[1] |
KHAN A I, QUADRI S M K, BANDAY S, et al. Deep diagnosis: a real-time apple leaf disease detection system based on deep learning[J]. Computers and Electronics in Agriculture, 2022, 198: 107093.
|
[2] |
翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18.
|
|
ZHAI Z Y, CAO Y F, XU H L, et al. Review of key techniques for crop disease and pest detection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18. (in Chinese with English abstract)
|
[3] |
刘文波, 叶涛, 李颀. 基于改进SOLO v2的番茄叶部病害检测方法[J]. 农业机械学报, 2021, 52(8): 213-220.
|
|
LIU W B, YE T, LI Q. Tomato leaf disease detection method based on improved SOLO v2[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 213-220. (in Chinese with English abstract)
|
[4] |
MATTIHALLI C, GARED F, GETNET L. Automatic plant leaf disease detection and auto-medicine using IoT technology[M]//KRAUSE P, XHAFA F. IoT-based Intelligent Modelling for Environmental and Ecological Engineering. Cham: Springer, 2021: 257-273.
|
[5] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
|
[6] |
ZHAO W, ZHANG H D, YAN Y J, et al. A semantic segmentation algorithm using FCN with combination of BSLIC[J]. Applied Sciences, 2018, 8(4): 500.
|
[7] |
任守纲, 贾馥玮, 顾兴健, 等. 反卷积引导的番茄叶部病害识别及病斑分割模型[J]. 农业工程学报, 2020, 36(12): 186-195.
|
|
REN S G, JIA F W, GU X J, et al. Recognition and segmentation model of tomato leaf diseases based on deconvolution-guiding[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 186-195. (in Chinese with English abstract)
|
[8] |
QI X K, DONG J S, LAN Y B, et al. Method for identifying Litchi picking position based on YOLOv5 and PSPNet[J]. Remote Sensing, 2022, 14(9): 2004.
|
[9] |
戴雨舒, 仲晓春, 孙成明, 等. 基于图像处理和Deeplabv3+模型的小麦赤霉病识别[J]. 中国农机化学报, 2021, 42(9): 209-215.
|
|
DAI Y S, ZHONG X C, SUN C M, et al. Identification of fusarium head blight in wheat-based on image processing and Deeplabv3+model[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 209-215. (in Chinese with English abstract)
|
[10] |
李昊, 刘海隆, 刘生龙. 基于深度学习的柑橘病虫害动态识别系统研发[J]. 中国农机化学报, 2021, 42(9): 195-201, 208.
|
|
LI H, LIU H L, LIU S L. Research on dynamic identification system of citrus diseases and pests based on deep learning[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 195-201, 208. (in Chinese with English abstract)
|
[11] |
SLADOJEVIC S, ARSENOVIC M, ANDERLA A, et al. Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational Intelligence and Neuroscience, 2016, 2016: 1-11.
|
[12] |
DIVYANTH L G, AHMAD A, SARASWAT D. A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery[J]. Smart Agricultural Technology, 2023, 3: 100108.
|
[13] |
黄林生, 邵松, 卢宪菊, 等. 基于卷积神经网络的生菜多光谱图像分割与配准[J]. 农业机械学报, 2021, 52(9): 186-194.
|
|
HUANG L S, SHAO S, LU X J, et al. Segmentation and registration of lettuce multispectral image based on convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 186-194. (in Chinese with English abstract)
|
[14] |
CHEN X E, LIAN Y C, JIAO L C, et al. Supervised edge attention network for accurate image instance segmentation[C]// VEDALDI A, BISCHOF H, BROX T, et al. European Conference on Computer Vision, Cham: Springer, 2020: 617-631.
|
[15] |
YU H L, MEN Z B, BI C G, et al. Research on field soybean weed identification based on an improved UNet model combined with a channel attention mechanism[J]. Frontiers in Plant Science, 2022, 13: 890051.
|
[16] |
饶秀勤, 朱逸航, 张延宁, 等. 基于语义分割的作物垄间导航路径识别[J]. 农业工程学报, 2021, 37(20): 179-186.
|
|
RAO X Q, ZHU Y H, ZHANG Y N, et al. Navigation path recognition between crop ridges based on semantic segmentation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 179-186. (in Chinese with English abstract)
|
[17] |
陈燕, 朱成宇, 胡小春, 等. 基于改进Unet的小麦茎秆截面参数检测[J]. 农业机械学报, 2021, 52(7): 169-176.
|
|
CHEN Y, ZHU C Y, HU X C, et al. Detection of wheat stem section parameters based on improved unet[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 169-176. (in Chinese with English abstract)
|
[18] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
|
[19] |
CHEN S, SEDGHI GAMECHI Z, DUBOST F, et al. An end-to-end approach to segmentation in medical images with CNN and posterior-CRF[J]. Medical Image Analysis, 2022, 76: 102311.
|
[20] |
YEUNG M, SALA E, SCHÖNLIEB C B, et al. Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation[J]. Computerized Medical Imaging and Graphics, 2022, 95: 102026.
|
[21] |
LI M C, CHEN D L, LIU S X. Weakly supervised segmentation loss based on graph cuts and superpixel algorithm[J]. Neural Processing Letters, 2022, 54(3): 2339-2362.
|