Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (6): 1285-1292.DOI: 10.3969/j.issn.1004-1524.20240530
• Plant Protection • Previous Articles Next Articles
DONG Daixing1(), YANG Guiying2, WANG Aiying2, LUO Ju2, LIU Shuhua2,*(
)
Received:
2024-06-21
Online:
2025-06-25
Published:
2025-07-08
CLC Number:
DONG Daixing, YANG Guiying, WANG Aiying, LUO Ju, LIU Shuhua. GTP cyclohydrolase: a RNAi target gene against the brown planthopper (Nilaparvata lugens)[J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1285-1292.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240530
用途 Purpose | 引物名称a Primer namea | 引物序列(5'→ 3')b Primer sequence(5'→ 3')b |
---|---|---|
ORF扩增 | NlGCHI-F1 | ATGGAGCTGGACCACAGACCAC |
ORF clone | NlGCHI-R1 | CAAGAATTCCTCGCGTGTCTTGG |
非翻译区扩增RACE | NlGCHI-5' | GTGGTCTGTGGTCCAGCTCCATGTC |
NlGCHI-3' | GCAAGACGACCACATCTACGATGCTG | |
实时荧光定量PCR | NlGCHIa-F | CACCAGGTCACGAGAAA |
qRT-PCR | NlGCHIb-F | CGAGAATGGTCACGAGAA |
NlGCHIa&b-R | AATACGGCGTCATTCAG | |
qRPS15-F | CCGATCGTGTGGCGTTGAAGGG | |
qRPS15-R | ATGGCCGACATTCTTCCAGGTCC | |
qTUB-F | ACTCGTTCGGAGGAGGCACC | |
qTUB-R | GTTCCAGGGTGGTGTGGGTGGT | |
dsRNA合成引物 | dsNlGCHI-F | taatacgactcactatagggagGCATCACTTGGTCCCATTC |
dsRNA synthesis | dsNlGCHI-R | taatacgactcactatagggagAATTCCTCGCGTGTCTTGG |
Table 1 The specific primers used in this research
用途 Purpose | 引物名称a Primer namea | 引物序列(5'→ 3')b Primer sequence(5'→ 3')b |
---|---|---|
ORF扩增 | NlGCHI-F1 | ATGGAGCTGGACCACAGACCAC |
ORF clone | NlGCHI-R1 | CAAGAATTCCTCGCGTGTCTTGG |
非翻译区扩增RACE | NlGCHI-5' | GTGGTCTGTGGTCCAGCTCCATGTC |
NlGCHI-3' | GCAAGACGACCACATCTACGATGCTG | |
实时荧光定量PCR | NlGCHIa-F | CACCAGGTCACGAGAAA |
qRT-PCR | NlGCHIb-F | CGAGAATGGTCACGAGAA |
NlGCHIa&b-R | AATACGGCGTCATTCAG | |
qRPS15-F | CCGATCGTGTGGCGTTGAAGGG | |
qRPS15-R | ATGGCCGACATTCTTCCAGGTCC | |
qTUB-F | ACTCGTTCGGAGGAGGCACC | |
qTUB-R | GTTCCAGGGTGGTGTGGGTGGT | |
dsRNA合成引物 | dsNlGCHI-F | taatacgactcactatagggagGCATCACTTGGTCCCATTC |
dsRNA synthesis | dsNlGCHI-R | taatacgactcactatagggagAATTCCTCGCGTGTCTTGG |
Fig.1 Spatial-temporal expression patterns of NlGCHIa and NlGCHIb in Nilaparvata lugens (A) Relative expression levels of NlGCHIa and NlGCHIb during different developmental stages. N4-4h represents 4 h-old 4th-instar nymphs; FA-4h represents 4 h-old female adults; The other samples have the same naming method. (B) Relative expression levels of NlGCHIa and NlGCHIb in different tissues. MG, Midgut; FB, Fat body; CT, Cuticle; OV, Ovary; TE, Testis. The relative expression level was expressed as mean ±standard error (n=4).
Fig.2 Effects of dsNlGCHI injection on NlGCHI mRNA expression levels and survival rate in N. lugens (A) Relative expression level of NlGCHI post dsNlGCHI injection; (B) Survival pattern after injection of dsNlGCHI into 3rd instar nymphs. *, The survival rate of BPHs injected with dsNlGCHI is significantly lower than that injected with dsGFP.
Fig.3 Effects of NlGCHI mRNA knockdown on eye coloration, body coloration and dead phenotype in N. lugens (A) The phenotype of compound eyes after dsNlGCHI injection; (B) The phenotype of body color after dsNlGCHI injection; 0 h, 4 h, and 24 h represent 0 h-, 4 h- and 24 h-old 5th-instar nymphs, respectively; (C) The dead phenotype after dsNlGCHI injection.
Fig.4 Effects of inhibitor DAHP on the growth and development of N. lugens (A) The survival rate curve of N. lugens; *, The survival rate of BPHs after feeding inhibitor DAHP is significantly lower than that in the control group; (B) The dead phenotype of N. lugens after feeding the inhibitor DAHP.
[1] | VERLINDEN H. Dopamine signalling in locusts and other insects[J]. Insect Biochemistry and Molecular Biology, 2018, 97: 40-52. |
[2] | ZHANG H H, ZHANG Q W, IDREES A, et al. Tyrosine hydroxylase is crucial for pupal pigmentation in Zeugodacus tau(Walker) (Diptera: Tephritidae)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2019, 231: 11-19. |
[3] | LIVINGSTONE M S, TEMPEL B L. Genetic dissection of monoamine neurotransmitter synthesis in Drosophila[J]. Nature, 1983, 303(5912): 67-70. |
[4] | WEISBERG E P, O’DONNELL J M. Purification and characterization of GTP cyclohydrolase I from Drosophila melanogaster[J]. Journal of Biological Chemistry, 1986, 261(3): 1453-1458. |
[5] | KATO T, SAWADA H, YAMAMOTO T, et al. Pigment pattern formation in the quail mutant of the silkworm, Bombyx mori: parallel increase of pteridine biosynthesis and pigmentation of melanin and ommochromes[J]. Pigment Cell Research, 2006, 19(4): 337-345. |
[6] | NIE H Y, LIU C, CHENG T C, et al. Transcriptome analysis of integument differentially expressed genes in the pigment mutant (quail) during molting of silkworm, Bombyx mori[J]. PLoS One, 2014, 9(4): e94185. |
[7] | HAYAKAWA Y, SAWADA M, SEKI M, et al. Involvement of laccase2 and yellow-e genes in antifungal host defense of the model beetle, Tribolium castaneum[J]. Journal of Invertebrate Pathology, 2018, 151: 41-49. |
[8] | DU M H, YAN Z W, HAO Y J, et al. Suppression of laccase 2 severely impairs cuticle tanning and pathogen resistance during the pupal metamorphosis of Anopheles sinensis(Diptera: Culicidae)[J]. Parasites & Vectors, 2017, 10(1): 171. |
[9] | CHEN E H, HOU Q L, WEI D D, et al. Tyrosine hydroxylase coordinates larval-pupal tanning and immunity in oriental fruit fly (Bactrocera dorsalis)[J]. Pest Management Science, 2018, 74(3): 569-578. |
[10] | ZHANG Y J, ZHENG S H, GENG Y Y, et al. microRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1[J]. PLoS One, 2015, 10(3): e0122674. |
[11] | LIU S H, YANG B J, WANG A Y, et al. RNA interference of tyrosine hydroxylase caused rapid mortality by impairing cuticle formation in Nilaparvata lugens(Hemiptera: Delphacidae)[J]. Pest Management Science, 2020, 76(6): 2225-2232. |
[12] | O’DONNELL J M, RANGANAYAKULU G, CHEN X, et al. Drosophila GTP cyclohyrodrolase: multiple isoform products of a single gene derive from alternate transcripts that are developmentally regulated and functionally specific[M]// AYLING J E, NAIR M G, BAUGH C M. Chemistry and Biology of Pteridines and Folates. Boston, MA: Springer US, 1993: 147-155. |
[13] | YUASA M, KIUCHI T, BANNO Y, et al. Identification of the silkworm quail gene reveals a crucial role of a receptor guanylyl cyclase in larval pigmentation[J]. Insect Biochemistry and Molecular Biology, 2016, 68: 33-40. |
[14] | SAWADA H, NAKAGOSHI M, REINHARDT R K, et al. Hormonal control of GTP cyclohydrolase I gene expression and enzyme activity during color pattern development in wings of Precis coenia[J]. Insect Biochemistry and Molecular Biology, 2002, 32(6): 609-615. |
[15] | FUTAHASHI R, FUJIWARA H. Expression of one isoform of GTP cyclohydrolase I coincides with the larval black markings of the swallowtail butterfly, Papilio xuthus[J]. Insect Biochemistry and Molecular Biology, 2006, 36(1): 63-70. |
[16] | ZE L J, XU P, WU J J, et al. Disruption of tetrahydrobiopterin (BH4) biosynthesis pathway affects cuticle pigmentation in Henosepilachna vigintioctopunctata[J]. Journal of Insect Physiology, 2023, 144: 104457. |
[17] | XUE J, ZHOU X, ZHANG C X, et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation[J]. Genome Biology, 2014, 15(12): 521. |
[18] | 任宗杰, 郭永旺, 秦萌, 等. 2022年全国农业有害生物抗药性监测评估与治理对策[J]. 中国植保导刊, 2023, 43(3): 62-71. |
REN Z J, GUO Y W, QIN M, et al. Monitoring, evaluation and control countermeasures of agricultural pest resistance in China in 2022[J]. China Plant Protection, 2023, 43(3): 62-71. (in Chinese with English abstract) | |
[19] | LIU S H, LUO J, LIU R, et al. Identification of Nilaparvata lugens and its two sibling species (N. bakeri and N. muiri) by direct multiplex PCR[J]. Journal of Economic Entomology, 2018, 111(6): 2869-2875. |
[20] | LIU S H, DING Z P, ZHANG C W, et al. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens[J]. Insect Biochemistry and Molecular Biology, 2010, 40(9): 666-671. |
[21] | FU Q, ZHANG Z T, HU C, et al. A chemically defined diet enables continuous rearing of the brown planthopper, Nilaparvata lugens(Stål)(Homoptera: Delphacidae)[J]. Applied Entomology and Zoology, 2001, 36(1): 111-116. |
[22] | 王栋, 陈源泉, 李道亮, 等. 农业领域若干颠覆性技术初探[J]. 中国工程科学, 2018, 20(6): 57-63. |
WANG D, CHEN Y Q, LI D L, et al. Foresight of disruptive technologies in agricultural engineering[J]. Strategic Study of CAE, 2018, 20(6): 57-63. (in Chinese with English abstract) | |
[23] | 于慧. 利用RNAi技术抑制褐飞虱蔗糖酶基因和蔗糖转运子基因的研究[D]. 杭州: 浙江大学, 2013. |
YU H. Suppression of sucrase gene and sugar transporter gene of the brown planthopper by RNA interference[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract) | |
[24] | 张凤珍. 利用RNAi技术控制褐飞虱的研究[D]. 杭州: 浙江大学, 2013. |
ZHANG F Z. Control of Nilaparvata lugens by RNAi[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract) | |
[25] | 禹海鑫. 褐飞虱致害性变异相关机理研究[D]. 杭州: 浙江大学, 2013. |
YU H X. Study on the mechanism responsible for the virulence variation of the rice brown planthopper, Nilaparvata lugens (Stål)[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract) | |
[26] | 纪锐. 唾液蛋白NI1860在褐飞虱致害性变异中的作用与机理研究[D]. 杭州: 浙江大学, 2013. |
JI R. The role of a salivary protein Nl1860 in the change in virulence of the rice brown planthopper, Nilaparvata lugens, and its mechanisms[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract) | |
[27] | KIM H, KIM K, KIM J, et al. Mutagenesis by imprecise excision of the piggyBac transposon in Drosophila melanogaster[J]. Biochemical and Biophysical Research Communications, 2012, 417(1): 335-339. |
[28] | FUJII T, ABE H, KAWAMOTO M, et al. Albino (al) is a tetrahydrobiopterin (BH4)-deficient mutant of the silkworm Bombyx mori[J]. Insect Biochemistry and Molecular Biology, 2013, 43(7): 594-600. |
[29] | TONG X L, LIANG P F, WU S Y, et al. Disruption of PTPS gene causing pale body color and lethal phenotype in the silkworm, Bombyx mori[J]. International Journal of Molecular Sciences, 2018, 19(4): 1024. |
[1] | YANG Lei, WANG Xiaofu, WEI Wei, CHEN Xiaoyun, PENG Cheng, XU Xiaoli, XU Junfeng. The antifungal responses of insects against an entomopathogenic fungi, Beauveria bassiana and their application potential in pest control [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 825-836. |
[2] | PENG Jiacheng, WU Yue, XU Jiehao, XIA Meiwen, QI Tianpeng, XU Haisheng. Cloning of paxillin gene from Macrobrachium nipponense and effect of cadmium stress on its expression [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 247-253. |
[3] | LIANG Feishuang, LIANG Huafang, Huang Jiayu, WANG Panmei, WEN Chongqing. Effect of RNA interference with PhCatC1/2 gene on expression of related immune genes in Panulirus homarus [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1037-1047. |
[4] | QIAO Mu, HUANG Cangyu, WU Junjing, WU Huayu, WAN Xuling, ZHOU Jiawei, LIU Guisheng, MEI Shuqi, PENG Xianwen1. Effect of porcine OLR1 gene on intramuscular preadipocytes differentiation [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2147-2153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||