Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (10): 2500-2506.DOI: 10.3969/j.issn.1004-1524.20230369
• Review • Previous Articles
BIAN Meiyun1,2(), WANG Jing2, WANG Jiaoyu2,*(
), CHEN Jie1
Received:
2023-08-30
Online:
2023-10-25
Published:
2023-10-31
CLC Number:
BIAN Meiyun, WANG Jing, WANG Jiaoyu, CHEN Jie. The relationship between peroxisome and fungal sexual reproduction[J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2500-2506.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230369
[1] | FRANSEN M, NORDGREN M, WANG B, et al. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease[J]. Biochimica et Biophysica Acta, 2012, 1822(9): 1363-1373. |
[2] | DI CARA F, SAVARY S, KOVACS W J, et al. The peroxisome: an up-and-coming organelle in immunometabolism[J]. Trends in Cell Biology, 2023, 33(1): 70-86. |
[3] | PLETT A, CHARTON L, LINKA N. Peroxisomal cofactor transport[J]. Biomolecules, 2020, 10(8): 1174. |
[4] | OKUMOTO K, TAMURA S, HONSHO M, et al. Peroxisome: metabolic functions and biogenesis[J]. Advances in Experimental Medicine and Biology, 2020, 1299: 3-17. |
[5] | LI Y, THARAPPEL J C, COOPER S, et al. Expression of the hydrogen peroxide-generating enzyme fatty acyl CoA oxidase activates NF-kappaB[J]. DNA and Cell Biology, 2000, 19(2): 113-120. |
[6] | BOISSON-DERNIER A, FRIETSCH S, KIM T H, et al. The peroxin loss-of-function mutation abstinence by mutual consent disrupts male-female gametophyte recognition[J]. Current Biology, 2008, 18(1): 63-68. |
[7] | BAES M, VAN VELDHOVEN P P. Mouse models for peroxisome biogenesis defects and β-oxidation enzyme deficiencies[J]. Biochimica et Biophysica Acta, 2012, 1822(9): 1489-1500. |
[8] | MAST F D, LI J, VIRK M K, et al. A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders[J]. Disease Models & Mechanisms, 2011, 4(5): 659-672. |
[9] | SZÖOR B, RUBERTO I, BURCHMORE R, et al. A novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway[J]. Genes & Development, 2010, 24(12): 1306-1316. |
[10] | WATERHAM H R, EBBERINK M S. Genetics and molecular basis of human peroxisome biogenesis disorders[J]. Biochimica et Biophysica Acta(BBA)-Molecular Basis of Disease, 2012, 1822(9): 1430-1441. |
[11] | WANG S, YANG H X, FU Y L, et al. The key role of peroxisomes in follicular growth, oocyte maturation, ovulation, and steroid biosynthesis[J]. Oxidative Medicine and Cellular Longevity, 2022, 2022: 7982344. |
[12] | TANABE Y, MARUYAMA J I, YAMAOKA S, et al. Peroxisomes are involved in biotin biosynthesis in Aspergillus and Arabidopsis[J]. The Journal of Biological Chemistry, 2011, 286(35): 30455-30461. |
[13] | GRÜNDLINGER M, YASMIN S, LECHNER B E, et al. Fungal siderophore biosynthesis is partially localized in peroxisomes[J]. Molecular Microbiology, 2013, 88(5): 862-875. |
[14] | MARTÍN J F, ULLÁN R V, GARCÍA-ESTRADA C. Role of peroxisomes in the biosynthesis and secretion of β-lactams and other secondary metabolites[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(3): 367-382. |
[15] | RAMOS-PAMPLONA M, NAQVI N I. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA[J]. Molecular Microbiology, 2006, 61(1): 61-75. |
[16] | MCTAGGART A R, JAMES T Y, IDNURM A, et al. Sexual reproduction is the null hypothesis for life cycles of rust fungi[J]. PLoS Pathogens, 2022, 18(5): e1010439. |
[17] | SIMONET J M, ZICKLER D. Mutations affecting meiosis in Podospora anserina. I. Cytological studies[J]. Chromosoma, 1972, 37(3): 327-351. |
[18] | SIMONET J M, ZICKLER D. Genes involved in caryogamy and meiosis in Podospora anserina[J]. Molecular and General Genetics MGG, 1978, 162(3): 237-242. |
[19] | BARTOSZEWSKA M, KIEL J A K W. The role of macroautophagy in development of filamentous fungi[J]. Antioxidants & Redox Signaling, 2011, 14(11): 2271-2287. |
[20] | WÖSTEN H A B, WESSELS J G H. The emergence of fruiting bodies in basidiomycetes[M]// Growth, Differentiation and Sexuality. Berlin/Heidelberg: Springer-Verlag, 2006: 393-414. |
[21] | MURPHY D J. The dynamic roles of intracellular lipid droplets: from Archaea to mammals[J]. Protoplasma, 2012, 249(3): 541-585. |
[22] | LIU J J, LU W, SHI B M, et al. Peroxisomal regulation of redox homeostasis and adipocyte metabolism[J]. Redox Biology, 2019, 24: 101167. |
[23] | BINNS D, JANUSZEWSKI T, CHEN Y, et al. An intimate collaboration between peroxisomes and lipid bodies[J]. The Journal of Cell Biology, 2006, 173(5): 719-731. |
[24] | FALTER C, REUMANN S. The essential role of fungal peroxisomes in plant infection[J]. Molecular Plant Pathology, 2022, 23(6): 781-794. |
[25] | GUENTHER J C, HALLEN-ADAMS H E, BÜCKING H, et al. Triacylglyceride metabolism by Fusarium graminearum during colonization and sexual development on wheat[J]. Molecular Plant-Microbe Interactions, 2009, 22(12): 1492-1503. |
[26] | ERENTAL A, DICKMAN M B, YARDEN O. Sclerotial development in Sclerotinia sclerotiorum: awakening molecular analysis of a “Dormant” structure[J]. Fungal Biology Reviews, 2008, 22(1): 6-16. |
[27] | LIBERTI D, ROLLINS J A, DOBINSON K F. Peroxysomal carnitine acetyl transferase influences host colonization capacity in Sclerotinia sclerotiorum[J]. Molecular Plant-Microbe Interactions, 2013, 26(7): 768-780. |
[28] | LACOURT I, DUPLESSIS S, ABBÀ S, et al. Isolation and characterization of differentially expressed genes in the mycelium and fruit body of Tuber borchii[J]. Applied and Environmental Microbiology, 2002, 68(9): 4574-4582. |
[29] | ABBA’S, BALESTRINI R, BENEDETTO A, et al. The role of the glyoxylate cycle in the symbiotic fungus Tuber borchii: expression analysis and subcellular localization[J]. Current Genetics, 2007, 52(3/4): 159-170. |
[30] | CECCAROLI P, BUFFALINI M, SALTARELLI R, et al. Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus Tuber melanosporum[J]. The New Phytologist, 2011, 189(3): 751-764. |
[31] | YOON J J, MUNIR E, MIYASOU H, et al. A possible role of the key enzymes of the glyoxylate and gluconeogenesis pathways for fruit-body formation of the wood-rotting basidiomycete Flammulina velutipes[J]. Mycoscience, 2002, 43(4): 327-332. |
[32] | YOON J J, HATTORI T, SHIMADA M. A metabolic role of the glyoxylate and tricarboxylic acid cycles for development of the copper-tolerant brown-rot fungus Fomitopsis palustris[J]. FEMS Microbiology Letters, 2002, 217(1): 9-14. |
[33] | MIN K, SON H, LEE J, et al. Peroxisome function is required for virulence and survival of Fusarium graminearum[J]. Molecular Plant-Microbe Interactions, 2012, 25(12): 1617-1627. |
[34] | BONNET C, ESPAGNE E, ZICKLER D, et al. The peroxisomal import proteins PEX2, PEX5 and PEX7 are differently involved in Podospora anserina sexual cycle[J]. Molecular Microbiology, 2006, 62(1): 157-169. |
[35] | HYNES M J, MURRAY S L, KHEW G S, et al. Genetic analysis of the role of peroxisomes in the utilization of acetate and fatty acids in Aspergillus nidulans[J]. Genetics, 2008, 178(3): 1355-1369. |
[36] | MANAGADZE D, WÜRTZ C, SICHTING M, et al. The peroxin PEX14 of Neurospora crassa is essential for the biogenesis of both glyoxysomes and Woronin bodies[J]. Traffic, 2007, 8(6): 687-701. |
[37] | KONG X J, ZHANG H, WANG X L, et al. FgPex3, a peroxisome biogenesis factor, is involved in regulating vegetative growth, conidiation, sexual development, and virulence in Fusarium graminearum[J]. Frontiers in Microbiology, 2019, 10: 2088. |
[38] | ZHANG L, LIU C J, WANG M Y, et al. Peroxin FgPEX22-like is involved in FgPEX4 tethering and Fusarium graminearum pathogenicity[J]. Frontiers in Microbiology, 2021, 12: 756292. |
[39] | WANG L N, ZHANG L, LIU C J, et al. The roles of FgPEX2 and FgPEX12 in virulence and lipid metabolism in Fusarium graminearum[J]. Fungal Genetics and Biology, 2020, 135: 103288. |
[40] | NAVARRO-ESPÍNDOLA R, TAKANO-ROJAS H, SUASTE-OLMOS F, et al. Distinct contributions of the peroxisome-mitochondria fission machinery during sexual development of the fungus Podospora anserina[J]. Frontiers in Microbiology, 2020, 11: 640. |
[41] | MENDOZA-MENDOZA A, BERNDT P, DJAMEI A, et al. Physical-chemical plant-derived signals induce differentiation in Ustilago maydis[J]. Molecular Microbiology, 2009, 71(4): 895-911. |
[42] | VOLLMEISTER E, SCHIPPER K, BAUMANN S, et al. Fungal development of the plant pathogen Ustilago maydis[J]. FEMS Microbiology Reviews, 2012, 36(1): 59-77. |
[43] | KLOSE J, KRONSTAD J W. The multifunctional beta-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis[J]. Eukaryotic Cell, 2006, 5(12): 2047-2061. |
[44] | KRETSCHMER M, KLOSE J, KRONSTAD J W. Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis[J]. Eukaryotic Cell, 2012, 11(8): 1055-1066. |
[45] | TSITSIGIANNIS D I, KELLER N P. Oxylipins as developmental and host-fungal communication signals[J]. Trends in Microbiology, 2007, 15(3): 109-118. |
[46] | MANJITHAYA R, ANJARD C, LOOMIS W F, et al. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation[J]. The Journal of Cell Biology, 2010, 188(4): 537-546. |
[47] | WATERHAM H R, DE VRIES Y, RUSSEL K A, et al. The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1[J]. Molecular and Cellular Biology, 1996, 16(5): 2527-2536. |
[48] | PERAZA-REYES L, ARNAISE S, ZICKLER D, et al. The importomer peroxins are differentially required for peroxisome assembly and meiotic development in Podospora anserina: insights into a new peroxisome import pathway[J]. Molecular Microbiology, 2011, 82(2): 365-377. |
[49] | PERAZA-REYES L, ESPAGNE E, ARNAISE S, et al. The role of peroxisomes in the regulation of Podospora anserina sexual development[J]. Research Signpost, 2009: 61-68. |
[50] | PERAZA-REYES L, ESPAGNE E, ARNAISE S, et al. Peroxisomes in filamentous fungi[M]// BORKOVICHK A, EBBOLED J.Cellular and Molecular Biology of Filamentous Fungi. Washington, DC, USA: ASM Press, 2014: 191-206. |
[51] | BERTEAUX-LECELLIER V, PICARD M, THOMPSON-COFFE C, et al. A nonmammalian homolog of the PAF7 gene(Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina[J]. Cell, 1995, 81(7): 1043-1051. |
[52] | MOTLEY A M, HETTEMA E H. Yeast peroxisomes multiply by growth and division[J]. The Journal of Cell Biology, 2007, 178(3): 399-410. |
[53] | SEONG K Y, ZHAO X H, XU J R, et al. Conidial germination in the filamentous fungus Fusarium graminearum[J]. Fungal Genetics and Biology, 2008, 45(4): 389-399. |
[54] | GÓMEZ B L, NOSANCHUK J D. Melanin and fungi[J]. Current Opinion in Infectious Diseases, 2003, 16(2): 91-96. |
[55] | COPPIN E, SILAR P. Identification of PaPKS1, a polyketide synthase involved in melanin formation and its use as a genetic tool in Podospora anserina[J]. Mycological Research, 2007, 111(8): 901-908. |
[56] | WANG Z Y, SOANES D M, KERSHAW M J, et al. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection[J]. Molecular Plant-Microbe Interactions, 2007, 20(5): 475-491. |
[57] | BOISNARD S, ESPAGNE E, ZICKLER D, et al. Peroxisomal ABC transporters and β-oxidation during the life cycle of the filamentous fungus Podospora anserina[J]. Fungal Genetics and Biology, 2009, 46(1): 55-66. |
[58] | HYNES M J, MURRAY S L, ANDRIANOPOULOS A, et al. Role of carnitine acetyltransferases in acetyl coenzyme A metabolism in Aspergillus nidulans[J]. Eukaryotic Cell, 2011, 10(4): 547-555. |
[59] | TRAIL F. Fungal cannons: explosive spore discharge in the Ascomycota[J]. FEMS Microbiology Letters, 2007, 276(1): 12-18. |
[60] | SON H, MIN K, LEE J, et al. Mitochondrial carnitine-dependent acetyl coenzyme A transport is required for normal sexual and asexual development of the ascomycete Gibberella zeae[J]. Eukaryotic Cell, 2012, 11(9): 1143-1153. |
[1] | WANG Xiangyun, WANG Luyan, ZHANG Changpeng, LI Yanjie, ZHAO Xueping, JIANG Jinhua. Analysis of the registration of compound preparations of triazole fungicides and strobilurin fungicides [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2121-2129. |
[2] | WANG Xiaoli, ZHAO Yingwei, KONG Xiaona, CAO Zilin. Isolation and identification of mycorrhizal fungi in rhizosphere and their effect on growth and photosynthetic characteristics of Eucalyptus globulus seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1015-1023. |
[3] | DU Hong, LI Yupeng, CHENG Wen, XIAO Rongying, HU Peng. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. |
[4] | LI Yuting, LI Sha, CAO Jie, LI Jiaoyang, ZHANG Liang, XU Xiaofeng. Effects of microplastics on growth and antioxidant system of ectomycorrhizal fungi [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1049-1060. |
[5] | LIU Na, FAN Qiaochu, ZHOU Jia, SONG Yajing, ZHANG Guwen, FENG Zhijuan, BO Yuanpeng, WANG Bin, GONG Yaming. Identification and control of anthracnose in vegetable soybean [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2682-2688. |
[6] | LYU Lu, WU Shenggan, WANG Qiang, ZHAO Xueping, XU Mingfei. Primary risk assessment of several fungicides to typical vineyard terrestrial organisms [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2512-2521. |
[7] | WU Jiawei, YAO Zhangliang, HU Qiqi, ZHANG Jie, CHEN Yi, JIANG Jianrong, ZHOU Guoxin, WANG Xia. Fungicides and optimum time for control of pear rust in Tongxiang City, north Zhejiang, China [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1668-1675. |
[8] | CHEN Jipeng, LIU Xiaolin, LI Shengqiang, LIU Xianjun, HU Yueqing, CHEN Tao. Obtaining and genetic analysis of hybrid progeny between Brassica napus cv. Xiangyou 15 and Brassica campestris ssp. pekinensis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1170-1176. |
[9] | JIANG Yuhang, XIN Weigang, ZHANG Qili, DENG Xianyu, WANG Feng, LIN Lianbing. Isolation and identification of fungi from mildewed feed corn and study on anti-mildew and antifungal effects of lactobacillin [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1283-1291. |
[10] | SUN Caixia, OUYANG Zhizhou, LIU Yuhong, YU Guoguang. Residue dynamic and risk assessment of three fungicides in broccoli [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1292-1299. |
[11] | WANG Guorong, FENG Xiaoxiao, WU Huiming, CAO Tingting, LI Qian, ZHENG Yongli. Identification of causal agent and dynamics survey of celery stalk basal rot and screening of fungicides [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 661-669. |
[12] | ZHAO Hua, REN Qingwen, WANG Xiyu, LI Zhenni, TANG Xiumei, JIANG Lihui, LIU Peng, XING Chenghua. Effects of arbuscular mycorrhizal fungi on antioxidant enzymes activities and photosynthetic characteristics of Solanum lycopersicum L. under salt stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2075-2084. |
[13] | XU Xuefen, NI Chunhui, LI Huixia, LI Huanyu, LI Wenhao, CHEN Yuan, HU Fangdi. Pathogen identification and indoor toxicity tests on root rot of Codonopsis pilosula [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 96-103. |
[14] | ZHANG Liang, LI Yuting, XU Xiaofeng. Dissolution and release of soil potassium by ectomycorrhizal fungi under Mn2+ stress [J]. , 2020, 32(7): 1215-1222. |
[15] | SHI Zhaoyong, LI Ke, WANG Fayuan, WANG Xugang, XU Xiaofeng. Effects of nano-silver and exotic arbuscular mycorrhizal fungi on chlorophyll fluorescence kinetics of sweet sorghum [J]. , 2020, 32(2): 283-290. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||