[1] |
DI VINCENZO F, DEL GAUDIO A, PETITO V, et al. Gut microbiota, intestinal permeability, and systemic inflammation:a narrative review[J]. Internal and Emergency Medicine, 2024, 19(2):275-293.
|
[2] |
ZHAO M A, CHU J Y, FENG S Y, et al. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis:a review[J]. Biomedicine & Pharmacotherapy, 2023, 164:114985.
|
[3] |
MISHRA S P, WANG B, JAIN S, et al. A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut[J]. Gut, 2023, 72(10):1848-1865.
|
[4] |
SAUCEDO R, ORTEGA-CAMARILLO C, FERREIRA-HERMOSILLO A, et al. Role of oxidative stress and inflammation in gestational diabetes mellitus[J]. Antioxidants, 2023, 12(10):1812.
|
[5] |
HARIHARAN R, ODJIDJA E N, SCOTT D, et al. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases[J]. Obesity Reviews, 2022, 23(1):e13349.
|
[6] |
LAVELLE A, SOKOL H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nature Reviews Gastroenterology & Hepatology, 2020, 17(4):223-237.
|
[7] |
CAMPBELL C, KANDALGAONKAR M R, GOLONKA R M, et al. Crosstalk between gut microbiota and host immunity:impact on inflammation and immunotherapy[J]. Biomedicines, 2023, 11(2):294.
|
[8] |
SCHEFZIK R, HAHN B, SCHNEIDER-LINDNER V. Dissecting contributions of individual systemic inflammatory response syndrome criteria from a prospective algorithm to the prediction and diagnosis of sepsis in a polytrauma cohort[J]. Frontiers in Medicine, 2023, 10:1227031.
|
[9] |
GOTTS J E, MATTHAY M A. Sepsis:pathophysiology and clinical management[J]. BMJ, 2016, 353:i1585.
|
[10] |
CHEN S L, LEI Q, ZOU X H, et al. The role and mechanisms of gram-negative bacterial outer membrane vesicles in inflammatory diseases[J]. Frontiers in Immunology, 2023, 14:1157813.
|
[11] |
YAO Y, CAI X Y, FEI W D, et al. The role of short-chain fatty acids in immunity, inflammation and metabolism[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(1):1-12.
|
[12] |
DELEU S, MACHIELS K, RAES J, et al. Short chain fatty acids and its producing organisms:an overlooked therapy for IBD?[J]. eBioMedicine, 2021, 66:103293.
|
[13] |
蔡振辉, 陈金梅, 陈东海, 等. 海蛾乙酸乙酯提取物的分离纯化及抗肿瘤活性分析[J]. 福州大学学报(自然科学版), 2018, 46(2):295-300.
|
|
CAI Z H, CHEN J M, CHEN D H, et al. Separation, purification and anti-tumor activity analysis of the components from ethyl acetate extract of Pegasus laternarius Cuvier[J]. Journal of Fuzhou University(Natural Science Edition), 2018, 46(2):295-300. (in Chinese with English abstract)
|
[14] |
裴世锋. 海蛾活性物质的分离纯化及药理研究[D]. 福州: 福州大学, 2014.
|
|
PEI S F. Separation, purification and pharmacolgical research on the active compounds from Pegasus laternarius Cuvier[D]. Fuzhou: Fuzhou University, 2014. (in Chinese with English abstract)
|
[15] |
何晓彤, 王晨, 孙力军, 等. 鲍鱼内脏酶解物可调节肠道菌群及短链脂肪酸缓解小鼠系统低度炎症[J]. 微生物学杂志, 2022, 42(6):94-102.
|
|
HE X T, WANG C, SUN L J, et al. Abalone visceral hydrolysates can regulate intestinal microbial population and short-chain fatty acids to alleviate systemic low-grade inflammation in mice[J]. Journal of Microbiology, 2022, 42(6):94-102. (in Chinese with English abstract)
|
[16] |
GUERRERO-CARRASCO M, TARGETT I, OLMOS-ALONSO A, et al. Low-grade systemic inflammation stimulates microglial turnover and accelerates the onset of Alzheimer’s-like pathology[J]. Glia, 2024, 72(7):1340-1355.
|
[17] |
于晓玲, 赵梅. 饮食与慢性低度炎症关系研究进展[J]. 中国公共卫生, 2017, 33(8):1278-1281.
|
|
YU X L, ZHAO M. Progress in researches on relationship between diet and chronic low-grade inflammation[J]. Chinese Journal of Public Health, 2017, 33(8):1278-1281. (in Chinese with English abstract)
|
[18] |
邱小明, 石贤爱. 海蛾鱼提取物抗氧化及抗疲劳作用[J]. 食品工业科技, 2018, 39(4):12-16.
|
|
QIU X M, SHI X A. Antioxidant and antifatigue effects of Pegasus laternarius extracts[J]. Science and Technology of Food Industry, 2018, 39(4):12-16. (in Chinese with English abstract)
|
[19] |
GAO Y Y, LI X G, GAO J J, et al. Metabolomic analysis of radiation-induced lung injury in rats:the potential radioprotective role of taurine[J]. Dose-response, 2019, 17(4):1559325819883479.
|
[20] |
唐孝礼. 海蛾提取物的药理作用研究[D]. 广州: 中山大学, 1991.
|
|
TANG X L. Pharmacological study of sea moth extract[D]. Guangzhou: Sun Yat-Sen University, 1991. (in Chinese with English abstract)
|
[21] |
方剑, 王惠, 冯政轩, 等. 鱼油改善肠道菌群与宿主互作失调并维持缓解小鼠肠炎[J]. 中国生物化学与分子生物学报, 2022, 38(6):749-761.
|
|
FANG J, WANG H, FENG Z X, et al. Fish oil improves dysbiosis of host-microbial interaction and maintains remission in colitis mice[J]. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38(6):749-761. (in Chinese with English abstract)
|
[22] |
LIU H X, SONG G K, WANG Z, et al. Anti-inflammatory mechanism of coregonus peled oil via the inhibition of nuclear factor kappa-B(NF-nism signal transducer and activator of transcription 1 (STAT1), and succinate/hypoxia-inducible factor-1ccinate/hysignaling pathways[J]. Food Science, 2023, 44(17):67-78.
|
[23] |
CHAUDHRY T S, SENAPATI S G, GADAM S, et al. The impact of microbiota on the gut-brain axis:examining the complex interplay and implications[J]. Journal of Clinical Medicine, 2023, 12(16):5231.
|
[24] |
ARIFUZZAMAN M, COLLINS N, GUO C J, et al. Nutritional regulation of microbiota-derived metabolites:implications for immunity and inflammation[J]. Immunity, 2024, 57(1):14-27.
|
[25] |
BERI S, SHANDIL A, GARG R. Stenotrophomonas maltophilia:an emerging entity for cluster endophthalmitis[J]. Indian Journal of Ophthalmology, 2017, 65(11):1166-1171.
|
[26] |
OJEDA J, ÁVILA A, VIDAL P M. Gut microbiota interaction with the central nervous system throughout life[J]. Journal of Clinical Medicine, 2021, 10(6):1299.
|
[27] |
王晨, 孙东方, 孙力军, 等. 虾头酶解物对辣椒素诱导的小鼠系统性低度炎症和肠道菌群紊乱的调节作用[J]. 中国微生态学杂志, 2021, 33(1):1-9.
|
|
WANG C, SUN D F, SUN L J, et al. The intervention of shrimp head enzymatic hydrolysate on capsaicin-induced systemic low-grade inflammation and the structure and function of gut microbiota in mice[J]. Chinese Journal of Microecology, 2021, 33(1):1-9. (in Chinese with English abstract)
|
[28] |
CHEN L F, LI H Y, LI J Y, et al. Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates microbiota dysbiosis in an experimental model of sepsis[J]. International Journal of Molecular Medicine, 2019, 43(3):1139-1148.
|
[29] |
MEI F F, DUAN Z W, CHEN M X, et al. Effect of a high-collagen peptide diet on the gut microbiota and short-chain fatty acid metabolism[J]. Journal of Functional Foods, 2020, 75:104278.
|
[30] |
CAO W J, ZHENG C H, XU X, et al. Clostridium butyricum potentially improves inflammation and immunity through alteration of the microbiota and metabolism of gastric cancer patients after gastrectomy[J]. Frontiers in Immunology, 2022, 13:1076245.
|
[31] |
FUSCO W, LORENZO M B, CINTONI M, et al. Short-chain fatty-acid-producing bacteria:key components of the human gut microbiota[J]. Nutrients, 2023, 15(9):2211.
|
[32] |
SHIN Y, HAN S, KWON J, et al. Roles of short-chain fatty acids in inflammatory bowel disease[J]. Nutrients, 2023, 15(20):4466.
|