (in Chinese with English abstract) | |
[12] | TIAN J, LU S H, FAN M S, et al. Integrated management systems and N fertilization: effect on soil organic matter in rice-rapeseed rotation[J]. Plant and Soil, 2013, 372(1): 53-63. |
[13] | WU J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies[J]. European Journal of Soil Science, 2011, 62(1): 29-34. |
[14] | QASWAR M, HUANG J, AHMED W, et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil[J]. Soil and Tillage Research, 2020, 198: 104569. |
[15] | LI S, ZHANG S R, PU Y L, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil and Tillage Research, 2016, 155: 289-297. |
[16] | BENBI D K, BOPARAI A K, BRAR K. Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter[J]. Soil Biology and Biochemistry, 2014, 70: 183-192. |
[17] | SHARMA V, HUSSAIN S, SHARMA K R, et al. Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems[J]. Geoderma, 2014, 232: 81-87. |
[18] | 周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成:机制和模型[J]. 北京林业大学学报, 2022, 44(10): 11-22. |
ZHOU Z H, LIU L, HOU L. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. (in Chinese with English abstract) | |
[19] | 杭子清, 王国祥, 刘金娥, 等. 互花米草盐沼土壤有机碳库组分及结构特征[J]. 生态学报, 2014, 34(15): 4175-4182. |
HANG Z Q, WANG G X, LIU J E, et al. Characterization of soil organic carbon fractions at Spartina alterniflora saltmarsh in North Jiangsu[J]. Acta Ecologica Sinica, 2014, 34(15): 4175-4182. (in Chinese with English abstract) | |
[20] | WANG A N, ZHA T G, ZHANG Z Q. Variations in soil organic carbon storage and stability with vegetation restoration stages on the Loess Plateau of China[J]. CATENA, 2023, 228: 107142. |
[21] | 王学霞, 张磊, 梁丽娜, 等. 秸秆还田对麦玉系统土壤有机碳稳定性的影响[J]. 农业环境科学学报, 2020, 39(8): 1774-1782. |
WANG X X, ZHANG L, LIANG L N, et al. Effects of straw returning on the stability of soil organic carbon in wheat-maize rotation systems[J]. Journal of Agro-Environment Science, 2020, 39(8): 1774-1782. (in Chinese with English abstract) | |
[22] | 季淮. 洪泽湖河湖交汇区不同土地覆被/利用类型土壤有机碳分布特征及其影响因素[D]. 南京: 南京林业大学, 2021. |
JI H. Distribution characteristics and influencing factors of soil organic carbon in different cover/use types of wetland at the confluence of Hongze Lake and Huai River[D]. Nanjing: Nanjing Forestry University, 2021. (in Chinese with English abstract) | |
[23] | LI Z Q, ZHAO B Z, WANG Q Y, et al. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies[J]. PLoS One, 2015, 10(4): e0124359. |
[24] | BERNS A E, CONTE P. Effect of ramp size and sample spinning speed on CPMAS 13C NMR spectra of soil organic matter[J]. Organic Geochemistry, 2011, 42(8): 926-935. |
[25] | KNICKER H. Solid state CPMAS 13C and 15N NMR spectroscopy in organic geochemistry and how spin dynamics can either aggravate or improve spectra interpretation[J]. Organic Geochemistry, 2011, 42(8): 867-890. |
[26] | CHEN X F, LIU M, KUZYAKOV Y, et al. Incorporation of rice straw carbon into dissolved organic matter and microbial biomass along a 100-year paddy soil chronosequence[J]. Applied Soil Ecology, 2018, 130: 84-90. |
[27] | SIX J, ELLIOTT E, PAUSTIAN K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5): 1367-1377. |
[28] | LAGANIÈRE J, BOČA A, MIEGROET H, et al. A tree species effect on soil that is consistent across the species’ range: the case of aspen and soil carbon in North America[J]. Forests, 2017, 8: 113. |
[29] | WANG H, HAGEDORN J, SVENDSEN A, et al. Variant of the Thermomyces lanuginosus lipase with improved kinetic stability: a candidate for enzyme replacement therapy[J]. Biophysical Chemistry, 2013, 172: 43-52. |
[30] | GUAN S, AN N, ZONG N, et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow[J]. Soil Biology and Biochemistry, 2018, 116: 224-236. |
[31] | SINGH B, RENGEL Z. The role of crop residues in improving soil fertility[M]// MARSCHNER P, RENGEL Z. Nutrient cycling in terrestrial ecosystems. Berlin, Heidelberg: Springer, 2007: 183-214. |
[32] | NDUNG’U M, NGATIA L W, ONWONGA R N, et al. The influence of organic and inorganic nutrient inputs on soil organic carbon functional groups content and maize yields[J]. Heliyon, 2021, 7(8): e07881. |
[33] | SPACCINI R, MBAGWU J S C, CONTE P, et al. Changes of humic substances characteristics from forested to cultivated soils in Ethiopia[J]. Geoderma, 2006, 132(1/2): 9-19. |
[34] | GHOSH B N, MEENA V S, SINGH R J, et al. Effects of fertilization on soil aggregation, carbon distribution and carbon management index of maize-wheat rotation in the north-western Indian Himalayas[J]. Ecological Indicators, 2019, 105: 415-424. |
[35] | 杨良觎. 长期连作茭白和秸秆全量还田对农田土壤质量的影响[D]. 杭州: 浙江大学, 2019. |
YANG L Y. Effects of long-term plantation of Zizania latifolia and straw total return on soil quality of farmland[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract) | |
[36] | 李玮, 郑子成, 李廷轩, 等. 不同植茶年限土壤团聚体及其有机碳分布特征[J]. 生态学报, 2014, 34(21): 6326-6336. |
LI W, ZHENG Z C, LI T X, et al. Distribution characteristics of soil aggregates and its organic carbon in different tea plantation age[J]. Acta Ecologica Sinica, 2014, 34(21): 6326-6336. (in Chinese with English abstract) | |
[37] | HOBLEY E U, BALDOCK J, WILSON B. Environmental and human influences on organic carbon fractions down the soil profile[J]. Agriculture, Ecosystems & Environment, 2016, 223: 152-166. |
[38] | DAI W, GAO H, SHA Z M, et al. Changes in soil organic carbon fractions in response to wheat straw incorporation in a subtropical paddy field in China[J]. Journal of Plant Nutrition and Soil Science, 2021, 184(2): 198-207. |
[39] | WANG H, GUAN D S, ZHANG R D, et al. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field[J]. Ecological Engineering, 2014, 70: 206-211. |
[40] | WANG X T, CHEN R R, JING Z W, et al. Root derived carbon transport extends the rhizosphere of rice compared to wheat[J]. Soil Biology and Biochemistry, 2018, 122: 211-219. |
[41] | GE T D, LUO Y, HE X H. Quantitative and mechanistic insights into the key process in the rhizodeposited carbon stabilization, transformation and utilization of carbon, nitrogen and phosphorus in paddy soil[J]. Plant and Soil, 2019, 445(1): 1-5. |
[42] | 徐颖菲, 姚玉才, 章明奎. 全年淹水种植茭白对水田土壤性态的影响[J]. 土壤通报, 2019, 50(1): 15-21. |
XU Y F, YAO Y C, ZHANG M K. Effects of Zizania latifolia plantation with the whole year water-logging on soil properties of paddy fields[J]. Chinese Journal of Soil Science, 2019, 50(1): 15-21. (in Chinese with English abstract) |
[1] | XU Junyan, QIU Gaoyang, LIU Junli, GUO Bin, LI Hua, CHEN Xiaodong, WANG Yuan, FU Qinglin. Effects of montmorillonite, kaolinite and basalt on soil carbon sequestration [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1867-1877. |
[2] | HAO Liuliu, DAI Lili, PENG Liang, CHEN Siyuan, TAO Ling, LI Gu, ZHANG Hui. Active organic carbon, microbial community structure and their relationship in rice rhizosphere soil of rice-crayfish co-culture systems [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2901-2913. |
[3] | JIAN Xing, ZHAI Xiaoyu, WANG Yu, CAI Yangyang. Influence of land use changes on soil total organic carbon and dissolved organic carbon in wetland [J]. , 2020, 32(3): 475-482. |
[4] | ZHU Weicheng, GAO Haiyan, HAN Yanchao, LI Daxiang, CHEN Hangjun. Effects of different pre-cooling methods on cooling speed and storage quality of postharvest water bamboo shoot [J]. , 2020, 32(10): 1873-1879. |
[5] | TAO Libo, WANG Jianjun, WANG Guohui, YU Shuang, LI Huihui, XU Dongmei. Effects of enclosure on soil organic carbon mineralization of desert steppe in Ningxia [J]. , 2017, 29(9): 1549-1554. |
[6] | YU Zhoulu, QIU Lefeng, LIN Lin. Influence of land use changes on soil organic carbon distribution in agricultural soils [J]. , 2017, 29(5): 806-811. |
[7] | JI Bo, LI Na, MA Fan, CAI Jinjun, DONG Liguo, XU Hao, HAN Xinsheng. Effect of typical re-vegetation patterns on soil organic carbon sequestration in southern Ningxia [J]. , 2017, 29(3): 483-488. |
[8] | LAN Jiacheng, XIAO Shizhen, LIN Junqing, SHEN Yan. Effect of land use types on soil light and heavy fraction organic carbon in Karst mountain area [J]. , 2017, 29(10): 1720-1725. |
[9] | WANG Lianxiao1, SHI Zhengtao1,*, LIU Xinyou2,3, YANG Fan1. Distribution characteristics of soil organic carbon of rubber plantation in Xishuangbanna [J]. , 2016, 28(7): 1200-. |
[10] | SHAO Yangfeng1, MEI Hongfei1, PAN zhongchao1, LIU Huan2, WANG Chaoqi2. Effects of corn straw returning on soil organic carbon content, microbial functional diversity and cabbage yield [J]. , 2016, 28(5): 838-. |
[11] | JIAN Xing1,2, WANG Song3, WANG Yu\|liang3, WANG Jian\|fei1,2. Soil organic carbon and its active components characteristics under different land utilization types at the periphery of city wetlands [J]. , 2016, 28(1): 119-. |
[12] | QIAN Zhong\|cang, YANG Quan\|can*. Effect of lactic acid bacteria on fermentation quality of water bamboo leaves silage#br# [J]. , 2015, 27(9): 1541-. |
[13] | ZHU Zhen\|ling1,2, MA Wan\|zhu2, LONG Wen\|li2, REN Zhou\|qiao2, DENG Xun\|fei2, CHEN Xiao\|jia2, SHEN Jian\|guo3, LYU Xiao\|nan1,2,*. Spatial distribution characteristics of topsoil organic carbon in farmland and its influencing factors in Yuhang District, Hangzhou City [J]. , 2015, 27(11): 1990-. |
[14] | YU Guo\|guang, ZHANG Zhi\|heng, YANG Gui\|ling, WANG Wen, CAI Zheng, ZHENG Wei\|ran, Xu Li\|hong. The immersion test and risk assessment for water bamboo on sodium pyrosulfite [J]. , 2015, 27(11): 2011-. |
[15] | AN Ling\|ling;LYU Xiao\|nan;MA Wan\|zhu;*;REN Zhou\|qiao;DENG Xun\|fei;CHEN Xiao\|jia. The density and storage of soil organic carbon in Zhejiang Province [J]. , 2014, 26(1): 0-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||