Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (4): 858-868.DOI: 10.3969/j.issn.1004-1524.20240424
• Environmental Science • Previous Articles Next Articles
HUANG Pengwu1(), WU Qianqian1, ZHAO Lifang1, SHAO Dezhong1, WU Lujie1, ZHAO Miyang2, TIAN Yu3, LU Shenggao3,*(
)
Received:
2024-05-10
Online:
2025-04-25
Published:
2025-05-09
Contact:
LU Shenggao
CLC Number:
HUANG Pengwu, WU Qianqian, ZHAO Lifang, SHAO Dezhong, WU Lujie, ZHAO Miyang, TIAN Yu, LU Shenggao. Long-term effects of inorganic conditioner combined with organic manure in ameliorating acidified soil[J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 858-868.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240424
调理剂 Conditioner | 各元素的质量分数Mass fraction of elements/% | ||||||
---|---|---|---|---|---|---|---|
O | Si | Al | Fe | Ca | Mg | K | |
石灰Lime | 40.50 | 1.34 | 0.28 | 0.14 | 52.4 | 0.81 | 0.04 |
硅钙钾镁Fertilizer of calcium silicon magnesium potassium | 35.40 | 13.10 | 4.31 | 2.67 | 21.1 | 1.71 | 2.84 |
牡蛎壳Oyster shell | 37.00 | 2.66 | 1.21 | 0.33 | 16.1 | 0.53 | 0.35 |
Table 1 Elemental composition of conditioners
调理剂 Conditioner | 各元素的质量分数Mass fraction of elements/% | ||||||
---|---|---|---|---|---|---|---|
O | Si | Al | Fe | Ca | Mg | K | |
石灰Lime | 40.50 | 1.34 | 0.28 | 0.14 | 52.4 | 0.81 | 0.04 |
硅钙钾镁Fertilizer of calcium silicon magnesium potassium | 35.40 | 13.10 | 4.31 | 2.67 | 21.1 | 1.71 | 2.84 |
牡蛎壳Oyster shell | 37.00 | 2.66 | 1.21 | 0.33 | 16.1 | 0.53 | 0.35 |
Fig.1 Soil pH and total exchangeable acid content under treatments Bars marked without the same lowercase or uppercase letters indicate significant difference within treatments at P<0.05 in 2021 and 2023, respectively.
Fig.2 Content of exchangeable K+, Na+, Ca2+, and Mg2+ under treatments Bars marked without the same letters indicate significant difference within treatments at P<0.05. The same as in Fig. 2 to Fig. 4.
Fig.6 Composition of soil bacterial community at phylum level (left) and its β-diversity (right) under treatments PCoA, Principal co-ordinates analysis.
Fig.7 Dominant bacterial phyla in soil under treatments Bars marked without the same letters indicate significant difference within treatments in the same phylum at P<0.05.
处理 Treatment | 细菌香农指数 Bacterial Shannon index | 真菌香农指数 Fungal Shannon index |
---|---|---|
CK | 2.14±0.10 bc | 0.91±0.10 a |
T1 | 2.20±0.10 ab | 0.72±0.20 a |
T2 | 2.26±0.10 a | 0.86±0.10 a |
T3 | 2.09±0.10 c | 0.74±0.20 a |
Table 2 Soil microbial α-diversity index under treatmetns
处理 Treatment | 细菌香农指数 Bacterial Shannon index | 真菌香农指数 Fungal Shannon index |
---|---|---|
CK | 2.14±0.10 bc | 0.91±0.10 a |
T1 | 2.20±0.10 ab | 0.72±0.20 a |
T2 | 2.26±0.10 a | 0.86±0.10 a |
T3 | 2.09±0.10 c | 0.74±0.20 a |
处理 Treatment | MBC/(mg·kg-1) | MBN/(mg·kg-1) | Pro/(U·g-1) | NR/(U·g-1) | Pho/(U·g-1) | AP/(U·g-1) |
---|---|---|---|---|---|---|
CK | 196.6±32.0 c | 13.3±3.0 a | 153.1±10.0 b | 0.28±0.10 a | 2 404±109 a | 4 981±141 a |
T1 | 319.9±12.0 a | 16.5±1.0 a | 198.1±14.0 a | 0.41±0.20 a | 2 069±177 ab | 4 793±93 a |
T2 | 228.8±21.0 bc | 16.1±2.0 a | 192.5±10.0 a | 0.38±0.20 a | 2 570±319 a | 5 211±301 a |
T3 | 291.3±11.0 ab | 19.1±3.0 a | 165.9±8.0 ab | 0.10±0.10 a | 1 571±57 b | 4 771±162 a |
Table 3 Content of microbial biomass carbon and microbial biomass nitrogen and soil enzymes activities under treatments
处理 Treatment | MBC/(mg·kg-1) | MBN/(mg·kg-1) | Pro/(U·g-1) | NR/(U·g-1) | Pho/(U·g-1) | AP/(U·g-1) |
---|---|---|---|---|---|---|
CK | 196.6±32.0 c | 13.3±3.0 a | 153.1±10.0 b | 0.28±0.10 a | 2 404±109 a | 4 981±141 a |
T1 | 319.9±12.0 a | 16.5±1.0 a | 198.1±14.0 a | 0.41±0.20 a | 2 069±177 ab | 4 793±93 a |
T2 | 228.8±21.0 bc | 16.1±2.0 a | 192.5±10.0 a | 0.38±0.20 a | 2 570±319 a | 5 211±301 a |
T3 | 291.3±11.0 ab | 19.1±3.0 a | 165.9±8.0 ab | 0.10±0.10 a | 1 571±57 b | 4 771±162 a |
[1] | 易杰祥, 吕亮雪, 刘国道. 土壤酸化和酸性土壤改良研究[J]. 华南热带农业大学学报, 2006(1): 23-28. |
YI J X, LÜ L X, LIU G D. Research on soil acidification and acidic soil’s melioration[J]. Journal of South China University of Tropical Agriculture, 2006(1): 23-28. (in Chinese with English abstract) | |
[2] | 孟红旗, 刘景, 徐明岗, 等. 长期施肥下我国典型农田耕层土壤的pH演变[J]. 土壤学报, 2013, 50(6): 1109-1116. |
MENG H Q, LIU J, XU M G, et al. Evolution of pH in topsoils of typical Chinese croplands under long-term fertilization[J]. Acta Pedologica Sinica, 2013, 50(6): 1109-1116. (in Chinese with English abstract) | |
[3] | 于天一, 孙秀山, 石程仁, 等. 土壤酸化危害及防治技术研究进展[J]. 生态学杂志, 2014, 33(11): 3137-3143. |
YU T Y, SUN X S, SHI C R, et al. Advances in soil acidification hazards and control techniques[J]. Chinese Journal of Ecology, 2014, 33(11): 3137-3143. (in Chinese with English abstract) | |
[4] | 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244. |
XU R K. Research progresses in soil acidification and its control[J]. Soils, 2015, 47(2): 238-244. (in Chinese with English abstract) | |
[5] | 左梅, 向必坤, 王瑞, 等. 石灰与油菜还田对土壤肥力与雪茄烟产量、质量的影响[J]. 中国土壤与肥料, 2023(6): 102-107. |
ZUO M, XIANG B K, WANG R, et al. Effects of lime and rape returning on soil fertility and cigar yield and quality[J]. Soil and Fertilizer Sciences in China, 2023(6): 102-107. (in Chinese with English abstract) | |
[6] | 刘禹池, 岳丽杰, 卢庭启, 等. 不同调酸措施对西南山地酸化土壤改良及玉米产量的影响[J]. 中国土壤与肥料, 2023(1): 191-198. |
LIU Y C, YUE L J, LU T Q, et al. Effects of different acid regulating measures on acidification soil improvement and maize yield in southwest mountainous areas[J]. Soil and Fertilizer Sciences in China, 2023(1): 191-198. (in Chinese with English abstract) | |
[7] | 王宁, 李九玉, 徐仁扣. 土壤酸化及酸性土壤的改良和管理[J]. 安徽农学通报, 2007, 13(23): 48-51. |
WANG N, LI J Y, XU R K. Acidification of soil and improvement and management of acid soil[J]. Anhui Agricultural Science Bulletin, 2007, 13(23): 48-51. (in Chinese) | |
[8] | 李九玉, 王宁, 徐仁扣. 工业副产品对红壤酸度改良的研究[J]. 土壤, 2009, 41(6): 932-939. |
LI J Y, WANG N, XU R K. Amelioration of industrial by-products on soil acidity in red soil[J]. Soils, 2009, 41(6): 932-939. (in Chinese with English abstract) | |
[9] | 周昊文, 王香琪, 齐永波, 等. 矿物质调理剂用量对酸性土壤养分状况和油菜生长的影响[J]. 中国土壤与肥料, 2021(3): 243-249. |
ZHOU H W, WANG X Q, QI Y B, et al. Effects of amounts of mineral conditioner on the nutrient status in acid soil and the yield of oilseed rape[J]. Soil and Fertilizer Sciences in China, 2021(3): 243-249. (in Chinese with English abstract) | |
[10] | 冀建华, 李絮花, 刘秀梅, 等. 硅钙钾镁肥对南方稻田土壤酸性和盐基离子动态变化的影响[J]. 应用生态学报, 2019, 30(2): 583-592. |
JI J H, LI X H, LIU X M, et al. Effects of fertilizer of calcium silicon magnesium potassium on the dynamics of soil acidity and exchangeable base cation in paddy field of southern China[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 583-592. (in Chinese with English abstract) | |
[11] | 韩科峰, 陈余平, 胡铁军, 等. 硅钙钾镁肥对浙江省酸性水稻土壤的改良效果[J]. 浙江农业学报, 2018, 30(1): 117-122. |
HAN K F, CHEN Y P, HU T J, et al. Effects of silicon, calcium, potassium and magnesium fertilizer on acid paddy soil improvement in Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 2018, 30(1): 117-122. (in Chinese with English abstract) | |
[12] | 孙希武, 彭福田, 肖元松, 等. 硅钙钾镁肥配施黄腐酸钾对土壤酶活性及桃幼树生长的影响[J]. 核农学报, 2020, 34(4): 870-877. |
SUN X W, PENG F T, XIAO Y S, et al. Effects of silicon, calcium, potassium and magnesium fertilizer combined with fulvic acid potassium on soil enzyme activity and the growth of young peach trees[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(4): 870-877. (in Chinese with English abstract) | |
[13] | 曹敏杰, 丁希月, 许玲玲, 等. 牡蛎壳资源利用研究进展[J]. 集美大学学报(自然科学版), 2021, 26(5): 390-397. |
CAO M J, DING X Y, XU L L, et al. Progress of the utilization of oyster shell resource[J]. Journal of Jimei University(Natural Science), 2021, 26(5): 390-397. (in Chinese with English abstract) | |
[14] | 柳开楼, 熊华荣, 胡惠文, 等. 特贝钙土壤调理剂对红壤旱地花生产量和阻控土壤酸化的影响[J]. 广东农业科学, 2017, 44(5): 93-98. |
LIU K L, XIONG H R, HU H W, et al. Effects of soil conditioner(named by Tebeigai) on peanut yield and controlling soil acidification in red soil[J]. Guangdong Agricultural Sciences, 2017, 44(5): 93-98. (in Chinese with English abstract) | |
[15] | 田中学, 徐丽萍, 王旭. 土壤调理剂对小油菜镉吸收的影响[J]. 中国土壤与肥料, 2018(1): 94-100. |
TIAN Z X, XU L P, WANG X. Effects of soil amendments on the adsorption of Cd by small rape[J]. Soil and Fertilizer Sciences in China, 2018(1): 94-100. (in Chinese with English abstract) | |
[16] | DING Z F, REN B L, CHEN Y H, et al. Chemical and biological response of four soil types to lime application: an incubation study[J]. Agronomy, 2023, 13(2): 504. |
[17] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[18] | VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707. |
[19] | 徐欣, 郑利远, 周珂, 等. 长期施肥对不同有机质水平黑土蛋白酶活性及氮素的影响[J]. 中国土壤与肥料, 2019(1): 44-48. |
XU X, ZHENG L Y, ZHOU K, et al. Effects of long-term fertilization on protease activity and nitrogen in arable mollisols of different organic matter contents[J]. Soil and Fertilizer Sciences in China, 2019(1): 44-48. (in Chinese with English abstract) | |
[20] | 侯萌, 李思聪, 陈一民, 等. 水肥管理对设施黑土茄子土壤硝酸还原酶活性的影响[J]. 土壤与作物, 2021, 10(2): 187-193. |
HOU M, LI S C, CHEN Y M, et al. Effects of irrigation and fertilizers management on nitrate reductase activities in Mollisols under facility eggplant field[J]. Soils and Crops, 2021, 10(2): 187-193. (in Chinese with English abstract) | |
[21] | 王兵爽, 李淑君, 张舒桓, 等. 西瓜根系分泌酸性磷酸酶对有机肥营养的响应[J]. 土壤学报, 2019, 56(2): 454-465. |
WANG B S, LI S J, ZHANG S H, et al. Responses of acid phosphatase secreted by watermelon roots to organic manure nutrition[J]. Acta Pedologica Sinica, 2019, 56(2): 454-465. (in Chinese with English abstract) | |
[22] | TABATABAI M A, BREMNER J M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity[J]. Soil Biology and Biochemistry, 1969, 1(4): 301-307. |
[23] | HOULE D, DUCHESNE L, MOORE J D, et al. Soil and tree-ring chemistry response to liming in a sugar maple stand[J]. Journal of Environmental Quality, 2002, 31(6): 1993-2000. |
[24] | CAIRES E F, GARBUIO F J, CHURKA S, et al. Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield[J]. European Journal of Agronomy, 2008, 28(1): 57-64. |
[25] | 孟赐福, 傅庆林, 水建国, 等. 浙江中部红壤施用石灰对土壤交换性钙、镁及土壤酸度的影响[J]. 植物营养与肥料学报, 1999, 5(2): 129-136. |
MENG C F, FU Q L, SHUI J G, et al. Effect of liming on acidity and exchangeable calcium and magensium of red soil in central Zhejiang[J]. Journal of Plant Nutrition and Fertilizers, 1999, 5(2): 129-136. (in Chinese) | |
[26] | NEALE S P, SHAH Z, ADAMS W A. Changes in microbial biomass and nitrogen turnover in acidic organic soils following liming[J]. Soil Biology and Biochemistry, 1997, 29(9/10): 1463-1474. |
[27] | SHI L, GUO Z H, PENG C, et al. Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: a four-season field experiment[J]. Ecotoxicology and Environmental Safety, 2019, 171: 425-434. |
[28] | BENDING G D, TURNER M K, RAYNS F, et al. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes[J]. Soil Biology and Biochemistry, 2004, 36(11): 1785-1792. |
[29] | CHEN H, REN H Y, LIU J J, et al. Soil acidification induced decline disease of Myrica rubra: aluminum toxicity and bacterial community response analyses[J]. Environmental Science and Pollution Research International, 2022, 29(30): 45435-45448. |
[30] | 杨玲, 张艺, 钟俊杰, 等. 不同调酸剂对种植玉米红壤微生物群落的影响[J]. 农业环境科学学报, 2024, 43(3): 609-616. |
YANG L, ZHANG Y, ZHONG J J, et al. Effects of different acid modulators on the microbial communities in maize planting red soil[J]. Journal of Agro-Environment Science, 2024, 43(3): 609-616. (in Chinese with English abstract) | |
[31] | DU E Z, TERRER C, PELLEGRINI A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature Geoscience, 2020, 13(3): 221-226. |
[32] | WATANABE K. Detection of protease genes in field soil applied with liquid livestock feces and speculation on their function and origin[J]. Soil Science and Plant Nutrition, 2009, 55(1): 42-52. |
[33] | 张广娜, 陈振华, 陈利军, 等. 东北地区三种典型土壤磷组分的31P核磁共振研究及其与土壤磷酸酶活性的关系[J]. 土壤通报, 2013, 44(3): 617-623. |
ZHANG G N, CHEN Z H, CHEN L J, et al. Soil phosphorus composition by 31P NMR spectroscopy and soil phosphatase activities of three typical soils in northeast China[J]. Chinese Journal of Soil Science, 2013, 44(3): 617-623. (in Chinese with English abstract) |
[1] | YAO Yanlai, ZHU Weijing, DING Jian, HONG Leidong, HONG Chunlai, WANG Weiping, ZHU Fengxiang, HE Weike, HONG Haiqing. Investigation and analysis of continuous cropping obstacle and soil environment in large-scale vegetable bases in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1474-1484. |
[2] | LOU Fei, FU Tianling, DAI Liangyu, ZHOU Kai, LIN Dasong, HE Tengbing. Effects of soil conditioners on Cd translocation and accumulation and yield of rice in central Guizhou Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1493-1501. |
[3] | CHEN Gui, ZHOU Jiewen, LI Haiping, ZHANG Faming, LI Chunshun, LIU Li, ZHANG Y. Effects of soil conditioner application on pH value of acidified soil and root characteristics of flue-cured tobacco [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1275-1282. |
[4] | ZHU Yun, GUO Bin, LIN Yicheng, FU Qinglin, LIU Chen, LI Ningyu, LI Hua. Effects of self-developed soil conditioner on soil physiochemical properties and rice yield in coastal saline soil [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 885-892. |
[5] | WANG Yiming, LONG Shengju, CHEN Yan, HE Zhongqun, ZHAO Yingpeng, YANG Luxi, YAN Wenyi. Effect of soil simulated acidification on photosynthetic characteristics and ultrastructure of Sedum aizoon L. leaves [J]. , 2019, 31(6): 915-921. |
[6] | HAN Kefeng, CHEN Yuping, HU Tiejun, ZHANG Feng, ZHOU Fei, CHENG Jianqiu, WU Lianghuan. Effects of silicon, calcium, potassium and magnesium fertilizer on acid paddy soil improvement in Zhejiang Province [J]. , 2018, 30(1): 117-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||