Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (12): 2870-2884.DOI: 10.3969/j.issn.1004-1524.20231108
• Review • Previous Articles Next Articles
HAN Yatao1(), WANG Mengjing1(
), LU Ziqi1,2, WANG Jiaoyu2,*(
), LI Ling1,*(
)
Received:
2023-09-15
Online:
2024-12-25
Published:
2024-12-27
CLC Number:
HAN Yatao, WANG Mengjing, LU Ziqi, WANG Jiaoyu, LI Ling. Mechanism of peroxisome proliferation in different organisms[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2870-2884.
Fig.1 The process of peroxisome formation and the models of peroxisome proliferation A, The process of peroxisome formation; B, Growth and division model; C, Maturation model. P-ER, Peroxidase ER; PP, Peroxisome precursor; P, Peroxisome.
物种名称 Species name | 基因 Gene | 数量 Number | 功能 Function | |||
---|---|---|---|---|---|---|
哺乳动物 Mammal | PEX3 | 1 | 启动过氧化物酶体前体囊泡的形成,并参与转运剩余PMPs进入过氧化物酶体前体 Initiates the formation of peroxisome precursor vesicles and participates in the transport of residual PMPs into peroxisome prebodies | |||
PEX16 | 1 | 充当PMP受体,帮助协调将这些PMP分类为过氧化物酶体前体,同时是Pex3p插入内质网和过氧化物酶体所必需的 Acts as a PMP receptor, helping to coordinate the classification of these PMPs into peroxisome precursors, and is simultaneously necessary for the insertion of Pex3p into the endoplasmic reticulum and peroxisomes | ||||
PEX19 | 1 | 转运剩余PMPs至过氧化物酶体前体 Transports residual PMPs to peroxisome precursors | ||||
酿酒酵母 Saccharomyces cerevisiae | PEX3 | 2 | 作为PMPs的转运蛋白,参与某些PMPs在前体囊泡的定位 Acts as a transporter protein for PMPs and is involved in the localization of certain PMPs in precursor vesicles | |||
PEX16 | 0 | — | ||||
PEX19 | 1 | 是新合成的Ⅰ类PMPs转运的重要伴侣和受体,参与PMPs的定位 An important chaperone and receptor for the transport of newly synthesized class Ⅰ PMPs, involved in the localization of PMPs | ||||
耶式酵母 Yarrowia lipolytica | PEX3 | 1 | 作为PMPs的转运蛋白,参与某些PMPs在前体囊泡的定位 Acts as a transporter protein for PMPs and is involved in the localization of certain PMPs in precursor vesicles | |||
PEX16 | 1 | 帮助过氧化物酶体膜蛋白的正确定位以及过氧化物酶的分裂 Aids in the proper localization of peroxisomal membrane proteins and the division of peroxisomal enzymes | ||||
PEX19 | 1 | 缺失后仍能形成形态可识别的过氧化物酶体 Formation of morphologically recognizable peroxisomes despite deletions | ||||
稻瘟病菌 Magnaporthe oryzae | PEX3 | 1 | 与PEX19相互作用,对于PMPs的插入起着至关重要的作用 Interacts with PEX19 and plays a crucial role for the insertion of PMPs | |||
PEX16 | 1 | 是PMPs插入和输入所必需的基因 It’s a gene that is required for PMPs insertion and input | ||||
PEX19 | 1 | 保证过氧化物异构膜蛋白和过氧化物异构基质蛋白的正确定位,缺失后会造成脂质代谢和活性氧耐受的缺陷,抑制气生菌丝的生长和孢子形成,降低分生孢子的形态和活力 Ensures the correct localization of peroxisomal membrane proteins and peroxisomal matrix proteins, the absence of which causes defects in lipid metabolism and reactive oxygen tolerance, inhibits aerial mycelium growth and spore formation, and reduces conidial morphology and viability | ||||
拟南芥 Arabidopsis thaliana | PEX3 | 2 | 被认为是PEX19的一种对接因子 Considered a docking factor for PEX19 | |||
PEX16 | 1 | 作为PEX3和其他Ⅱ型PMP受体,作为内质网中PMPs受体,协调这些PMPs分类到过氧化物酶体前体上,同时参与基质蛋白的转运过程 Acts as a receptor for PEX3 and other type Ⅱ PMPs in the endoplasmic reticulum and coordinates the sorting of these PMPs onto peroxisomal precursors, as well as being involved in the transport of matrix proteins | ||||
PEX19 | 2 | 是PMP的胞质伴侣,将PMP递送至内质网或过氧化物酶体膜,参与Ⅰ型PMPs的输入 It is a cytoplasmic chaperone for PMPs, delivers PMPs to the endoplasmic reticulum or peroxisomal membrane, and participates in the import of type Ⅰ PMPs |
Table 1 Functional comparison of peroxisome de novo synthesis related genes PEX3, PEX16 and PEX19 in different species
物种名称 Species name | 基因 Gene | 数量 Number | 功能 Function | |||
---|---|---|---|---|---|---|
哺乳动物 Mammal | PEX3 | 1 | 启动过氧化物酶体前体囊泡的形成,并参与转运剩余PMPs进入过氧化物酶体前体 Initiates the formation of peroxisome precursor vesicles and participates in the transport of residual PMPs into peroxisome prebodies | |||
PEX16 | 1 | 充当PMP受体,帮助协调将这些PMP分类为过氧化物酶体前体,同时是Pex3p插入内质网和过氧化物酶体所必需的 Acts as a PMP receptor, helping to coordinate the classification of these PMPs into peroxisome precursors, and is simultaneously necessary for the insertion of Pex3p into the endoplasmic reticulum and peroxisomes | ||||
PEX19 | 1 | 转运剩余PMPs至过氧化物酶体前体 Transports residual PMPs to peroxisome precursors | ||||
酿酒酵母 Saccharomyces cerevisiae | PEX3 | 2 | 作为PMPs的转运蛋白,参与某些PMPs在前体囊泡的定位 Acts as a transporter protein for PMPs and is involved in the localization of certain PMPs in precursor vesicles | |||
PEX16 | 0 | — | ||||
PEX19 | 1 | 是新合成的Ⅰ类PMPs转运的重要伴侣和受体,参与PMPs的定位 An important chaperone and receptor for the transport of newly synthesized class Ⅰ PMPs, involved in the localization of PMPs | ||||
耶式酵母 Yarrowia lipolytica | PEX3 | 1 | 作为PMPs的转运蛋白,参与某些PMPs在前体囊泡的定位 Acts as a transporter protein for PMPs and is involved in the localization of certain PMPs in precursor vesicles | |||
PEX16 | 1 | 帮助过氧化物酶体膜蛋白的正确定位以及过氧化物酶的分裂 Aids in the proper localization of peroxisomal membrane proteins and the division of peroxisomal enzymes | ||||
PEX19 | 1 | 缺失后仍能形成形态可识别的过氧化物酶体 Formation of morphologically recognizable peroxisomes despite deletions | ||||
稻瘟病菌 Magnaporthe oryzae | PEX3 | 1 | 与PEX19相互作用,对于PMPs的插入起着至关重要的作用 Interacts with PEX19 and plays a crucial role for the insertion of PMPs | |||
PEX16 | 1 | 是PMPs插入和输入所必需的基因 It’s a gene that is required for PMPs insertion and input | ||||
PEX19 | 1 | 保证过氧化物异构膜蛋白和过氧化物异构基质蛋白的正确定位,缺失后会造成脂质代谢和活性氧耐受的缺陷,抑制气生菌丝的生长和孢子形成,降低分生孢子的形态和活力 Ensures the correct localization of peroxisomal membrane proteins and peroxisomal matrix proteins, the absence of which causes defects in lipid metabolism and reactive oxygen tolerance, inhibits aerial mycelium growth and spore formation, and reduces conidial morphology and viability | ||||
拟南芥 Arabidopsis thaliana | PEX3 | 2 | 被认为是PEX19的一种对接因子 Considered a docking factor for PEX19 | |||
PEX16 | 1 | 作为PEX3和其他Ⅱ型PMP受体,作为内质网中PMPs受体,协调这些PMPs分类到过氧化物酶体前体上,同时参与基质蛋白的转运过程 Acts as a receptor for PEX3 and other type Ⅱ PMPs in the endoplasmic reticulum and coordinates the sorting of these PMPs onto peroxisomal precursors, as well as being involved in the transport of matrix proteins | ||||
PEX19 | 2 | 是PMP的胞质伴侣,将PMP递送至内质网或过氧化物酶体膜,参与Ⅰ型PMPs的输入 It is a cytoplasmic chaperone for PMPs, delivers PMPs to the endoplasmic reticulum or peroxisomal membrane, and participates in the import of type Ⅰ PMPs |
类别 Form | 物种 Specie | 蛋白 Protein | 功能 Function | 参考文献 Reference | |||
---|---|---|---|---|---|---|---|
过氧化物酶体膜的生物起源 Biological origin of | 丝状真菌 Filamentous fungi | Pex3 | Pex19膜锚定器 Pex19 membrane anchor | [ | |||
peroxisomal membranes | 酵母 Yeast | Pex3 | Pex19膜锚定器 Pex19 membrane anchor | [ | |||
丝状真菌 Filamentous fungi | Pex19 | mPTS受体 mPTS receptor | [ | ||||
酵母 Yeast | Pex19 | mPTS受体 mPTS receptor | [ | ||||
基质蛋白导入 Matrix protein introduction | 丝状真菌 Filamentous fungi | Pex1,Pex6 | 参与受体循环的AAA型ATP酶 AAA-type ATPases involved in the receptor cycle | [ | |||
酵母 Yeast | Pex1,Pex6 | 参与受体循环的AAA型ATP酶 AAA-type ATPases involved in the receptor cycle | [ | ||||
丝状真菌 Filamentous fungi | Pex2,Pex10,Pex12 | 参与受体泛素化(连接酶)的环复合体成分 Components of the ring complex involved in receptor ubiquitination (ligase) | [ | ||||
酵母 Yeast | Pex2,Pex10,Pex12 | 参与受体泛素化(连接酶)的环复合体成分 Components of the ring complex involved in receptor ubiquitination (ligase) | [ | ||||
丝状真菌 Filamentous fungi | Pex4 | 参与受体泛素化的泛素结合酶 Ubiquitin-binding enzymes involved in receptor ubiquitination | [ | ||||
酵母 Yeast | Pex4 | 参与受体泛素化的泛素结合酶 Ubiquitin-binding enzymes involved in receptor ubiquitination | [ | ||||
丝状真菌 Filamentous fungi | Pex5,Pex9 | PTS1受体 PTS1 receptor | [ | ||||
酵母 Yeast | Pex5 | PTS1受体 PTS1 receptor | [ | ||||
丝状真菌 Filamentous fungi | Pex7 | PTS2受体 PTS2 receptor | [ | ||||
酵母 Yeast | Pex7 | PTS2受体 PTS2 receptor | [ | ||||
丝状真菌 Filamentous fungi | Pex8 | 货物放行,进口装配 Cargo release, import assembly | [ | ||||
酵母 Yeast | Pex8 | 货物放行,进口装配 Cargo release, import assembly | [ | ||||
丝状真菌 Filamentous fungi | Pex13,Pex14, Pex17,Pex33 | 受体启动位点的组成部分 Components of the receptor initiation site | [ | ||||
酵母 Yeast | Pex13,Pex14,Pex17, Pex14-Pex17,Pex33 | 受体启动位点的组成部分 Components of the receptor initiation site | [ | ||||
丝状真菌 Filamentous fungi | Pex15,Pex26 | Pex1和Pex6的锚定蛋白 Anchoring proteins of Pex1 and Pex6 | [ | ||||
酵母 Yeast | Pex15,Pex26 | Pex1和Pex6的锚定蛋白 Anchoring proteins of Pex1 and Pex6 | [ | ||||
丝状真菌 Filamentous fungi | Pex18,Pex20,Pex21 | Pex7的辅助受体 Co-receptor for Pex7 | [ | ||||
酵母 Yeast | Pex18,Pex20,Pex21 | Pex7的辅助受体 Co-receptor for Pex7 | [ | ||||
丝状真菌 Filamentous fungi | Pex22 | Pex4的锚定蛋白 Anchoring protein for Pex4 | [ | ||||
酵母 Yeast | Pex22 | Pex4的锚定蛋白 Anchoring protein for Pex4 | [ | ||||
调节过氧化物酶体的大小和丰度 Regulation of the size and abundance of peroxisomes | 丝状真菌 Filamentous fungi | Pex11家族 Pex11 family | Dnm1的膜延长和GTPase活化蛋白 Membrane extension and GTPase activation proteins of Dnm1 | [ | |||
酵母 Yeast | Pex11 | Dnm1的膜延长和GTPase活化蛋白 Membrane extension and GTPase activation proteins of Dnm1 | [ | ||||
丝状真菌 Filamentous fungi | — | — | [ | ||||
酵母 Yeast | Pex25 | 膜的延伸和重塑 Membrane extension and remodeling | [ | ||||
丝状真菌 Filamentous fungi | — | — | [ | ||||
酵母 Yeast | Pex27 | 对裂变产生负面影响 Negative impact on fission | [ | ||||
丝状真菌 Filamentous fungi | — | — | [ | ||||
酵母 Yeast | Pex23,Pex24, Pex28,Pex29, Pex30,Pex31,Pex32 | 形成包含网状同源结构域的复合体 Formation of complexes containing reticulated homology domains | [ |
Table 2 Peroxins in filamentous fungi and yeast
类别 Form | 物种 Specie | 蛋白 Protein | 功能 Function | 参考文献 Reference | |||
---|---|---|---|---|---|---|---|
过氧化物酶体膜的生物起源 Biological origin of | 丝状真菌 Filamentous fungi | Pex3 | Pex19膜锚定器 Pex19 membrane anchor | [ | |||
peroxisomal membranes | 酵母 Yeast | Pex3 | Pex19膜锚定器 Pex19 membrane anchor | [ | |||
丝状真菌 Filamentous fungi | Pex19 | mPTS受体 mPTS receptor | [ | ||||
酵母 Yeast | Pex19 | mPTS受体 mPTS receptor | [ | ||||
基质蛋白导入 Matrix protein introduction | 丝状真菌 Filamentous fungi | Pex1,Pex6 | 参与受体循环的AAA型ATP酶 AAA-type ATPases involved in the receptor cycle | [ | |||
酵母 Yeast | Pex1,Pex6 | 参与受体循环的AAA型ATP酶 AAA-type ATPases involved in the receptor cycle | [ | ||||
丝状真菌 Filamentous fungi | Pex2,Pex10,Pex12 | 参与受体泛素化(连接酶)的环复合体成分 Components of the ring complex involved in receptor ubiquitination (ligase) | [ | ||||
酵母 Yeast | Pex2,Pex10,Pex12 | 参与受体泛素化(连接酶)的环复合体成分 Components of the ring complex involved in receptor ubiquitination (ligase) | [ | ||||
丝状真菌 Filamentous fungi | Pex4 | 参与受体泛素化的泛素结合酶 Ubiquitin-binding enzymes involved in receptor ubiquitination | [ | ||||
酵母 Yeast | Pex4 | 参与受体泛素化的泛素结合酶 Ubiquitin-binding enzymes involved in receptor ubiquitination | [ | ||||
丝状真菌 Filamentous fungi | Pex5,Pex9 | PTS1受体 PTS1 receptor | [ | ||||
酵母 Yeast | Pex5 | PTS1受体 PTS1 receptor | [ | ||||
丝状真菌 Filamentous fungi | Pex7 | PTS2受体 PTS2 receptor | [ | ||||
酵母 Yeast | Pex7 | PTS2受体 PTS2 receptor | [ | ||||
丝状真菌 Filamentous fungi | Pex8 | 货物放行,进口装配 Cargo release, import assembly | [ | ||||
酵母 Yeast | Pex8 | 货物放行,进口装配 Cargo release, import assembly | [ | ||||
丝状真菌 Filamentous fungi | Pex13,Pex14, Pex17,Pex33 | 受体启动位点的组成部分 Components of the receptor initiation site | [ | ||||
酵母 Yeast | Pex13,Pex14,Pex17, Pex14-Pex17,Pex33 | 受体启动位点的组成部分 Components of the receptor initiation site | [ | ||||
丝状真菌 Filamentous fungi | Pex15,Pex26 | Pex1和Pex6的锚定蛋白 Anchoring proteins of Pex1 and Pex6 | [ | ||||
酵母 Yeast | Pex15,Pex26 | Pex1和Pex6的锚定蛋白 Anchoring proteins of Pex1 and Pex6 | [ | ||||
丝状真菌 Filamentous fungi | Pex18,Pex20,Pex21 | Pex7的辅助受体 Co-receptor for Pex7 | [ | ||||
酵母 Yeast | Pex18,Pex20,Pex21 | Pex7的辅助受体 Co-receptor for Pex7 | [ | ||||
丝状真菌 Filamentous fungi | Pex22 | Pex4的锚定蛋白 Anchoring protein for Pex4 | [ | ||||
酵母 Yeast | Pex22 | Pex4的锚定蛋白 Anchoring protein for Pex4 | [ | ||||
调节过氧化物酶体的大小和丰度 Regulation of the size and abundance of peroxisomes | 丝状真菌 Filamentous fungi | Pex11家族 Pex11 family | Dnm1的膜延长和GTPase活化蛋白 Membrane extension and GTPase activation proteins of Dnm1 | [ | |||
酵母 Yeast | Pex11 | Dnm1的膜延长和GTPase活化蛋白 Membrane extension and GTPase activation proteins of Dnm1 | [ | ||||
丝状真菌 Filamentous fungi | — | — | [ | ||||
酵母 Yeast | Pex25 | 膜的延伸和重塑 Membrane extension and remodeling | [ | ||||
丝状真菌 Filamentous fungi | — | — | [ | ||||
酵母 Yeast | Pex27 | 对裂变产生负面影响 Negative impact on fission | [ | ||||
丝状真菌 Filamentous fungi | — | — | [ | ||||
酵母 Yeast | Pex23,Pex24, Pex28,Pex29, Pex30,Pex31,Pex32 | 形成包含网状同源结构域的复合体 Formation of complexes containing reticulated homology domains | [ |
种类 Specie | PEX11基因数量 Number of PEX11 genes | PEX11基因种类 PEX11 gene type | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
酵母类真菌 Yeast-like fungi | 1 | PEX11p | PEX11p缺失会导致过氧化物酶体数量减少,体积变大;过表达则会导致数量增多,体积减小 PEX11p deletion leads to a decrease in the number and size of peroxisomes; Overexpression leads to an increase in number and a decrease in size | [ |
人类、小鼠等哺乳动物 Humans, mice and other mammals | 3 | PEX11α | 负责对外部刺激的过氧化物酶体增殖 Responsible for peroxisome proliferation in response to external stimuli | [ |
PEX11β | 组成型过氧化物酶体增殖所必需的 Necessary for the proliferation of the constitutive peroxisome | [ | ||
PEX11γ | 过氧化物酶体增殖所必需的,并与至少一种其他Pex11蛋白协同作用突出过氧化物酶体膜 Required for peroxisome proliferation and acts synergistically with at least one other Pex11 protein to highlight the peroxisome membrane | [ | ||
拟南芥、水稻 Arabidopsis thaliana, rice | 5 | PEX11ap | 促进过氧化物酶体的复制 Promoting peroxisome replication | [ |
PEX11bp | 促进过氧化物酶体的聚集 Promoting peroxisome aggregation | [ | ||
PEX11cp | 促进过氧化物酶体无裂变的延伸 Promoting fissionless extension of peroxisome | [ | ||
PEX11dp | 促进过氧化物酶体无裂变的延伸 Promoting fissionless extension of peroxisome | [ | ||
PEX11ep | 促进过氧化物酶体的复制 Promoting peroxisome replication | [ | ||
丝状真菌 Filamentous fungi | 1~5 | PEX11A | 缺失会导致过氧化物酶体明显数量减少,体积增大,同时损害了过氧化物酶体和伏鲁宁体的分离,侵染力下降,致病性降低 The deletion leads to a marked reduction in the number and increase in the size of peroxisomes, as well as impairing the segregation of peroxisomes and voroninosomes, with a decrease in invasive power and reduced pathogenicity | [ |
PEX11B | 在假禾谷镰孢菌中缺失会导致细胞壁完整性受损,活性氧代谢和脂肪酸β-氧化在内的细胞代谢过程明显受阻,脱氧雪腐镰刀菌烯醇(DON)产生能力下降 Deficiency in Fusarium pseudograminearum results in impaired cell wall integrity, marked impairment of cellular metabolic processes including reactive oxygen species metabolism and fatty acid β-oxidation, and decreased deoxynivalenol (DON) production capacity | [ | ||
PEX11C | 脂质代谢能力下降 Decreased lipid metabolism | [ |
Table 3 Functions of PEX11 homologous genes among different species
种类 Specie | PEX11基因数量 Number of PEX11 genes | PEX11基因种类 PEX11 gene type | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
酵母类真菌 Yeast-like fungi | 1 | PEX11p | PEX11p缺失会导致过氧化物酶体数量减少,体积变大;过表达则会导致数量增多,体积减小 PEX11p deletion leads to a decrease in the number and size of peroxisomes; Overexpression leads to an increase in number and a decrease in size | [ |
人类、小鼠等哺乳动物 Humans, mice and other mammals | 3 | PEX11α | 负责对外部刺激的过氧化物酶体增殖 Responsible for peroxisome proliferation in response to external stimuli | [ |
PEX11β | 组成型过氧化物酶体增殖所必需的 Necessary for the proliferation of the constitutive peroxisome | [ | ||
PEX11γ | 过氧化物酶体增殖所必需的,并与至少一种其他Pex11蛋白协同作用突出过氧化物酶体膜 Required for peroxisome proliferation and acts synergistically with at least one other Pex11 protein to highlight the peroxisome membrane | [ | ||
拟南芥、水稻 Arabidopsis thaliana, rice | 5 | PEX11ap | 促进过氧化物酶体的复制 Promoting peroxisome replication | [ |
PEX11bp | 促进过氧化物酶体的聚集 Promoting peroxisome aggregation | [ | ||
PEX11cp | 促进过氧化物酶体无裂变的延伸 Promoting fissionless extension of peroxisome | [ | ||
PEX11dp | 促进过氧化物酶体无裂变的延伸 Promoting fissionless extension of peroxisome | [ | ||
PEX11ep | 促进过氧化物酶体的复制 Promoting peroxisome replication | [ | ||
丝状真菌 Filamentous fungi | 1~5 | PEX11A | 缺失会导致过氧化物酶体明显数量减少,体积增大,同时损害了过氧化物酶体和伏鲁宁体的分离,侵染力下降,致病性降低 The deletion leads to a marked reduction in the number and increase in the size of peroxisomes, as well as impairing the segregation of peroxisomes and voroninosomes, with a decrease in invasive power and reduced pathogenicity | [ |
PEX11B | 在假禾谷镰孢菌中缺失会导致细胞壁完整性受损,活性氧代谢和脂肪酸β-氧化在内的细胞代谢过程明显受阻,脱氧雪腐镰刀菌烯醇(DON)产生能力下降 Deficiency in Fusarium pseudograminearum results in impaired cell wall integrity, marked impairment of cellular metabolic processes including reactive oxygen species metabolism and fatty acid β-oxidation, and decreased deoxynivalenol (DON) production capacity | [ | ||
PEX11C | 脂质代谢能力下降 Decreased lipid metabolism | [ |
物种 Specie | 蛋白 Protein | 功能 Function | 参考文献 Reference |
---|---|---|---|
哺乳动物 Mammal | ACBD5、VAP | 过氧化物酶体膜的重塑 Remodeling of peroxisomal membranes | [ |
植物 Plant | Pex11ap-ep | 过氧化物酶体膜的重塑 Remodeling of peroxisomal membranes | [ |
真菌(酵母) Fungi (yeast) | Pex11p | 过氧化物酶体膜的重塑 Remodeling of peroxisomal membranes | [ |
哺乳动物 Mammal | MIRO-运动蛋白复合物、Pex11βp、Pex14p MIRO-motor protein complex, Pex11βp, Pex14p | 过氧化酶体膜的伸长 Elongation of peroxisomal membranes | [ |
植物 Plant | Pex11ap-ep | 过氧化酶体膜的伸长 Elongation of peroxisomal membranes | [ |
真菌(酵母) Fungi (yeast) | Pex11p | 过氧化酶体膜的伸长 Elongation of peroxisomal membranes | [ |
哺乳动物 Mammal | DRP1、Fis1、Mff、MIRO-运动蛋白复合物、Pex11βp DRP1, Fis1, Mff, MIRO-motor protein complex, Pex11βp | 过氧化物酶体膜的收缩和分裂 Contraction and division of peroxisomal membranes | [ |
植物 Plant | DRP3A、DRP3B、DRP5B、FIS1A、FIS1B、PMD1 | 过氧化物酶体膜的收缩和分裂 Contraction and division of peroxisomal membranes | [ |
真菌(酵母) Fungi (yeast) | Dnm1、Fis1、Mdv1、Pex11p、Vps1 | 过氧化物酶体膜的收缩和分裂 Contraction and division of peroxisomal membranes | [ |
哺乳动物 Mammal | — | 过氧化物酶体的遗传 Inheritance of the peroxisome | — |
植物 Plant | — | 过氧化物酶体的遗传 Inheritance of the peroxisome | — |
真菌(酵母) Fungi (yeast) | Inp1p、Inp2p、Myo2p | 过氧化物酶体的遗传 Inheritance of the peroxisome | [ |
Table 4 Proteins affecting the proliferation of peroxisomes
物种 Specie | 蛋白 Protein | 功能 Function | 参考文献 Reference |
---|---|---|---|
哺乳动物 Mammal | ACBD5、VAP | 过氧化物酶体膜的重塑 Remodeling of peroxisomal membranes | [ |
植物 Plant | Pex11ap-ep | 过氧化物酶体膜的重塑 Remodeling of peroxisomal membranes | [ |
真菌(酵母) Fungi (yeast) | Pex11p | 过氧化物酶体膜的重塑 Remodeling of peroxisomal membranes | [ |
哺乳动物 Mammal | MIRO-运动蛋白复合物、Pex11βp、Pex14p MIRO-motor protein complex, Pex11βp, Pex14p | 过氧化酶体膜的伸长 Elongation of peroxisomal membranes | [ |
植物 Plant | Pex11ap-ep | 过氧化酶体膜的伸长 Elongation of peroxisomal membranes | [ |
真菌(酵母) Fungi (yeast) | Pex11p | 过氧化酶体膜的伸长 Elongation of peroxisomal membranes | [ |
哺乳动物 Mammal | DRP1、Fis1、Mff、MIRO-运动蛋白复合物、Pex11βp DRP1, Fis1, Mff, MIRO-motor protein complex, Pex11βp | 过氧化物酶体膜的收缩和分裂 Contraction and division of peroxisomal membranes | [ |
植物 Plant | DRP3A、DRP3B、DRP5B、FIS1A、FIS1B、PMD1 | 过氧化物酶体膜的收缩和分裂 Contraction and division of peroxisomal membranes | [ |
真菌(酵母) Fungi (yeast) | Dnm1、Fis1、Mdv1、Pex11p、Vps1 | 过氧化物酶体膜的收缩和分裂 Contraction and division of peroxisomal membranes | [ |
哺乳动物 Mammal | — | 过氧化物酶体的遗传 Inheritance of the peroxisome | — |
植物 Plant | — | 过氧化物酶体的遗传 Inheritance of the peroxisome | — |
真菌(酵母) Fungi (yeast) | Inp1p、Inp2p、Myo2p | 过氧化物酶体的遗传 Inheritance of the peroxisome | [ |
[1] | THOMS S, ERDMANN R. Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation[J]. FEBS Journal, 2005, 272(20):5169-5181. |
[2] | FERREIRA A R, MARQUES M, RAMOS B, et al. Emerging roles of peroxisomes in viral infections[J]. Trends in Cell Biology, 2022, 32(2):124-139. |
[3] | DI CARA F, SAVARY S, KOVACS W J, et al. The peroxisome:an up-and-coming organelle in immunometabolism[J]. Trends in Cell Biology, 2023, 33(1):70-86. |
[4] | HU J P, BAKER A, BARTEL B, et al. Plant peroxisomes:biogenesis and function[J]. Plant Cell, 2012, 24(6):2279-2303. |
[5] | 张建国, 黄勋娟, 刘菲, 等. 毕赤酵母过氧化物酶体吞噬的研究进展[J]. 微生物学通报, 2014, 41(8):1684-1691. |
ZHANG J G, HUANG X J, LIU F, et al. The research progress of pexophagy in Pichia pastoris[J]. Microbiology China, 2014, 41(8):1684-1691. (in Chinese) | |
[6] | WANG Z Y, SOANES D M, KERSHAW M J, et al. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection[J]. Molecular Plant-Microbe Interactions, 2007, 20(5):475-491. |
[7] | HUANG Z C, WANG Q, KHAN I A, et al. The methylcitrate cycle and its crosstalk with the glyoxylate cycle and tricarboxylic acid cycle in pathogenic fungi[J]. Molecules, 2023, 28(18):6667. |
[8] | IMAZAKI A, TANAKA A, HARIMOTO Y, et al. Contribution of peroxisomes to secondary metabolism and pathogenicity in the fungal plant pathogen Alternaria alternata[J]. Eukaryotic Cell, 2010, 9(5):682-694. |
[9] | MIN K, SON H, LEE J, et al. Peroxisome function is required for virulence and survival of Fusarium graminearum[J]. Molecular Plant-Microbe Interactions, 2012, 25(12):1617-1627. |
[10] | 陈海莉, 李玲, 王教瑜, 等. 过氧化物酶体增殖剂对稻瘟病菌生长发育及致病性的影响[J]. 微生物学报, 2016, 56(10):1606-1615. |
CHEN H L, LI L, WANG J Y, et al. Effect of peroxisome proliferators to growth and pathogenicity of Magnaporthe oryzae[J]. Acta Microbiologica Sinica, 2016, 56(10):1606-1615. (in Chinese with English abstract) | |
[11] | SAKAI Y, OKU M, VAN DER KLEI I J, et al. Pexophagy:autophagic degradation of peroxisomes[J]. Biochimica et Biophysica Acta, 2006, 1763(12):1767-1775. |
[12] | 韦春玲. 糖尿病大鼠肝脏过氧化物酶体膜性质及β氧化活性变化的研究[D]. 石家庄: 河北医科大学, 2003. |
WEI C L. Alterations in peroxisomal membrane properties and β-oxidation activity of liver in diabetic rats[D]. Shijiazhuang: Hebei Medical University, 2003. (in Chinese with English abstract) | |
[13] | MONTAGNER A, DELGADO M B, TALLICHET-BLANC C, et al. Src is activated by the nuclear receptor peroxisome proliferator-activated receptor β/δ in ultraviolet radiation-induced skin cancer[J]. EMBO Molecular Medicine, 2014, 6(1):80-98. |
[14] | SCHRADER M, FAHIMI H D. Peroxisomes and oxidative stress[J]. Biochimica et Biophysica Acta, 2006, 1763(12):1755-1766. |
[15] | LÓPEZ-HUERTAS E, CORPAS F J, SANDALIO L M, et al. Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation[J]. Biochemical Journal, 1999, 337 (Pt 3):531-536. |
[16] | MOTLEY A M, WARD G P, HETTEMA E H. Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p[J]. Journal of Cell Science, 2008, 121(Pt 10):1633-1640. |
[17] | KIM P K, MULLEN R T, SCHUMANN U, et al. The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER[J]. Journal of Cell Biology, 2006, 173(4):521-532. |
[18] | HOLROYD C, ERDMANN R. Protein translocation machineries of peroxisomes[J]. FEBS Letters, 2001, 501(1):6-10. |
[19] | DISTEL B, ERDMANN R, GOULD S J, et al. A unified nomenclature for peroxisome biogenesis factors[J]. Journal of Cell Biology, 1996, 135(1):1-3. |
[20] | HETTEMA E H, GIRZALSKY W, VAN DEN BERG M, et al. Saccharomyces cerevisiae pex3p and pex19p are required for proper localization and stability of peroxisomal membrane proteins[J]. EMBO Journal, 2000, 19(2):223-233. |
[21] | SACKSTEDER K A, JONES J M, SOUTH S T, et al. PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis[J]. Journal of Cell Biology, 2000, 148(5):931-944. |
[22] | GHAEDI K, TAMURA S, OKUMOTO K, et al. The peroxin pex3p initiates membrane assembly in peroxisome biogenesis[J]. Molecular Biology of the Cell, 2000, 11(6):2085-2102. |
[23] | SOUTH S T, SACKSTEDER K A, LI X, et al. Inhibitors of COPI and COPⅡ do not block PEX3-mediated peroxisome synthesis[J]. The Journal of Cell Biology, 2000, 149(7):1345-1360. |
[24] | JONES J M, MORRELL J C, GOULD S J. PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins[J]. The Journal of Cell Biology, 2004, 164(1):57-67. |
[25] | ROTTENSTEINER H, KRAMER A, LORENZEN S, et al. Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals[J]. Molecular Biology of the Cell, 2004, 15(7):3406-3417. |
[26] | HALBACH A, RUCKTÄSCHEL R, ROTTENSTEINER H, et al. The N-domain of Pex22p can functionally replace the Pex3p N-domain in targeting and peroxisome formation[J]. Journal of Biological Chemistry, 2009, 284(6):3906-3916. |
[27] | GIRZALSKY W, SAFFIAN D, ERDMANN R. Peroxisomal protein translocation[J]. Biochimica et Biophysica Acta, 2010, 1803(6):724-731. |
[28] | KIEL J A K W, VAN DEN BERG M, BOVENBERG R A L, et al. Penicillium chrysogenum Pex5p mediates differential sorting of PTS1 proteins to microbodies of the methylotrophic yeast Hansenula polymorpha[J]. Fungal Genetics and Biology, 2004, 41(7):708-720. |
[29] | THIERINGER H, MOELLERS B, DODT G, et al. Modeling human peroxisome biogenesis disorders in the nematode Caenorhabditis elegans[J]. Journal of Cell Science, 2003, 116(Pt 9):1797-1804. |
[30] | KIM P K, MULLEN R T. PEX16:a multifaceted regulator of peroxisome biogenesis[J]. Frontiers in Physiology, 2013, 4:241. |
[31] | MATSUZAKI T, FUJIKI Y. The peroxisomal membrane protein import receptor Pex3p is directly transported to peroxisomes by a novel Pex19p-and Pex16p-dependent pathway[J]. Journal of Cell Biology, 2008, 183(7):1275-1286. |
[32] | KARNIK S K, TRELEASE R N. Arabidopsis peroxin 16 coexists at steady state in peroxisomes and endoplasmic reticulum[J]. Plant Physiology, 2005, 138(4):1967-1981. |
[33] | HUA R, GIDDA S K, ARANOVICH A, et al. Multiple domains in PEX16 mediate its trafficking and recruitment of peroxisomal proteins to the ER[J]. Traffic, 2015, 16(8):832-852. |
[34] | PLATTA H W, ERDMANN R. Peroxisomal dynamics[J]. Trends in Cell Biology, 2007, 17(10):474-484. |
[35] | FUJIKI Y, OKUMOTO K, MUKAI S, et al. Peroxisome biogenesis in mammalian cells[J]. Frontiers in Physiology, 2014, 5:307. |
[36] | KIM P K, HETTEMA E H. Multiple pathways for protein transport to peroxisomes[J]. Journal of Molecular Biology, 2015, 427(6):1176-1190. |
[37] | MA C L, AGRAWAL G, SUBRAMANI S. Peroxisome assembly:matrix and membrane protein biogenesis[J]. Journal of Cell Biology, 2011, 193(1):7-16. |
[38] | TABAK H F, BRAAKMAN I, VAN DER ZAND A. Peroxisome formation and maintenance are dependent on the endoplasmic reticulum[J]. Annual Review of Biochemistry, 2013, 82:723-744. |
[39] | HOEPFNER D, SCHILDKNEGT D, BRAAKMAN I, et al. Contribution of the endoplasmic reticulum to peroxisome formation[J]. Cell, 2005, 122(1):85-95. |
[40] | DAVID C, KOCH J, OELJEKLAUS S, et al. A combined approach of quantitative interaction proteomics and live-cell imaging reveals a regulatory role for endoplasmic reticulum (ER) reticulon homology proteins in peroxisome biogenesis[J]. Molecular & Cellular Proteomics, 2013, 12(9):2408-2425. |
[41] | MAST F D, JAMAKHANDI A, SALEEM R A, et al. Peroxins Pex30 and Pex29 dynamically associate with reticulons to regulate peroxisome biogenesis from the endoplasmic reticulum[J]. Journal of Biological Chemistry, 2016, 291(30):15408-15427. |
[42] | JOSHI A S, HUANG X F, CHOUDHARY V, et al. A family of membrane-shaping proteins at ER subdomains regulates pre-peroxisomal vesicle biogenesis[J]. Journal of Cell Biology, 2016, 215(4):515-529. |
[43] | WRÓBLEWSKA J P, CRUZ-ZARAGOZA L D, YUAN W, et al. Saccharomyces cerevisiae cells lacking Pex3 contain membrane vesicles that harbor a subset of peroxisomal membrane proteins[J]. Biochimica et Biophysica Acta(BBA) -Molecular Cell Research, 2017, 1864(10):1656-1667. |
[44] | VAN DER ZAND A, BRAAKMAN I, TABAK H F. Peroxisomal membrane proteins insert into the endoplasmic reticulum[J]. Molecular Biology of the Cell, 2010, 21(12):2057-2065. |
[45] | MATTIAZZI UŠAJ M, BRLOŽNIK M, KAFERLE P, et al. Genome-wide localization study of yeast Pex11 identifies peroxisome-mitochondria interactions through the ERMES complex[J]. Journal of Molecular Biology, 2015, 427(11):2072-2087. |
[46] | MOTLEY A M, GALVIN P C, EKAL L, et al. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis[J]. Journal of Cell Biology, 2015, 211(5):1041-1056. |
[47] | KNOOPS K, MANⅣANNAN S, CEPINSKA M N, et al. Preperoxisomal vesicles can form in the absence of Pex3[J]. Journal of Cell Biology, 2014, 204(5):659-668. |
[48] | KONG X J, ZHANG H, WANG X L, et al. FgPex3, a peroxisome biogenesis factor, is involved in regulating vegetative growth, conidiation, sexual development, and virulence in Fusarium graminearum[J]. Frontiers in Microbiology, 2019, 10:2088. |
[49] | OTZEN M, PERBAND U, WANG D Y, et al. Hansenula polymorpha Pex19p is essential for the formation of functional peroxisomal membranes[J]. Journal of Biological Chemistry, 2004, 279(18):19181-19190. |
[50] | LAMBKIN G R, RACHUBINSKI R A. Yarrowia lipolytica cells mutant for the peroxisomal peroxin Pex19p contain structures resembling wild-type peroxisomes[J]. Molecular Biology of the Cell, 2001, 12(11):3353-3364. |
[51] | LI L, WANG J Y, ZHANG Z, et al. MoPex19, which is essential for maintenance of peroxisomal structure and woronin bodies, is required for metabolism and development in the rice blast fungus[J]. PLoS One, 2014, 9(1):e85252. |
[52] | 李玲. 过氧化物酶体形成相关基因MoPEX19及MoPEX11家族在稻瘟病菌生长发育和致病过程中的作用[D]. 南京: 南京农业大学, 2014. |
LI L. The role of MoPEX19 and MoPEX11 peroxisome formation related genes in the growth, development and pathogenesis of Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese with English abstract) | |
[53] | OKUMOTO K, TAMURA S, HONSHO M, et al. Peroxisome:metabolic functions and biogenesis[J]. Advances in Experimental Medicine and Biology, 2020, 1299:3-17. |
[54] | GUO T, KIT Y Y, NICAUD J M, et al. Peroxisome division in the yeast Yarrowia lipolytica is regulated by a signal from inside the peroxisome[J]. Journal of Cell Biology, 2003, 162(7):1255-1266. |
[55] | KARNIK S K, TRELEASE R N. Arabidopsis peroxin 16 trafficks through the ER and an intermediate compartment to pre-existing peroxisomes via overlapping molecular targeting signals[J]. Journal of Experimental Botany, 2007, 58(7):1677-1693. |
[56] | NITO K, KAMIGAKI A, KONDO M, et al. Functional classification of Arabidopsis peroxisome biogenesis factors proposed from analyses of knockdown mutants[J]. Plant & Cell Physiology, 2007, 48(6):763-774. |
[57] | FUJIKI Y, MATSUZONO Y, MATSUZAKI T, et al. Import of peroxisomal membrane proteins:the interplay of Pex3p-and Pex19p-mediated interactions[J]. Biochimica et Biophysica Acta, 2006, 1763(12):1639-1646. |
[58] | HADDEN D A, PHILLIPSON B A, JOHNSTON K A, et al. Arabidopsis PEX19 is a dimeric protein that binds the peroxin PEX10[J]. Molecular Membrane Biology, 2006, 23(4):325-336. |
[59] | LIN Y, CLUETTE-BROWN J E, GOODMAN H M. The peroxisome deficient Arabidopsis mutant sse1 exhibits impaired fatty acid synthesis[J]. Plant Physiology, 2004, 135(2):814-827. |
[60] | BURKHART S E, LLINAS R J, BARTEL B. PEX16 contributions to peroxisome import and metabolism revealed by viable Arabidopsis pex16 mutants[J]. Journal of Integrative Plant Biology, 2019, 61(7):853-870. |
[61] | SCHRADER M, COSTELLO J L, GODINHO L F, et al. Proliferation and fission of peroxisomes-an update[J]. Biochimica et Biophysica Acta, 2016, 1863(5):971-983. |
[62] | CARMICHAEL R E, SCHRADER M. Determinants of peroxisome membrane dynamics[J]. Frontiers in Physiology, 2022, 13:834411. |
[63] | SCHRADER M, FAHIMI H D. Growth and division of peroxisomes[J]. International Review of Cytology, 2006, 255:237-290. |
[64] | CARMICHAEL R E, ISLINGER M, SCHRADER M. Fission impossible (?)-new insights into disorders of peroxisome dynamics[J]. Cells, 2022, 11(12):1922. |
[65] | KOBAYASHI S, TANAKA A, FUJIKI Y. Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis[J]. Experimental Cell Research, 2007, 313(8):1675-1686. |
[66] | KOCH J, PRANJIC K, HUBER A, et al. PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance[J]. Journal of Cell Science, 2010, 123(Pt 19):3389-3400. |
[67] | YOSHIDA Y, NIWA H, HONSHO M, et al. Pex11mediates peroxisomal proliferation by promoting deformation of the lipid membrane[J]. Biology Open, 2015, 4(6):710-721. |
[68] | INGERMAN E, PERKINS E M, MARINO M, et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria[J]. Journal of Cell Biology, 2005, 170(7):1021-1027. |
[69] | FRIEDMAN J R, LACKNER L L, WEST M, et al. ER tubules mark sites of mitochondrial division[J]. Science, 2011, 334(6054):358-362. |
[70] | SMIRNOVA E, GRIPARIC L, SHURLAND D L, et al. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells[J]. Molecular Biology of the Cell, 2001, 12(8):2245-2256. |
[71] | NAVARRO-ESPÍNDOLA R, SUASTE-OLMOS F, PERAZA-REYES L. Dynamic regulation of peroxisomes and mitochondria during fungal development[J]. Journal of Fungi, 2020, 6(4):302. |
[72] | NAVARRO-ESPÍNDOLA R, TAKANO-ROJAS H, SUASTE-OLMOS F, et al. Distinct contributions of the peroxisome-mitochondria fission machinery during sexual development of the fungus Podospora anserina[J]. Frontiers in Microbiology, 2020, 11:640. |
[73] | FALTER C, REUMANN S. The essential role of fungal peroxisomes in plant infection[J]. Molecular Plant Pathology, 2022, 23(6):781-794. |
[74] | 周靖垚, 张建国. 酵母过氧化物酶体的形成机制[J]. 微生物学杂志, 2021, 41(1):84-90. |
ZHOU J Y, ZHANG J G. Mechanism of yeast peroxisome formation[J]. Journal of Microbiology, 2021, 41(1):84-90. (in Chinese with English abstract) | |
[75] | PAN R H, LIU J, WANG S S, et al. Peroxisomes:versatile organelles with diverse roles in plants[J]. New Phytologist, 2020, 225(4):1410-1427. |
[76] | KAUR N, HU J P. Dynamics of peroxisome abundance:a tale of division and proliferation[J]. Current Opinion in Plant Biology, 2009, 12(6):781-788. |
[77] | PAN R H, HU J P. The conserved fission complex on peroxisomes and mitochondria[J]. Plant Signaling & Behavior, 2011, 6(6):870-872. |
[78] | KAUR N, CROSS L, THEODOULOU F L, et al. Plant peroxisomes:protein import, dynamics, and metabolite transport[M]// Cell biology. New York: Springer New York, 2014:1-25. |
[79] | HUBER A, KOCH J, KRAGLER F, et al. A subtle interplay between three Pex11 proteins shapes de novo formation and fission of peroxisomes[J]. Traffic, 2012, 13(1):157-167. |
[80] | KRIKKEN A M, VEENHUIS M, VAN DER KLEI I J. Hansenula polymorpha pex11 cells are affected in peroxisome retention[J]. FEBS Journal, 2009, 276(5):1429-1439. |
[81] | WANG J Y, LI L, ZHANG Z, et al. One of three Pex11 family members is required for peroxisomal proliferation and full virulence of the rice blast fungus Magnaporthe oryzae[J]. PLoS One, 2015, 10(7):e0134249. |
[82] | WANG M Y, XU H, LIU C J, et al. Peroxisome proliferator FpPEX11 is involved in the development and pathogenicity in Fusarium pseudograminearum[J]. International Journal of Molecular Sciences, 2022, 23(20):12184. |
[83] | 张昕. 过氧化物酶体增殖剂对稻瘟病菌的影响及PEX11基因家族的生物信息学研究[D]. 杭州: 杭州师范大学, 2012. |
ZHANG X. Effects of peroxisome proliferator on Magnaporthe oryzae and bioinformatics study of PEX11 gene family[D]. Hangzhou: Hangzhou Normal University, 2012. (in Chinese with English abstract) | |
[84] | LINGARD M J, TRELEASE R N. Five Arabidopsis peroxin 11 homologs individually promote peroxisome elongation, duplication or aggregation[J]. Journal of Cell Science, 2006, 119(Pt 9):1961-1972. |
[85] | ORTH T, REUMANN S, ZHANG X C, et al. The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis[J]. Plant Cell, 2007, 19(1):333-350. |
[86] | SCHRADER M, REUBER B E, MORRELL J C, et al. Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli[J]. Journal of Biological Chemistry, 1998, 273(45):29607-29614. |
[87] | KOCH J, BROCARD C. PEX11 proteins attract Mff and human Fis1 to coordinate peroxisomal fission[J]. Journal of Cell Science, 2012, 125(Pt 16):3813-3826. |
[88] | HOEPFNER D, VAN DEN BERG M, PHILIPPSEN P, et al. A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae[J]. Journal of Cell Biology, 2001, 155(6):979-990. |
[89] | BELLU A R, KRAM A M, KIEL J A K W, et al. Glucose-induced and nitrogen-starvation-induced peroxisome degradation are distinct processes in Hansenula polymorpha that involve both common and unique genes[J]. FEMS Yeast Research, 2001, 1(1):23-31. |
[90] | KURAVI K, NAGOTU S, KRIKKEN A M, et al. Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae[J]. Journal of Cell Science, 2006, 119(Pt 19):3994-4001. |
[91] | MOTLEY A M, HETTEMA E H. Yeast peroxisomes multiply by growth and division[J]. Journal of Cell Biology, 2007, 178(3):399-410. |
[92] | FAGARASANU A, FAGARASANU M, EITZEN G A, et al. The peroxisomal membrane protein Inp2p is the peroxisome-specific receptor for the myosin V motor Myo2p of Saccharomyces cerevisiae[J]. Developmental Cell, 2006, 10(5):587-600. |
[93] | KRIKKEN A M, WU H L, DE BOER R, et al. Peroxisome retention involves Inp1-dependent peroxisome-plasma membrane contact sites in yeast[J]. Journal of Cell Biology, 2020, 219(10):e201906023. |
[94] | IMOTO Y, ITOH K, FUJIKI Y. Molecular basis of mitochondrial and peroxisomal division machineries[J]. International Journal of Molecular Sciences, 2020, 21(15):5452. |
[95] | AKŞIT A, VAN DER KLEI I J. Yeast peroxisomes:How are they formed and how do they grow?[J]. International Journal of Biochemistry & Cell Biology, 2018, 105:24-34. |
[96] | PASSMORE J B, CARMICHAEL R E, SCHRADER T A, et al. Mitochondrial fission factor (MFF) is a critical regulator of peroxisome maturation[J]. Biochimica et Biophysica Acta(BBA) -Molecular Cell Research, 2020, 1867(7):118709. |
[97] | KIM J, BAI H. Peroxisomal stress response and inter-organelle communication in cellular homeostasis and aging[J]. Antioxidants, 2022, 11(2):192. |
[98] | JANSEN R L M, SANTANA-MOLINA C, VAN DEN NOORT M, et al. Comparative genomics of peroxisome biogenesis proteins:making sense of the PEX proteins[J]. Frontiers in Cell and Developmental Biology, 2021, 9:654163. |
[99] | DAI J, LI Y, KAMETANI F, et al. Curcumin promotes AApoAⅡ amyloidosis and peroxisome proliferation in mice by activating the PPARα signaling pathway[J]. eLife, 2021, 10:e63538. |
[100] | MIURA H, MIZUGUCHI H, AMANO-IWASHITA M, et al. Clofibric acid increases molecular species of phosphatidylethanolamine containing arachidonic acid for biogenesis of peroxisomal membranes in peroxisome proliferation in the liver[J]. Biochimica et Biophysica Acta(BBA) -Molecular and Cell Biology of Lipids, 2021, 1866(8):158963. |
[101] | TANAKA H, OKAZAKI T, AOYAMA S, et al. Peroxisomes control mitochondrial dynamics and the mitochondrion-dependent apoptosis pathway[J]. Journal of Cell Science, 2019, 132(11):jcs224766. |
[102] | BACHHUKA A, CHAND YADAV T, SANTOS A, et al. Emerging nanomaterials for targeting peroxisomes[J]. Materials Today Advances, 2022, 15:100265. |
[103] | KULAGINA N, BESSEAU S, PAPON N, et al. Peroxisomes:a new hub for metabolic engineering in yeast[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9:659431. |
[104] | DUSSÉAUX S, WAJN W T, LIU Y X, et al. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(50):31789-31799. |
[105] | GERKE J, FRAUENDORF H, SCHNEIDER D, et al. Production of the fragrance geraniol in peroxisomes of a product-tolerant baker’s yeast[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:582052. |
[106] | KISTLER H C, BROZ K. Cellular compartmentalization of secondary metabolism[J]. Frontiers in Microbiology, 2015, 6:68. |
[107] | CHEN X L, WANG Z, LIU C Y. Roles of peroxisomes in the rice blast fungus[J]. BioMed Research International, 2016, 2016:9343417. |
[108] | WU P C, CHEN C W, CHOO C Y L, et al. Proper functions of peroxisomes are vital for pathogenesis of Citrus brown spot disease caused by Alternaria alternata[J]. Journal of Fungi, 2020, 6(4):248. |
[109] | HAN H J, NIU X J, LIANG W X, et al. An increase in the number of peroxisomes is coupled to the initial infection stage and stress response of Botrytis cinerea[J]. Phytopathology Research, 2022, 4(1):25. |
[1] | BIAN Meiyun, WANG Jing, WANG Jiaoyu, CHEN Jie. The relationship between peroxisome and fungal sexual reproduction [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2500-2506. |
[2] | TAO Yan\|lan1,LAN Zeng\|quan1,*,WU Tian2,*. Study on in vitro culture of stem segment of grapefruit [J]. , 2015, 27(5): 776-. |
[3] | ZHANG Lei;CHENG Yu;JIN Wangdong;WANG Piaoyi;SHAN Letian;*. Study of medicinal plant Epimedium brevicornum Maxim and platelet effects on chondrocyte proliferation [J]. , 2014, 26(3): 0-680684. |
[4] | XU Xiao-fang;LIANG Xun-yi*;XU Ye-jun;ZHANG Yin-li;WU Gen-tao;ZHEN Yi-long. Tissue culture and rapid propagation of Eurya japonica Thunb [J]. , 2010, 22(2): 0-206. |
[5] | YU Yi-jun;HE Jian-hong;SHI De;KE Han-yun;MA Wei-qiang. Occurrence of the key diseases and insect pests in intensive rice system [J]. , 2009, 21(6): 0-622. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 329
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||