Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (5): 1009-1016.DOI: 10.3969/j.issn.1004-1524.20240827
• Animal Science • Previous Articles Next Articles
Received:
2024-09-22
Online:
2025-05-25
Published:
2025-06-11
CLC Number:
CHEN Lin, GU Qing. Gastroprotective effect of polysaccharides extracted from Chimonanthus salicifolius on ethanol-induced gastric injury in rats[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1009-1016.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240827
Fig.1 Composition analysis of Chimonanthus salicifolius polysaccharides 1-7 represent mannose, rhamnose, glucose, galactose, xylose, arabinose and trehalose, respectively. Fig. A shows the result of reference standard of monosaccharides, while Fig. B shows the result of Chimonanthus salicifolius polysaccharides.
Fig.2 Histomorphology images of stomach tissue under treatments A, Control group; B, Model group; C, Omeprazole group; D, Low dose Chimonanthus salicifolius polysaccharides group; E, High dose Chimonanthus salicifolius polysaccharides group.
Fig.3 Ulcer index (UI) of gastric tissues under treatments C, Control group; M, Model group; O, Omeprazole group; L, Low dose Chimonanthus salicifolius polysaccharides group; H, High dose Chimonanthus salicifolius polysaccharides group. Bars marked without the same letters indicate significant difference at P<0.05.
Fig.4 Histological observation of gastric mucosal under treatments Lines from left to right show the results of control group (C), model group (M), omeprazole group (O), low dose Chimonanthus salicifolius polysaccharides group (L), high dose Chimonanthus salicifolius polysaccharides group (H), respectively. The magnification multiples in the upper row and lower row are 100 and 400, respectively.
处理 Treatment | SOD活性 SOD activity/ (U·mg-1) | MDA含量 MDA content/ (nmol·mg-1) | EGF含量 EGF content/ (ng·L-1) | PGE2含量 PEG2 content/ (ng·L-1) | TNF-α含量 TNF-α content/ (pg·mL-1) | IL-6含量 IL-6 content/ (pg·mL-1) | IL-1β含量 IL-1β content/ (pg·mL-1) |
---|---|---|---|---|---|---|---|
C | 258.23±6.36 a | 4.68±0.14 c | 480.34±56.23 a | 418.43±24.65 a | 80.24±3.36 b | 60.68±3.14 b | 20.34±1.23 c |
M | 176.35±5.24 c | 6.56±0.46 a | 220.43±53.87 c | 303.45±34.23 b | 120.35±4.17 a | 136.56±6.87 a | 50.43±1.87 a |
O | 192.45±4.87 c | 5.25±0.54 bc | 368.98±76.23 b | 432.25±33.43 a | 92.45±3.23 b | 75.25±0.54 b | 35.12±2.23 b |
L | 187.65±9.56 c | 6.23±0.34 ab | 267.98±66.43 bc | 450.24±23.45 a | 87.25±4.14 b | 76.23±0.34 b | 37.98±2.43 ab |
H | 202.36±10.62 b | 4.87±0.34 c | 428.65±59.76 a | 489.34±34.54 a | 80.36±8.26 b | 66.87±0.34 b | 30.65±3.76 b |
Table 1 Effects of treatments on biological and biochemical indexes of rats
处理 Treatment | SOD活性 SOD activity/ (U·mg-1) | MDA含量 MDA content/ (nmol·mg-1) | EGF含量 EGF content/ (ng·L-1) | PGE2含量 PEG2 content/ (ng·L-1) | TNF-α含量 TNF-α content/ (pg·mL-1) | IL-6含量 IL-6 content/ (pg·mL-1) | IL-1β含量 IL-1β content/ (pg·mL-1) |
---|---|---|---|---|---|---|---|
C | 258.23±6.36 a | 4.68±0.14 c | 480.34±56.23 a | 418.43±24.65 a | 80.24±3.36 b | 60.68±3.14 b | 20.34±1.23 c |
M | 176.35±5.24 c | 6.56±0.46 a | 220.43±53.87 c | 303.45±34.23 b | 120.35±4.17 a | 136.56±6.87 a | 50.43±1.87 a |
O | 192.45±4.87 c | 5.25±0.54 bc | 368.98±76.23 b | 432.25±33.43 a | 92.45±3.23 b | 75.25±0.54 b | 35.12±2.23 b |
L | 187.65±9.56 c | 6.23±0.34 ab | 267.98±66.43 bc | 450.24±23.45 a | 87.25±4.14 b | 76.23±0.34 b | 37.98±2.43 ab |
H | 202.36±10.62 b | 4.87±0.34 c | 428.65±59.76 a | 489.34±34.54 a | 80.36±8.26 b | 66.87±0.34 b | 30.65±3.76 b |
Fig.5 Result of proteins' expression A, Matrix metalloproteinase-2 (MMP-2); B, Phospho-extracellular regulated protein kinases (p-ERK); C, Matrix metalloproteinase-9 (MMP-9); D, Phospho-c-Jun N-terminal kinase (p-JNK); E, Phospho-mitogen-activated protein kinase (p-p38). GAPDH, Glyceraldehyde-3-phosphate dehydrogenase.
[1] | XUE C, WITHOWSKI K, ST PIERRE A, et al. Case 12.1: gastric ulcer disease[M]// ORSINIJ A, GRENAGERN S, DE LAHUNTA A. Comparative veterinary anatomy:a clinical approach. New York: Academic Press, 2021: 724-731. |
[2] | LANAS A, CHAN F K L. Peptic ulcer disease[J]. Lancet, 2017, 390(10094): 613-624. |
[3] | GOSWAMI S, JAIN S, SANTANI D. Anti-ulcer activity of cromakalim (BRL 34915), a potassium-channel opener, against experimentally induced gastric and duodenal ulcers in rats and Guinea-pigs[J]. Journal of Pharmacy and Pharmacology, 1997, 49(2): 195-199. |
[4] | SØREIDE K, THORSEN K, HARRISON E M, et al. Perforated peptic ulcer[J]. The Lancet, 2015, 386(10000): 1288-1298. |
[5] | CZEKAJ R, MAJKA J, MAGIEROWSKA K, et al. Mechanisms of curcumin-induced gastroprotection against ethanol-induced gastric mucosal lesions[J]. Journal of Gastroenterology, 2018, 53(5): 618-630. |
[6] | VERA-ARZAVE C, ANTONIO L C, ARRIETA J, et al. Gastroprotection of suaveolol, isolated from Hyptis suaveolens, against ethanol-induced gastric lesions in Wistar rats: role of prostaglandins, nitric oxide and sulfhydryls[J]. Molecules, 2012, 17(8): 8917-8927. |
[7] | ZHANG Y, WANG H X, MEI N N, et al. Protective effects of polysaccharide from Dendrobium nobile against ethanol-induced gastric damage in rats[J]. International Journal of Biological Macromolecules, 2018, 107: 230-235. |
[8] | LIU G H, FU J Y. Squalene synthase cloning and functional identification in wintersweet plant (Chimonanthus zhejiangensis)[J]. Botanical Studies, 2018, 59(1): 30. |
[9] | LV Q D, QIU J, LIU J, et al. The Chimonanthus salicifolius genome provides insight into magnoliid evolution and flavonoid biosynthesis[J]. The Plant Journal, 2020, 103(5): 1910-1923. |
[10] | CHEN H, JIANG Y, YANG Z W, et al. Effects of Chimonanthus nitens Oliv. leaf extract on glycolipid metabolism and antioxidant capacity in diabetic model mice[J]. Oxidative Medicine and Cellular Longevity, 2017: 7648505. |
[11] | CHEN H, OUYANG K H, JIANG Y, et al. Constituent analysis of the ethanol extracts of Chimonanthus nitens Oliv. leaves and their inhibitory effect on α-glucosidase activity[J]. International Journal of Biological Macromolecules, 2017, 98: 829-836. |
[12] | WANG K W, LI D, WU B, et al. New cytotoxic dimeric and trimeric coumarins from Chimonanthus salicifolius[J]. Phytochemistry Letters, 2016, 16: 115-120. |
[13] | WEN H P, LEI W M, HOU J, et al. Main components of ethyl acetate extract of Chimonanthus salicifolius and its effects on intestinal mucositis in mice induced by 5-fluorouracil[J]. Food Science and Technology, 2022, 42: e55720. |
[14] | LIU Z Z, XI J, SCHRÖDER S, et al. Chimonanthus nitens var. salicifolius aqueous extract protects against 5-fluorouracil induced gastrointestinal mucositis in a mouse model[J]. Evidence-Based Complementary and Alternative Medicine, 2013, 2013(1): 789263. |
[15] | LI X, CHEN L. Chimonanthus salicifolius S. Y. Hu extract improve constipation symptoms and regulate intestinal microbiota in mice[J]. Food Science and Technology Research, 2023, 29(2): 101-112. |
[16] | CHEN L, LI X, GU Q. Chimonanthus salicifolius extract alleviates DSS-induced colitis and regulates gut microbiota in mice[J]. Food Science & Nutrition, 2023, 11(6): 3019-3030. |
[17] | HATWARE K V, SHARMA S, PATIL K, et al. Evidence for gastroprotective, anti-inflammatory and antioxidant potential of methanolic extract of Cordia dichotoma leaves on indomethacin and stress induced gastric lesions in Wistar rats[J]. Biomedicine & Pharmacotherapy, 2018, 103: 317-325. |
[18] | PRADEEPKUMAR SINGH L, KUNDU P, GANGULY K, et al. Novel role of famotidine in downregulation of matrix metalloproteinase-9 during protection of ethanol-induced acute gastric ulcer[J]. Free Radical Biology and Medicine, 2007, 43(2): 289-299. |
[19] | GANGULY K, KUNDU P, BANERJEE A, et al. Hydrogen peroxide-mediated downregulation of matrix metalloprotease-2 in indomethacin-induced acute gastric ulceration is blocked by melatonin and other antioxidants[J]. Free Radical Biology and Medicine, 2006, 41(6): 911-925. |
[20] | 洪一平, 谢辉, 于莎莎, 等. 胡椒碱的分离鉴定及对乙醇诱导胃黏膜损伤的保护作用[J]. 食品科技, 2023, 48(10): 228-233. |
HONG Y P, XIE H, YU S S, et al. Isolation, identification and protection against ethanol-induced gastric mucosal injury of piperine[J]. Food Science and Technology, 2023, 48(10): 228-233. (in Chinese with English abstract) | |
[21] | WANG G Y, CHEN S Y, CHEN Y Y, et al. Protective effect of rosmarinic acid-rich Trichodesma khasianum Clarke leaves against ethanol-induced gastric mucosal injury in vitro and in vivo[J]. Phytomedicine, 2021, 80: 153382. |
[22] | BHATTACHARYYA A, CHATTOPADHYAY R, MITRA S, et al. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases[J]. Physiological Reviews, 2014, 94(2): 329-354. |
[23] | CAMPBELL E L, COLGAN S P. Control and dysregulation of redox signalling in the gastrointestinal tract[J]. Nature Reviews Gastroenterology & Hepatology, 2019, 16(2): 106-120. |
[24] | HWANG D, KANG M J, JO M J, et al. Anti-inflammatory activity of β-thymosin peptide derived from Pacific oyster (Crassostrea gigas) on NO and PGE2 production by down-regulating NF-κB in LPS-induced RAW264.7 macrophage cells[J]. Marine Drugs, 2019, 17(2): 129. |
[25] | DUAN Z W, YU S S, WANG S P, et al. Protective effects of piperine on ethanol-induced gastric mucosa injury by oxidative stress inhibition[J]. Nutrients, 2022, 14(22): 4744. |
[26] | ZHANG Y, WANG H X, WANG P, et al. Optimization of PEG-based extraction of polysaccharides from Dendrobium nobile Lindl. and bioactivity study[J]. International Journal of Biological Macromolecules, 2016, 92: 1057-1066. |
[27] | BUJANDA L, GARCÍA-BARCINA M, JUAN V G, et al. Effect of resveratrol on alcohol-induced mortality and liver lesions in mice[J]. BMC Gastroenterology, 2006, 6: 35. |
[28] | BANERJEE S, BUESO-RAMOS C, AGGARWAL B B. Suppression of 7, 12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9[J]. Cancer Research, 2002, 62(17): 4945-4954. |
[29] | HOLMES-MCNARY M, BALDWIN A S, Jr. Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IkappaB kinase[J]. Cancer Research, 2000, 60(13): 3477-3483. |
[30] | NÚÑEZ O, FERNÁNDEZ-MARTÍNEZ A, MAJANO P L, et al. Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins[J]. Gut, 2004, 53(11): 1665-1672. |
[31] | TILG H, DIEHL A M. Cytokines in alcoholic and nonalcoholic steatohepatitis[J]. New England Journal of Medicine, 2000, 343(20): 1467-1476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||