Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (7): 1397-1406.DOI: 10.3969/j.issn.1004-1524.20240779
• Crop Science • Previous Articles Next Articles
XIAN Ruotong1,2(), MIAO Qingmei2, PENG Cheng2, CHEN Xiaoyun2, YANG Lei2, XU Xiaoli2, WEI Wei2, XU Junfeng2, LI Yueying1,*(
), WANG Xiaofu2,*(
)
Received:
2024-09-04
Online:
2025-07-25
Published:
2025-08-20
CLC Number:
XIAN Ruotong, MIAO Qingmei, PENG Cheng, CHEN Xiaoyun, YANG Lei, XU Xiaoli, WEI Wei, XU Junfeng, LI Yueying, WANG Xiaofu. Establishment and application of event-specific real-time PCR detection method of transgenic maize WYN17132[J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1397-1406.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240779
5’端引物和探针 5’primers and probes | 序列Sequence(5’-3’) | 3’端引物和探针 3’primers and probes | 序列Sequence(5’-3’) |
---|---|---|---|
17132LB-qF1 | CCGGTTCGTTTTGAGTAGGA | 17132RB-qF1 | GCGCGCAAACTAGGATAAA |
17132LB-qR1 | GTCCGCAATGTGTTATTAAGTTGTC | 17132RB-qR1 | CGGGTTGATTTGGTTAAAGC |
17132LB-qP1 | TGGTGTAAACAAATTGACGC | 17132RB-qP1 | CATCTTCAAAAAGAGACCC |
17132LB-qF2 | ACAAATAGGGTGTGGCTGTT | 17132RB-qF2 | AGCGCGCAAACTAGGATAAA |
17132LB-qR2 | AACGTCCGCAATGTGTTATTAAG | 17132RB-qR2 | TCCTAGACTCAGGCGAACAA |
17132LB-qP2 | CAGCGTCTCGTACCGGTTCGTTT | 17132RB-qP2 | AACCAAATCAACCCGTCGTCCGTA |
17132LB-qF3 | CTCACGGACGGAGACAAATAG | 17132RB-qF3 | TGATTAGAGTCCCGCAATTATACA |
17132LB-qR3 | GCGTCAATTTGTTTACACCACA | 17132RB-qR3 | CGACGGGTTGATTTGGTTAAAG |
17132RB-qP3 | TAGGATAAATTATCGCGCGCGGTGT |
Table 1 Sequences of primers and probes
5’端引物和探针 5’primers and probes | 序列Sequence(5’-3’) | 3’端引物和探针 3’primers and probes | 序列Sequence(5’-3’) |
---|---|---|---|
17132LB-qF1 | CCGGTTCGTTTTGAGTAGGA | 17132RB-qF1 | GCGCGCAAACTAGGATAAA |
17132LB-qR1 | GTCCGCAATGTGTTATTAAGTTGTC | 17132RB-qR1 | CGGGTTGATTTGGTTAAAGC |
17132LB-qP1 | TGGTGTAAACAAATTGACGC | 17132RB-qP1 | CATCTTCAAAAAGAGACCC |
17132LB-qF2 | ACAAATAGGGTGTGGCTGTT | 17132RB-qF2 | AGCGCGCAAACTAGGATAAA |
17132LB-qR2 | AACGTCCGCAATGTGTTATTAAG | 17132RB-qR2 | TCCTAGACTCAGGCGAACAA |
17132LB-qP2 | CAGCGTCTCGTACCGGTTCGTTT | 17132RB-qP2 | AACCAAATCAACCCGTCGTCCGTA |
17132LB-qF3 | CTCACGGACGGAGACAAATAG | 17132RB-qF3 | TGATTAGAGTCCCGCAATTATACA |
17132LB-qR3 | GCGTCAATTTGTTTACACCACA | 17132RB-qR3 | CGACGGGTTGATTTGGTTAAAG |
17132RB-qP3 | TAGGATAAATTATCGCGCGCGGTGT |
样品名称 Sample name | 含有的转化体 Containing transformant |
---|---|
转基因大豆混合样 Composite sample of transgenic soybeans | GTS40-3-2、MON89788、A5547-127、A2704-12、356043、305423、CV127、MON87701、MON87708、MON87769、MON87705、FG72和DAS81419-2,13个转化体混合制成1个样品,每个转化体的质量分数为1% GTS40-3-2, MON89788, A5547-127, A2704-12, 356043, 305423, CV127, MON87701, MON87708, MON87769, MON87705, FG72 and DAS81419-2 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
其他转基因玉米 混合样品 Composite sample of other transgenic maizes | Bt11、Bt176、MON810、MON863、GA21、NK603、T25、TC1507、MON89034、MON88017、59122、MIR604、3272、MON87460、DAS40278-9、4114、MON87427和5307,18个转化体混合制成1个样品,每个转化体的质量分数为1% Bt11, Bt176, MON810, MON863, GA21, NK603, T25, TC1507, MON89034, MON88017, 59122, MIR604, 3272, MON87460, DAS40278-9, 4114, MON87427 and 5307 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
转基因水稻混合样品 Composite sample of transgenic rices | TT51-1、KF-6、KMD-1、M12、KF-8、KF-2、G6H1和T1C-19,8个转化体混合制成1个样品,每个转化体的质量分数为1% TT51-1, KF-6, KMD-1, M12, KF-8, KF-2, G6H1 and T1C-19 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
转基因油菜混合样品 Composite sample of transgenic rapeseeds | MS1、MS8、RF1、RF2、RF3、T45、Oxy-235、Topas19/2、MON88302和73496,10个转化体混合制成1个样品,每个转化体的质量分数为1% MS1, MS8, RF1, RF2, RF3, T45, Oxy-235, Topas19/2, MON88302 and 73496 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
转基因棉花混合样品 Composite sample of transgenic cottons | MON1445、MON531、MON15985、LLCOTTON25、MON88913、GHB614和COT102,7个转化体混合制成1个样品,每个转化体的质量分数为1% MON1445, MON531, MON15985, LLCOTTON25, MON88913, GHB614 and COT102 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
其他非转基因玉米 混合样品 Composite sample of other non-transgenic maizes | 天农九、先玉335和郑单958这3个非转基因玉米等量混合 Tiannong Jiu, Xianyu 335 and Zhengdan 958, these three non-transgenic maize varieties were equally mixed |
Table 2 Samples for specificity test
样品名称 Sample name | 含有的转化体 Containing transformant |
---|---|
转基因大豆混合样 Composite sample of transgenic soybeans | GTS40-3-2、MON89788、A5547-127、A2704-12、356043、305423、CV127、MON87701、MON87708、MON87769、MON87705、FG72和DAS81419-2,13个转化体混合制成1个样品,每个转化体的质量分数为1% GTS40-3-2, MON89788, A5547-127, A2704-12, 356043, 305423, CV127, MON87701, MON87708, MON87769, MON87705, FG72 and DAS81419-2 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
其他转基因玉米 混合样品 Composite sample of other transgenic maizes | Bt11、Bt176、MON810、MON863、GA21、NK603、T25、TC1507、MON89034、MON88017、59122、MIR604、3272、MON87460、DAS40278-9、4114、MON87427和5307,18个转化体混合制成1个样品,每个转化体的质量分数为1% Bt11, Bt176, MON810, MON863, GA21, NK603, T25, TC1507, MON89034, MON88017, 59122, MIR604, 3272, MON87460, DAS40278-9, 4114, MON87427 and 5307 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
转基因水稻混合样品 Composite sample of transgenic rices | TT51-1、KF-6、KMD-1、M12、KF-8、KF-2、G6H1和T1C-19,8个转化体混合制成1个样品,每个转化体的质量分数为1% TT51-1, KF-6, KMD-1, M12, KF-8, KF-2, G6H1 and T1C-19 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
转基因油菜混合样品 Composite sample of transgenic rapeseeds | MS1、MS8、RF1、RF2、RF3、T45、Oxy-235、Topas19/2、MON88302和73496,10个转化体混合制成1个样品,每个转化体的质量分数为1% MS1, MS8, RF1, RF2, RF3, T45, Oxy-235, Topas19/2, MON88302 and 73496 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
转基因棉花混合样品 Composite sample of transgenic cottons | MON1445、MON531、MON15985、LLCOTTON25、MON88913、GHB614和COT102,7个转化体混合制成1个样品,每个转化体的质量分数为1% MON1445, MON531, MON15985, LLCOTTON25, MON88913, GHB614 and COT102 were combined to prepare one composite sample, with each transformation event constituting a mass fraction of 1% |
其他非转基因玉米 混合样品 Composite sample of other non-transgenic maizes | 天农九、先玉335和郑单958这3个非转基因玉米等量混合 Tiannong Jiu, Xianyu 335 and Zhengdan 958, these three non-transgenic maize varieties were equally mixed |
Fig.1 Position and sequence information of primers and probes A, Multiple sets of primers and probe positions at the left and right boundaries of WYN17132, with the optimal primer probe combination 17132RB-qF3/qR3/qP3 ultimately selected within the red box on the right boundary; B, WYN17132 right boundary sequence (5'-3'), where 1-203 is a partial exogenous insertion sequence and 204-266 is a partial maize genome sequence; The red box represents the optimal primer probe combination sequence or reverse complementary sequence, while the black box represents the other primer probe sequences or reverse complementary sequences on the right boundary; 1, 17132RB-qF1 sequence; 2, The reverse complementary sequence of 17132RB-qR1; 3, 17132RB-qP1 sequence; 4, 17132RB-qF2 sequence; 5, Reverse complementary sequence of 17132RB-qR2; 6, 17132RB-qP2 sequence; 7, 17132RB-qF3 sequence; 8, The reverse complementary sequence of 17132RB-qR3; 9, 17132RB-qP3 sequence.
Fig.3 Optimization results of primer and probe concentrations Primer concentration systems of 0.1, 0.2, 0.4, 0.6, 0.8 μmol·L-1 are represented by 1 to 5, respectively.
Fig.4 Results of the method specificity test 1, Blank control, negative control, composite sample of transgenic soybeans, composite sample of other transgenic maizes, composite sample of transgenic rices, composite sample of transgenic rapeseeds, composite sample of transgenic cottons, and composite sample of other non transgenic maizes; 2, WYN17132 transformant material with a mass fraction of 1%.
Fig.5 Limit of detection test results of the method A-F, Template containing WYN17132 transformant DNA at mass fractions of 0.25%, 0.10%, 0.05%, 0.025%, 0.012 5%, and 0.002 5%, respectively; G, Negative and blank controls; H, Template containing WYN17132 transformant DNA at mass fractions of 0.05%, repeated 60 times.
Fig.7 Test results of transgenic maize WYN17132 processed samples 1, Positive control; 2, The 3% and 5% WYN17132 transgenic maize samples treated with high-temperature and high-pressure (HTHP), and the 3% and 5% WYN17132 transgenic maize samples treated with cooking; 3, The 1% WYN17132 transgenic maize samples treated with HTHP, and the 1% WYN17132 transgenic maize samples treated with cooking; 4, Negative control and blank control.
[1] | 张宇涵, 李星霖, 刘丽君, 等. 玉米转录因子ZmNAC59调控植物抗盐性[J]. 西北植物学报, 2024, 44(3): 381-395. |
ZHANG Y H, LI X L, LIU L J, et al. Transcription factor ZmNAC59 regulates plant salt resistance in Zea mays L[J]. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(3): 381-395. (in Chinese with English abstract) | |
[2] | 曾强, 周伟, 郭欢乐, 等. 不同遗传背景的转Cry1C基因玉米品系的室内抗虫性鉴定[J]. 湖南农业科学, 2024(2): 1-5. |
ZENG Q, ZHOU W, GUO H L, et al. Insect resistance identification of transgenic maize with Cry1C gene from different genetic backgrounds in laboratory[J]. Hunan Agricultural Sciences, 2024(2): 1-5. (in Chinese with English abstract) | |
[3] | LIU M M, ZHANG X J, GAO Y, et al. Molecular characterization and efficacy evaluation of a transgenic corn event for insect resistance and glyphosate tolerance[J]. Journal of Zhejiang University Science B, 2018, 19(8): 610-619. |
[4] | DU D X, GENG C J, ZHANG X B, et al. Transgenic maize lines expressing a Cry1C gene are resistant to insect pests[J]. Plant Molecular Biology Reporter, 2014, 32(2): 549-557. |
[5] | 温伟. 转基因技术在现代玉米育种中的应用[J]. 农业与技术, 2024, 44(7): 38-41. |
WEN W. Application of transgenic technology in modern maize breeding[J]. Agriculture and Technology, 2024, 44(7): 38-41. (in Chinese) | |
[6] | 杨旭东. 玉米种植中减肥增效技术应用措施[J]. 种子科技, 2024, 42(7): 63-65. |
YANG X D. Application measures of weight loss and efficiency improvement technology in maize planting[J]. Seed Science & Technology, 2024, 42(7): 63-65. (in Chinese) | |
[7] | 崔爱民, 张久刚, 张虎, 等. 我国玉米生产现状及发展变革[J]. 中国农业科技导报, 2020, 22(7): 10-19. |
CUI A M, ZHANG J G, ZHANG H, et al. Preliminary exploration on current situation and development of maize production in China[J]. Journal of Agricultural Science and Technology, 2020, 22(7): 10-19. (in Chinese with English abstract) | |
[8] | TANUMIHARDJO S A, MCCULLEY L, ROH R, et al. Maize agro-food systems to ensure food and nutrition security in reference to the sustainable development goals[J]. Global Food Security, 2020, 25: 100327. |
[9] | MITCHELL N J, BOWERS E, HURBURGH C, et al. Potential economic losses to the US corn industry from aflatoxin contamination[J]. Food Additives & Contaminants: Part A, 2016, 33(3): 540-550. |
[10] | 油梅红, 景三革. 现代农业技术在小麦和玉米种植中的应用与效果[J]. 种子科技, 2024, 42(5): 158-160. |
YOU M H, JING S G. Application and effect of modern agricultural technology in wheat and corn planting[J]. Seed Science & Technology, 2024, 42(5): 158-160. (in Chinese) | |
[11] | 贺志勇. 生物育种对国民经济与粮食安全的贡献分析[J]. 分子植物育种, 2024, 22(13): 4505-4510. |
HE Z Y. The contribution analysis of biobreeding to national economy and food security[J]. Molecular Plant Breeding, 2024, 22(13): 4505-4510. (in Chinese with English abstract) | |
[12] | 刘婷婷, 仝涛, 黄昆仑. 转基因玉米的研究进展和食用安全性评价[J]. 生物技术进展, 2022, 12(4): 523-531. |
LIU T T, TONG T, HUANG K L. Research progress and safety evaluation of transgenic corn[J]. Current Biotechnology, 2022, 12(4): 523-531. (in Chinese with English abstract) | |
[13] | PELLEGRINO E, BEDINI S, NUTI M, et al. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data[J]. Scientific Reports, 2018, 8: 3113. |
[14] | 李红杰, 贾亚男, 张彦军, 等. 国内外转基因与基因编辑作物监管现状[J]. 中国农业大学学报, 2023, 28(9): 1-11. |
LI H J, JIA Y N, ZHANG Y J, et al. Regulatory status of GM and gene-edited crops at domestic and abroad[J]. Journal of China Agricultural University, 2023, 28(9): 1-11. (in Chinese with English abstract) | |
[15] | 黄耀辉, 樊殿峰, 焦悦, 等. 浅谈多国转基因产品标识制度对我国的启示[J]. 生物技术进展, 2022, 12(4): 516-522. |
HUANG Y H, FAN D F, JIAO Y, et al. Enlightenment of GMO labeling system in other countries to China[J]. Current Biotechnology, 2022, 12(4): 516-522. (in Chinese with English abstract) | |
[16] | XU J Y, ZHENG Q Y, YU L, et al. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25[J]. Food Science & Nutrition, 2013, 1(6): 432-438. |
[17] | TAKABATAKE R, KAGIYA Y, MINEGISHI Y, et al. Rapid screening detection of genetically modified crops by loop-mediated isothermal amplification with a lateral flow dipstick[J]. Journal of Agricultural and Food Chemistry, 2018, 66(29): 7839-7845. |
[18] | SÁNCHEZ-PANIAGUA LÓPEZ M, MANZANARES-PALENZUELA C L, LÓPEZ-RUIZ B. Biosensors for GMO testing: nearly 25 years of research[J]. Critical Reviews in Analytical Chemistry, 2018, 48(5): 391-405. |
[19] | YANG L T, WANG C M, HOLST-JENSEN A, et al. Characterization of GM events by insert knowledge adapted re-sequencing approaches[J]. Scientific Reports, 2013, 3: 2839. |
[20] | LI Y J, LI J, WU Y H, et al. Successful detection of foreign inserts in transgenic rice TT51-1 (BT63) by RNA-sequencing combined with PCR[J]. Journal of the Science of Food and Agriculture, 2017, 97(5): 1634-1639. |
[21] | BROEDERS S, HUBER I, GROHMANN L, et al. Guidelines for validation of qualitative real-time PCR methods[J]. Trends in Food Science & Technology, 2014, 37(2): 115-126. |
[22] | HOLST-JENSEN A, BERTHEAU Y, DE LOOSE M, et al. Detecting un-authorized genetically modified organisms (GMOs) and derived materials[J]. Biotechnology Advances, 2012, 30(6): 1318-1335. |
[23] | 李允静, 肖芳, 武玉花, 等. 抗逆大豆IND-ØØ41Ø-5转化体特异性定量PCR检测方法的建立及其标准化[J]. 中国农业科学, 2023, 56(13): 2443-2460. |
LI Y J, XIAO F, WU Y H, et al. Establishment and standardization of event-specific real-time quantitative PCR detection method of stress-resistant soybean IND-ØØ41Ø-5[J]. Scientia Agricultura Sinica, 2023, 56(13): 2443-2460. (in Chinese with English abstract) | |
[24] | 罗建兴, 刘国强, 呼李乐, 等. 转基因作物检测技术研究进展[J]. 食品安全质量检测学报, 2023, 14(15): 139-148. |
LUO J X, LIU G Q, HU L L, et al. Research progress on detection technology of genetically modified crops[J]. Journal of Food Safety & Quality, 2023, 14(15): 139-148. (in Chinese with English abstract) | |
[25] | 沈泓, 李超, 李珏. 分子生物学技术在转基因食品检测领域中的研究进展[J]. 中国农业信息, 2017, 29(15): 57-59. |
SHEN H, LI C, LI J. Research progress of molecular biology technology in the field of genetically modified food detection[J]. China Agricultural Information, 2017, 29(15): 57-59. (in Chinese) | |
[26] | 李凌燕, 肖冰, 张旭冬, 等. 转基因玉米MON87411实时荧光PCR定性检测方法的建立及其标准化[J]. 生物技术进展, 2024, 14(2): 257-262. |
LI L Y, XIAO B, ZHANG X D, et al. Establishment and standardization of real-time PCR method for qualitative detection of genetically modified maize MON87411[J]. Current Biotechnology, 2024, 14(2): 257-262. (in Chinese with English abstract) | |
[27] | 杨华, 彭城, 肖英平, 等. 转基因大豆SHZD32-1转化体普通PCR和qRT-PCR检测方法的研究[J]. 农业生物技术学报, 2018, 26(3): 492-501. |
YANG H, PENG C, XIAO Y P, et al. Study of conventional PCR and qRT-PCR detection methods for genetically modified soybean(Glycine max) SHZD32-1[J]. Journal of Agricultural Biotechnology, 2018, 26(3): 492-501. (in Chinese with English abstract) |
[1] | HE Rong, ZHAO Kai, HE Yujiao, ALATENG Suhe, WANG Aijun, NING Jing, HAN Ruoshuang, SUN Guirong, ZHANG Guosheng. Preliminary screening of Northern Salix (Salix psammophila) architecture related genes based on RNA-Seq analysis and quantitative PCR technique [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2332-2345. |
[2] | ZENG Yating, XIONG Tao, LI Hongye. Rapid molecular detection of Diaporthe citri, the pathogen of citrus melanose [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1457-1465. |
[3] | CHEN Jiubing, GENGSHANG Jingchao, WANG Fangguo, CHEN Yating, ZHOU Jinwei, LUO Qiao, MA Li, YAO Xueping, YU Shumin, SHEN Liuhong, CHU Yuefeng, CAO Suizhong. qPCR detection of bacterial pathogens of respiratory diseases in calves of a dairy farm from Sichuan [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 706-712. |
[4] | CHEN Wen, ZHANG Weiwei, SHAO Shuli, FU Xuepeng, HUANG Xin, LI Tie. Expression of miR-423-5p in bovine muscle and predicted target genes [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 785-793. |
[5] | XU Xiuhong, LIU Jinliang, LI Dongcheng, LIU Renxiang. Analysis of nicotine content and related gene expression in different types of tobacco germplasm [J]. , 2020, 32(9): 1555-1563. |
[6] | XU Qilin, QI Guilan, MO Guilin, ZHU Jiang, LEI Chunlong, WU Yongsheng, XU Zhenying, LI Juan. Effects of earthworm extract on heat shock protein levels and immune function of silkworm, Bombyx mori [J]. , 2020, 32(4): 593-600. |
[7] | JI Yi, JIANG Yuanyuan, WANG Xiaofu, XU Xiaoli, XU Junfeng, LI Yueying, Chen Xiaoyun. Comparative study of several DNA extraction methods for raw animal muscle tissues [J]. , 2019, 31(9): 1471-1477. |
[8] | LIU Wenju, WANG Shujuan, LIU Xiaoli, PANG Xunsheng, WANG Like. Expression and distribution of Mel 1b mRNA and protein in various tissues of duck [J]. , 2018, 30(5): 711-716. |
[9] | LIU Yong-liang, CHEN Bo, LIU Ming-gang, XU Yu-qin, DAI Xi-xi, GU Xiao-xiao, PAN Kang-cheng. Effect of Lianmei dysentery Chinese herbal preparation on weaned piglet diarrhea by an Escherichia coli (K88) experimental infection [J]. , 2016, 28(9): 1493-1500. |
[10] | ZHANG Qiao-yan;*;CHEN Ting-ting;CHEN Xiao-yun;YANG Sheng-li;*;MIU Qing-mei. SYBR Green I real-time polymerase chain reaction for rapid detection of Salmonella spp. in raw milk and milk products [J]. , 2012, 24(5): 0-921. |
[11] | YANG Ying;XIA Meng;YIN Jun-lei;DU Hai-yan;ZHOU Bi-jun;WEN Ming;*. Detection of virulent DEV NP gene in artificial infected ducklings using SYBR GreenⅠreal-time PCR [J]. , 2011, 23(4): 0-707. |
[12] | YANG Chun-hua;HU Hui;ZHONG Yi;HAN Zhi-tao;ZHU Jian-xin;*. Establishment and preliminary application of a SYBR GreenⅠreal-time PCR method for detection of PRRSV [J]. , 2010, 22(6): 745-749. |
[13] | LI Fu-zhen;*;QIU Xin-mian;LIU Chuan-liang;*. Molecular cloning, characterization and expression of a novel DREB transcript factor GhDREB2B in cotton [J]. , 2010, 22(5): 564-569. |
[14] | WU Zhi-yi;ZHANG Ming-zhe;CHEN Xi. Study on the sensitivity of PCR detection for Bt63 rice and its products [J]. , 2009, 21(6): 0-554. |
[15] | LI Ming-feng;W EI Zhan-yong;WANG Xue—bin;ZHANG Hong-ying;WANG Ya-bin;CUl Bao-an;*. Development of SYBR Green I real-lime PCR assay for detection of porcine parvovirus [J]. , 2009, 21(3): 0-224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||