[1] |
ZOU H W, HU R, DONG X W, et al. Lipid catabolism in starved yak is inhibited by intravenous infusion of β-hydroxybutyrate[J]. Animals, 2020, 10(1):136.
DOI
URL
|
[2] |
REITEN M, ROUSING T, THOMSEN P T, et al. Mortality, diarrhea and respiratory disease in Danish dairy heifer calves: Effect of production system and season[J]. Preventive Veterinary Medicine, 2018, 155:21-26.
DOI
URL
|
[3] |
MONSALVES-ALVAREZ M, MORALES P E, CASTRO-S1EPULVEDA M, et al. Β-hydroxybutyrate increases exercise capacity associated with changes in mitochondrial function in skeletal muscle[J]. Nutrients, 2020, 12(7):1930.
DOI
URL
|
[4] |
GOPALAKRISHNAN A, BALAMIRUGAN B B, YATOO D M, et al. Economic impact of subclinical ketosis and clinical management of the affected dairy herd[J]. Indian Farmer, 2016, 3:815-819.
|
[5] |
SONG Y X, LI N, GU J M, et al. β-hydroxybutyrate induces bovine hepatocyte apoptosis via an ROS-p38 signaling pathway[J]. Journal of Dairy Science, 2016, 99(11):9184-9198.
DOI
URL
|
[6] |
SHI X X, LI X W, LI D D, et al. beta-hydroxybutyrate activates the NF-κB signaling pathway to promote the expression of pro-inflammatory factors in calf hepatocytes[J]. Cellular Physiology and Biochemistry, 2014, 33(4):920-932.
DOI
URL
|
[7] |
张玉明. NEFAs和BHBA对奶牛中性粒细胞TLR2/4-NF-κB信号通路的影响[D]. 长春: 吉林大学, 2015.
|
|
ZHANG Y M. The effect of NEFAs and BHBAs on TLR2/4Mediated NF-κB signaling pathway in cow neutrophil[D]. Changchun: Jilin University, 2015. (in Chinese with English abstract)
|
[8] |
阳明贤, 左之才, 李碧, 等. 牛抵抗素对牛肺泡巨噬细胞TLR4/MyD88非依赖信号通路基因表达的影响[J]. 浙江农业学报, 2019, 31(3):379-383.
|
|
YANG M X, ZUO Z C, LI B, et al. Analysis of differential expression of TLR4-MyD88 independent pathway genes under resistin-induced bovine alveolar macrophages[J]. Acta Agriculturae Zhejiangensis, 2019, 31(3):379-383.(in Chinese with English abstract)
|
[9] |
TOGNINI P, MURAKAMI M, LIU Y, et al. Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet[J]. Cell Metabolism, 2017, 26(3):523-538.
DOI
URL
|
[10] |
WANG X M, LIU Q, ZHOU J, et al. Β hydroxybutyrate levels in serum and cerebrospinal fluid under ketone body metabolism in rats[J]. Experimental Animals, 2017, 66(2):177-182.
DOI
URL
|
[11] |
CRAWFORD P A, CROWLEY J R, SAMBANDAM N, et al. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27):11276-11281.
|
[12] |
BADWAL K, TARIQ T, PEIRCE D. Dapagliflozin-associated euglycemic diabetic ketoacidosis in a patient presenting with acute pancreatitis[J]. Case Reports in Endocrinology, 2018, 2018:1-4.
|
[13] |
KANIKARLA-MARIE P, JAIN S K. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes[J]. Free Radical Biology and Medicine, 2016, 95:268-277.
DOI
URL
|
[14] |
CHENG X, YANG S H, XU C, et al. Proanthocyanidins protect against β-hydroxybutyrate-induced oxidative damage in bovine endometrial cells[J]. Molecules, 2019, 24(3):400.
DOI
URL
|
[15] |
FEINGOLD K R, MOSER A, SHIGENAGA J K, et al. Inflammation stimulates niacin receptor (GPR109A/HCA2) expression in adipose tissue and macrophages[J]. Journal of Lipid Research, 2014, 55(12):2501-2508.
DOI
URL
|
[16] |
MARTIN P M, ANANTH S, CRESCI G, et al. Expression and localization of GPR109A (PUMA-G/HM74A) mRNA and protein in mammalian retinal pigment epithelium[J]. Molecular Vision, 2009, 15:362-372.
|
[17] |
TAGGART A K P, KERO J, GAN X D, et al. (d)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G[J]. Journal of Biological Chemistry, 2005, 280(29):26649-26652.
DOI
URL
|
[18] |
WANDERS D, GRAFF E C, JUDD R L. Effects of high fat diet on GPR109A and GPR81 gene expression[J]. Biochemical and Biophysical Research Communications, 2012, 425(2):278-283.
DOI
URL
|
[19] |
TANIGUCHI K, KARIN M. NF-κB, inflammation, immunity and cancer: coming of age[J]. Nature Reviews Immunology, 2018, 18(5):309-324.
DOI
URL
|
[20] |
RODRÍGUEZ-CARBALLO E, GÁMEZ B, VENTURA F. p38MAPK signaling in osteoblast differentiation[J]. Frontiers in Cell and Developmental Biology, 2016, 4:40.
|
[21] |
DA SILVA S, KEITA Å V, MOHLIN S, et al. A novel topical PPARγ agonist induces PPARγ activity in ulcerative colitis mucosa and prevents and reverses inflammation in induced colitis models[J]. Inflammatory Bowel Diseases, 2018, 24(4):792-805.
DOI
URL
|