Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (7): 1550-1563.DOI: 10.3969/j.issn.1004-1524.20230261
• Crop Science • Previous Articles Next Articles
BAI Dingchen1(), ZHAO Zhifei2, GONG Xue3, LIU Yuan3, NIU Suzhen1,4,*(
), CHEN Zhengwu5
Received:
2023-03-03
Online:
2023-07-25
Published:
2023-08-17
Contact:
NIU Suzhen
CLC Number:
BAI Dingchen, ZHAO Zhifei, GONG Xue, LIU Yuan, NIU Suzhen, CHEN Zhengwu. Genome-wide association analysis of stomatal characters of cultivated local tea plants in Guizhou, China[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1550-1563.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230261
SL/μm | SW/μm | SD/mm-2 | SA/μm2 | SP/μm | |
---|---|---|---|---|---|
最大值Max value | 44.80 | 39.60 | 633.33 | 1 169.37 | 124.85 |
最小值Min value | 25.49 | 15.69 | 202.78 | 292.96 | 67.45 |
平均值Average value | 35.15 | 27.65 | 418.06 | 731.17 | 96.15 |
Table 1 Statistics of 5 stomatal traits of cultivated-type tea plant in Guizhou plateau
SL/μm | SW/μm | SD/mm-2 | SA/μm2 | SP/μm | |
---|---|---|---|---|---|
最大值Max value | 44.80 | 39.60 | 633.33 | 1 169.37 | 124.85 |
最小值Min value | 25.49 | 15.69 | 202.78 | 292.96 | 67.45 |
平均值Average value | 35.15 | 27.65 | 418.06 | 731.17 | 96.15 |
性状 Traits | 变异系数 CV | 偏度 Skewness | 偏度标准差 Deviation standard deviation | 峰度 Kurtosis | 峰度标准差 Kurtosis standard deviation |
---|---|---|---|---|---|
SL | 0.73 | -0.19 | 0.16 | -0.15 | 0.32 |
SW | 1.13 | -0.12 | 0.16 | -0.51 | 0.32 |
SD | 1.47 | 0.15 | 0.16 | -0.48 | 0.32 |
SA | 1.64 | 0.10 | 0.16 | -0.48 | 0.32 |
SP | 0.82 | -0.25 | 0.16 | -0.25 | 0.33 |
Table 2 Statistics of 5 Stomatal traits of cultivated-type tea plant in Guizhou plateau
性状 Traits | 变异系数 CV | 偏度 Skewness | 偏度标准差 Deviation standard deviation | 峰度 Kurtosis | 峰度标准差 Kurtosis standard deviation |
---|---|---|---|---|---|
SL | 0.73 | -0.19 | 0.16 | -0.15 | 0.32 |
SW | 1.13 | -0.12 | 0.16 | -0.51 | 0.32 |
SD | 1.47 | 0.15 | 0.16 | -0.48 | 0.32 |
SA | 1.64 | 0.10 | 0.16 | -0.48 | 0.32 |
SP | 0.82 | -0.25 | 0.16 | -0.25 | 0.33 |
Fig.1 Statistical normal distribution of stomatal traits of cultivated-type tea plants SL, Stoma length; SW, Stoma width; SD, Stoma density; SA, Stoma area; SP, Stoma perimeter.
基因ID Gene ID | 基因位点 Genetic locus | 关联位点 SNP locus | 功能注释 Function comment |
---|---|---|---|
CSS0006464.1 | S3_4364269 | S3_4364392 S3_4364468 | 与异亮氨酸tRNA合成酶、锌指FYVE结构域蛋白、形成具有光学活性的木质素有关 It is related to Isoleucine tRNA synthetase, zinc finger FYVE domain protein, and the formation of lignin with optical activity |
CSS0014538.1 | S3_4404126 | S3_4364392 S3_4364468 | 1)膜整体组分;2)电子载流子活性; 3)铁离子结合。该基因与At1g13570同源,F-box/FBD/LRR-repeat蛋白有关;也可能与CYT1同源,细胞色素C1,血红素蛋白,线粒体蛋白有关 1) Overall membrane composition; 2) Electron carrier activity; 3) Iron ion binding. This gene is homologous to At1g13570 and is associated with the F-box/FBD/LRR repeat protein; It may also be related to CYT1 homology, cytochrome C1, heme protein, and mitochondrial protein |
CSS0049436.1 | S6_93764367 | S6_93745614 | 编码蛋白和四肽重复序列(TPR)结构域有关,这种多肽存在于多种蛋白质(包括与伴侣、细胞周期、转录和蛋白质转运复合体有关的蛋白质)中 The coding protein is related to the tetrapeptide repeat sequence (TPR) domain, which is present in various proteins, including proteins related to chaperones, cell cycle, transcription, and protein transport complexes |
CSS0014397.1 | S7_45292716 | S7_45292798 | 该基因与COL16基因同源,编码蛋白与B-box锌指蛋白有关 This gene is homologous to the COL16 gene and encodes a protein related to the B-box zinc finger protein |
CSS0006487.1 | S13_4398763 | S13_4399128 | 该基因与HSL1同源,参与蛋白磷酸化 This gene is homologous to HSL1 and participates in protein phosphorylation |
CSS0038141.1 | S13_93296595 | S13_93263501 | 谷胱甘肽氧化还原酶活性Glutathione oxidoreductase activity |
Table 3 SL candidate genes and functional annotation
基因ID Gene ID | 基因位点 Genetic locus | 关联位点 SNP locus | 功能注释 Function comment |
---|---|---|---|
CSS0006464.1 | S3_4364269 | S3_4364392 S3_4364468 | 与异亮氨酸tRNA合成酶、锌指FYVE结构域蛋白、形成具有光学活性的木质素有关 It is related to Isoleucine tRNA synthetase, zinc finger FYVE domain protein, and the formation of lignin with optical activity |
CSS0014538.1 | S3_4404126 | S3_4364392 S3_4364468 | 1)膜整体组分;2)电子载流子活性; 3)铁离子结合。该基因与At1g13570同源,F-box/FBD/LRR-repeat蛋白有关;也可能与CYT1同源,细胞色素C1,血红素蛋白,线粒体蛋白有关 1) Overall membrane composition; 2) Electron carrier activity; 3) Iron ion binding. This gene is homologous to At1g13570 and is associated with the F-box/FBD/LRR repeat protein; It may also be related to CYT1 homology, cytochrome C1, heme protein, and mitochondrial protein |
CSS0049436.1 | S6_93764367 | S6_93745614 | 编码蛋白和四肽重复序列(TPR)结构域有关,这种多肽存在于多种蛋白质(包括与伴侣、细胞周期、转录和蛋白质转运复合体有关的蛋白质)中 The coding protein is related to the tetrapeptide repeat sequence (TPR) domain, which is present in various proteins, including proteins related to chaperones, cell cycle, transcription, and protein transport complexes |
CSS0014397.1 | S7_45292716 | S7_45292798 | 该基因与COL16基因同源,编码蛋白与B-box锌指蛋白有关 This gene is homologous to the COL16 gene and encodes a protein related to the B-box zinc finger protein |
CSS0006487.1 | S13_4398763 | S13_4399128 | 该基因与HSL1同源,参与蛋白磷酸化 This gene is homologous to HSL1 and participates in protein phosphorylation |
CSS0038141.1 | S13_93296595 | S13_93263501 | 谷胱甘肽氧化还原酶活性Glutathione oxidoreductase activity |
基因编号 Gene ID | 基因位点 Genetic locus | 关联位点 SNP locus | 功能注释 Function comment |
---|---|---|---|
CSS0006464.1 | S3_4364269 | S3_4364468 | 异亮氨酸tRNA合成酶、锌指FYVE结构域蛋白、形成具有光学活性的木质素有关 Isoleucine tRNA synthase, zinc finger FYVE domain protein, and the formation of lignin with optical activity |
CSS0032323.1 | S4_94940525 | S4_94978574 S4_94978635 | 1)参与蛋白磷酸化、含磷复合代谢等生物过程;2)蛋白丝氨酸/苏氨酸激酶活性、ATP结合、腺嘌呤核糖核苷酸结合、蛋白激酶活性等分子过程 1) Participate in biological processes such as protein phosphorylation and phosphorus containing compound metabolism; 2) Molecular processes such as protein serine/Threonine kinase activity, ATP binding, Adenine ribonucleotide binding, protein kinase activity, etc |
CSS0018568.1 | S4_94940525 | S4_94978574 S4_94978635 | 1)在细胞组成上作为膜整体组分,与生长素激活信号通路、防御反应有关; 2)可能PAM16同源,调节ATP依赖的蛋白易位到线粒体基质;3)也可能与MWL1和2家族同源,参与次生细胞壁形成学,特别是木质素的生物合成 1) As an integral component of membrane in cell composition, it is related to auxin activated signal pathway and defense response; 2) It may be that PAM16 is homologous, regulating ATP dependent protein translocation to Mitochondrial matrix; 3) It may also be homologous to the MWL1 and 2 families and participate in secondary cell wall formation, especially in lignin biosynthesis |
CSS0008651.1 | S6_48047596 | S6_48077984 | 衰老相关蛋白,可能与P85基因同源,参与冷胁迫、盐胁迫响应 Aging related proteins, possibly homologous to the P85 gene, participate in cold stress and salt stress responses |
CSS0003026.1 | S6_48077858 | S6_48077984 | 负载-tRNA氨基酸修饰,糖基转移酶活性,TRNA A64-2'-O-核糖磷酸转移酶活性 Load tRNA amino acid modification, glycosyltransferase activity, TRNA A64-2'-O-ribose phosphotransferase activity |
CSS0049436.1 | S6_93764367 | S6_93745614 | 编码蛋白和四肽重复序列(TPR)结构域有关,这种多肽存在于多种蛋白质(包括与伴侣、细胞周期、转录和蛋白质转运复合体有关的蛋白质)中 The coding protein is related to the tetrapeptide repeat sequence (TPR) domain, which is present in various proteins, including proteins related to chaperones, cell cycle, transcription, and protein transport complexes |
CSS0004296.1 | S6_124832429 | S6_124873652 S6_124873657 S6_124873688 S6_124873718 S6_124873720 | 编码蛋白与Vps62蛋白家族功能相似,可能同时参与了羧肽酶Y和碱性磷酸酶途径 The function of the encoded protein is similar to that of the Vps62 protein family, which may be involved in the carboxypeptidase Y and alkaline phosphatase pathways at the same time |
Table 4 SA candidate genes and functional annotation
基因编号 Gene ID | 基因位点 Genetic locus | 关联位点 SNP locus | 功能注释 Function comment |
---|---|---|---|
CSS0006464.1 | S3_4364269 | S3_4364468 | 异亮氨酸tRNA合成酶、锌指FYVE结构域蛋白、形成具有光学活性的木质素有关 Isoleucine tRNA synthase, zinc finger FYVE domain protein, and the formation of lignin with optical activity |
CSS0032323.1 | S4_94940525 | S4_94978574 S4_94978635 | 1)参与蛋白磷酸化、含磷复合代谢等生物过程;2)蛋白丝氨酸/苏氨酸激酶活性、ATP结合、腺嘌呤核糖核苷酸结合、蛋白激酶活性等分子过程 1) Participate in biological processes such as protein phosphorylation and phosphorus containing compound metabolism; 2) Molecular processes such as protein serine/Threonine kinase activity, ATP binding, Adenine ribonucleotide binding, protein kinase activity, etc |
CSS0018568.1 | S4_94940525 | S4_94978574 S4_94978635 | 1)在细胞组成上作为膜整体组分,与生长素激活信号通路、防御反应有关; 2)可能PAM16同源,调节ATP依赖的蛋白易位到线粒体基质;3)也可能与MWL1和2家族同源,参与次生细胞壁形成学,特别是木质素的生物合成 1) As an integral component of membrane in cell composition, it is related to auxin activated signal pathway and defense response; 2) It may be that PAM16 is homologous, regulating ATP dependent protein translocation to Mitochondrial matrix; 3) It may also be homologous to the MWL1 and 2 families and participate in secondary cell wall formation, especially in lignin biosynthesis |
CSS0008651.1 | S6_48047596 | S6_48077984 | 衰老相关蛋白,可能与P85基因同源,参与冷胁迫、盐胁迫响应 Aging related proteins, possibly homologous to the P85 gene, participate in cold stress and salt stress responses |
CSS0003026.1 | S6_48077858 | S6_48077984 | 负载-tRNA氨基酸修饰,糖基转移酶活性,TRNA A64-2'-O-核糖磷酸转移酶活性 Load tRNA amino acid modification, glycosyltransferase activity, TRNA A64-2'-O-ribose phosphotransferase activity |
CSS0049436.1 | S6_93764367 | S6_93745614 | 编码蛋白和四肽重复序列(TPR)结构域有关,这种多肽存在于多种蛋白质(包括与伴侣、细胞周期、转录和蛋白质转运复合体有关的蛋白质)中 The coding protein is related to the tetrapeptide repeat sequence (TPR) domain, which is present in various proteins, including proteins related to chaperones, cell cycle, transcription, and protein transport complexes |
CSS0004296.1 | S6_124832429 | S6_124873652 S6_124873657 S6_124873688 S6_124873718 S6_124873720 | 编码蛋白与Vps62蛋白家族功能相似,可能同时参与了羧肽酶Y和碱性磷酸酶途径 The function of the encoded protein is similar to that of the Vps62 protein family, which may be involved in the carboxypeptidase Y and alkaline phosphatase pathways at the same time |
基因ID Gene ID | 基因位点 Genetic locus | 关联位点 SNP locus | 功能注释 Function comment |
---|---|---|---|
CSS0004296.1 | S6_124832429 | S6_124873720 | 编码蛋白与Vps62蛋白家族功能相似,可能同时参与了羧肽酶Y和碱性磷酸酶途径 The function of the encoded protein is similar to that of the Vps62 protein family, which may be involved in the Carboxypeptidase Y and Alkaline phosphatase pathways at the same time |
CSS0049436.1 | S6_93764367 | S6_93745614 | 编码蛋白和四肽重复序列(TPR)结构域有关,这种多肽存在于多种蛋白质(包括与伴侣、细胞周期、转录和蛋白质转运复合体有关的蛋白质)中 The coding protein is related to the tetrapeptide repeat sequence (TPR) domain, which is present in various proteins, including proteins related to chaperones, cell cycle, transcription, and protein transport complexes |
CSS0014397.1 | S7_45292716 | S7_45292797 | 该基因与COL16基因同源,编码蛋白与B-box锌指蛋白有关 This gene is homologous to the COL16 gene and encodes a protein related to the B-box zinc finger protein |
CSS0030051.1 | S15_43099708 | S15_43052771 | 磷脂酰肌醇转移活性Phosphatidylinositol transfer activity |
Table 5 SP candidate genes and functional annotation
基因ID Gene ID | 基因位点 Genetic locus | 关联位点 SNP locus | 功能注释 Function comment |
---|---|---|---|
CSS0004296.1 | S6_124832429 | S6_124873720 | 编码蛋白与Vps62蛋白家族功能相似,可能同时参与了羧肽酶Y和碱性磷酸酶途径 The function of the encoded protein is similar to that of the Vps62 protein family, which may be involved in the Carboxypeptidase Y and Alkaline phosphatase pathways at the same time |
CSS0049436.1 | S6_93764367 | S6_93745614 | 编码蛋白和四肽重复序列(TPR)结构域有关,这种多肽存在于多种蛋白质(包括与伴侣、细胞周期、转录和蛋白质转运复合体有关的蛋白质)中 The coding protein is related to the tetrapeptide repeat sequence (TPR) domain, which is present in various proteins, including proteins related to chaperones, cell cycle, transcription, and protein transport complexes |
CSS0014397.1 | S7_45292716 | S7_45292797 | 该基因与COL16基因同源,编码蛋白与B-box锌指蛋白有关 This gene is homologous to the COL16 gene and encodes a protein related to the B-box zinc finger protein |
CSS0030051.1 | S15_43099708 | S15_43052771 | 磷脂酰肌醇转移活性Phosphatidylinositol transfer activity |
[1] | XIA E H, TONG W, HOU Y, et al. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026. |
[2] | BABA Y, INAGAKI S, NAKAGAWA S, et al. Effects of l-theanine on cognitive function in middle-aged and older subjects: a randomized placebo-controlled study[J]. Journal of Medicinal Food, 2021, 24(4): 333-341. |
[3] | BARGHOUTHY Y, CORRALES M, DOIZI S, et al. Tea and coffee consumption and pathophysiology related to kidney stone formation: a systematic review[J]. World Journal of Urology, 2021, 39(7): 2417-2426. |
[4] | FANG K X, XIA Z Q, LI H J, et al. Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites[J]. Horticulture Research, 2021, 8(1): 42. |
[5] | HU T, WU P, ZHAN J F, et al. Influencing factors on the physicochemical characteristics of tea polysaccharides[J]. Molecules, 2021, 26(11): 3457. |
[6] | PARK J, PARK R, JANG M, et al. Therapeutic potential of EGCG, a green tea polyphenol, for treatment of coronavirus diseases[J]. Life, 2021, 11(3): 197. |
[7] | HAZRA A, DASGUPTA N, SENGUPTA C, et al. Tea: a worthwhile, popular beverage crop since time immemorial[M]//Agronomic Crops. Singapore: Springer Singapore, 2019: 507-531. |
[8] | KOTTAWA-ARACHCHI J D, KUMUDINI GUNASEKARE M T, RANATUNGA M A B. Biochemical diversity of global tea[Camellia sinensis(L.) O. Kuntze] germplasm and its exploitation: a review[J]. Genetic Resources and Crop Evolution, 2019, 66(1): 259-273. |
[9] | XIA E H, TONG W, WU Q, et al. Tea plant genomics: achievements, challenges and perspectives[J]. Horticulture Research, 2020, 7: 7. |
[10] | 鄢东海, 刘声传, 罗显扬, 等. 贵州地方茶树品种资源遗传多样性RAPD分析[J]. 中国农学通报, 2015, 31(19): 30-34. |
YAN D H, LIU S C, LUO X Y, et al. Analysis of genetic diversity with RAPD markers for local tea populations in Guizhou[J]. Chinese Agricultural Science Bulletin, 2015, 31(19): 30-34. (in Chinese with English abstract) | |
[11] | TAN L Q, LIU Q L, ZHOU B, et al. Paternity analysis using SSR markers reveals that the anthocyanin-rich tea cultivar ‘Ziyan’ is self-compatible[J]. Scientia Horticulturae, 2019, 245: 258-262. |
[12] | 黄寿辉, 温立香, 彭静茹, 等. 广西部分地区野生茶树遗传关系EST-SSR标记分析[J]. 广西植物, 2019, 39(6): 821-830. |
HUANG S H, WEN L X, PENG J R, et al. Genetic relationship analysis of wild tea tree germplasm resources in part of Guangxi based on EST-SSR markers[J]. Guihaia, 2019, 39(6): 821-830. (in Chinese with English abstract) | |
[13] | MUKHOPADHYAY M, MONDAL T K, CHAND P K. Biotechnological advances in tea [Camellia sinensis (L.) O. Kuntze]: a review[J]. Plant Cell Reports, 2016, 35(2): 255-287. |
[14] | ZHOU Q Q, SUN W J, LAI Z X. Differential expression of genes in purple-shoot tea tender leaves and mature leaves during leaf growth[J]. Journal of the Science of Food and Agriculture, 2016, 96(6): 1982-1989. |
[15] | CHANG Y L, OH E U, LEE M S, et al. Construction of a genetic linkage map based on RAPD, AFLP, and SSR markers for tea plant (Camellia sinensis)[J]. Euphytica, 2017, 213(8): 1-15. |
[16] | KAMUNYA S M, WACHIRA F N, PATHAK R S, et al. Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis(L.) O. Kuntze)[J]. Tree Genetics & Genomes, 2010, 6(6): 915-929. |
[17] | TAN L Q, WANG L Y, XU L Y, et al. SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis)[J]. Tree Genetics & Genomes, 2016, 12(3): 1-13. |
[18] | PANG Y L, LIU C X, WANG D F, et al. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat[J]. Molecular Plant, 2020, 13(9): 1311-1327. |
[19] | KOLKMAN J M, STRABLE J, HARLINE K, et al. Maize introgression library provides evidence for the involvement of liguleless1 in resistance to northern leaf blight[J]. G3, 2020, 10(10): 3611-3622. |
[20] | FENG S J, LIU Z S, HU Y, et al. Genomic analysis reveals the genetic diversity, population structure, evolutionary history and relationships of Chinese pepper[J]. Horticulture Research, 2020, 7: 158. |
[21] | CABALLERO M, LAUER E, BENNETT J, et al. Toward genomic selection in Pinus taeda: integrating resources to support array design in a complex conifer genome[J]. Applications in Plant Sciences, 2021, 9(6): e11439. |
[22] | SINGH N, RAWAL H C, ANGADI U B, et al. A first-generation haplotype map (HapMap-1) of tea (Camellia sinensis L. O. Kuntz)[J]. Bioinformatics, 2022, 38(2): 318-324. |
[23] | 王松琳. 茶树黄化品种白鸡冠色素及游离氨基酸特异性状的QTL定位[D]. 北京: 中国农业科学院, 2018. |
WANG S L. QTL mapping of specific traits of pigment and free amino acid in chlorotic tea cultivar ‘Baijiguan’[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese with English abstract) | |
[24] | 郭燕, 乔大河, 杨春, 等. 基于全基因组SNP的贵州久安古茶树遗传关系分析[J]. 植物遗传资源学报, 2019, 20(1): 26-36. |
GUO Y, QIAO D H, YANG C, et al. Genetic diversity of old tea plant resources in jiuan city of Guizhou Province, using genome-wide SNP[J]. Journal of Plant Genetic Resources, 2019, 20(1): 26-36. (in Chinese with English abstract) | |
[25] | 乔大河, 郭燕, 杨春, 等. 贵州省主要栽培茶树品种指纹图谱构建与遗传结构分析[J]. 植物遗传资源学报, 2019, 20(2): 412-425. |
QIAO D H, GUO Y, YANG C, et al. Fingerprinting construction and genetic structure analysis of the main cultivated tea varieties in Guizhou Province[J]. Journal of Plant Genetic Resources, 2019, 20(2): 412-425. (in Chinese with English abstract) | |
[26] | 郭灿, 皮发娟, 吴昌敏, 等. 基于GBS测序的全基因组SNP揭示贵州地方茶组植物资源的亲缘关系[J]. 南方农业学报, 2021, 52(3): 660-670. |
GUO C, PI F J, WU C M, et al. Genome-wide SNP developed by genotyping-by-sequencing revealed the phylogenetic relationship of Sect. Thea(L.) Dyer resources in Guizhou[J]. Journal of Southern Agriculture, 2021, 52(3): 660-670. (in Chinese with English abstract) | |
[27] | NIU S Z, KOIWA H, SONG Q F, et al. Development of core-collections for Guizhou tea genetic resources and GWAS of leaf size using SNP developed by genotyping-by-sequencing[J]. PeerJ, 2020, 8: e8572. |
[28] | NIU S Z, SONG Q F, KOIWA H, et al. Genetic diversity, linkage disequilibrium, and population structure analysis of the tea plant (Camellia sinensis) from an origin center, Guizhou Plateau, using genome-wide SNPs developed by genotyping-by-sequencing[J]. BMC Plant Biology, 2019, 19(1): 328. |
[29] | NACHMAN M W. Single nucleotide polymorphisms and recombination rate in humans[J]. Trends in Genetics, 2001, 17(9): 481-485. |
[30] | WANG Y, SONG F, ZHU J, et al. GSA: genome sequence archive[J]. Nucleic Acids Research, 2017, 15(1): 14-18. |
[31] | MCKENNA A, HANNA M, BANKS E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297-1303. |
[32] | DANECEK P, AUTON A, ABECASIS G, et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27(15): 2156-2158. |
[33] | DELFINI J, MODA-CIRINO V, DOS SANTOS NETO J, et al. Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm[J]. Scientific Reports, 2021, 11(1): 2964. |
[34] | 杨克彤, 常海龙, 陈国鹏, 等. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
YANG K T, CHANG H L, CHEN G P, et al. Stomatal traits of main greening plant species in Lanzhou[J]. Chinese Journal of Plant Ecology, 2021, 45(2): 187-196. (in Chinese with English abstract) | |
[35] | 付金娥, 黎颍菁, 韦树根, 等. 叶片气孔保卫细胞周长用于鉴定黄花蒿倍性的研究[J]. 北方园艺, 2017(6): 156-161. |
FU Jine, LI Y J, WEI S G, et al. Leaf stomatal guard cell perimeter used for identification of ploidy of Artemisia annua L[J]. Northern Horticulture, 2017(6): 156-161. (in Chinese with English abstract) | |
[36] | BRADBURY P J, ZHANG Z W, KROON D E, et al. TASSEL: software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23(19): 2633-2635. |
[37] | ZHAO Z F, SONG Q F, BAI D C, et al. Population structure analysis to explore genetic diversity and geographical distribution characteristics of cultivated-type tea plant in Guizhou Plateau[J]. BMC Plant Biology, 2022, 22(1): 55. |
[38] | HINTON P, MCMURRAY I, BROWNLOW C. SPSS Explained[M]. Routledge, 2014. |
[39] | ENGINEER C. Environmental Regulation of Plant Stomatal Development By Cell Fate Morphogens in Arabidopsis thaliana[J]. Plant Animal Genome, 2015, 1:44-45. |
[40] | 崔国新, 韩宝达, 赵潇男, 等. 气孔发育及其调控[J]. 植物生理学报, 2012, 48(9): 829-836. |
CUI G X, HAN B D, ZHAO X N, et al. Stomatal development and its regulation[J]. Plant Physiology Journal, 2012, 48(9): 829-836. (in Chinese with English abstract) | |
[41] | 刘俊, 郭志富. 植物气孔发育分子机制研究进展[J]. 安徽农业科学, 2015, 43(35): 12-15. |
LIU J, GUO Z F. Research progress of molecular mechanism on stomatal development in plants[J]. Journal of Anhui Agricultural Sciences, 2015, 43(35): 12-15. (in Chinese with English abstract) | |
[42] | 郭昱. 谷子核心种质叶片气孔、乳突密度全基因组关联分析[D]. 太谷: 山西农业大学, 2020. |
GUO Y. Genome-wide association study of leaf stomatal density and papillae density in core germplasm of Setaria italica[D]. Taigu: Shanxi Agricultural University, 2020. (in Chinese with English abstract) | |
[43] | 陈宏伟. 水稻气孔相关性状全基因组关联分析[D]. 沈阳: 沈阳农业大学, 2019. |
CHEN H W. Genome-wide association study of stomatal related traits in rice[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese with English abstract) | |
[44] | 孙鹏娅. 全基因组关联分析挖掘调控番茄叶片气孔形成的关键基因[D]. 武汉: 华中农业大学, 2019. |
SUN P Y. Exploiting key genes regulating leaf stomata formation by genome-wide association analysis in tomato[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese with English abstract) | |
[45] | 陈岱卉. 大红袍的生物学特性及品质研究[D]. 福州: 福建农林大学, 2009. |
CHEN D H. The research on biological characteristic and quality of Dahongpao[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009. (in Chinese with English abstract) | |
[46] | 孟雷, 李磊鑫, 陈温福, 等. 水分胁迫对水稻叶片气孔密度、大小及净光合速率的影响[J]. 沈阳农业大学学报, 1999, 30(5): 477-480. |
MENG L, LI L X, CHEN W F, et al. Effect of water stress on stomatal density, length, width and net photosynthetic rate in rice leaves[J]. Journal of Shenyang Agricultural University, 1999, 30(5): 477-480. (in Chinese with English abstract) | |
[47] | 于海秋, 武志海, 沈秀瑛, 等. 水分胁迫下玉米叶片气孔密度、大小及显微结构的变化[J]. 吉林农业大学学报, 2003, 25(3): 239-242. |
YU H Q, WU Z H, SHEN X Y, et al. Changes of stomatal density, length, width and microstructure of maize leaves under water stress[J]. Journal of Jilin Agricultural University, 2003, 25(3): 239-242. (in Chinese with English abstract) | |
[48] | 王宏亮, 郭思义, 王棚涛, 等. 植物气孔发育机制研究进展[J]. 植物学报, 2018, 53(2): 164-174. |
WANG H L, GUO S Y, WANG P T, et al. Research progress in stomatal development mechanism[J]. Chinese Bulletin of Botany, 2018, 53(2): 164-174. (in Chinese with English abstract) | |
[49] | MASSIAH M A, SIMMONS B N, SHORT K M, et al. Solution structure of the RBCC/TRIM B-box1 domain of human MID1: B-box with a RING[J]. Journal of Molecular Biology, 2006, 358(2): 532-545. |
[50] | SHORT K M, COX T C. Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding[J]. The Journal of Biological Chemistry, 2006, 281(13): 8970-8980. |
[51] | 赵姝丽, 陈温福, 徐正进. 水分胁迫对水稻剑叶气孔特性的影响[J]. 华北农学报, 2010, 25(1): 170-174. |
ZHAO S L, CHEN W F, XU Z J. The effects of drought stress on stomatal characters of rice leaf[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(1): 170-174. (in Chinese with English abstract) | |
[52] | TEGG R S, SHABALA S N, CUIN T A, et al. Enhanced resistance to the cellulose biosynthetic inhibitors, thaxtomin A and isoxaben in Arabidopsis thaliana mutants, also provides specific co-resistance to the auxin transport inhibitor, 1-NPA[J]. BMC Plant Biology, 2013, 13: 76. |
[53] | 商业绯, 李明, 丁博, 等. 生长素调控植物气孔发育的研究进展[J]. 植物学报, 2017, 52(2): 235-240. |
SHANG Y F, LI M, DING B, et al. Advances in auxin regulation of plant stomatal development[J]. Chinese Bulletin of Botany, 2017, 52(2): 235-240. (in Chinese with English abstract) | |
[54] | MEWALAL R, MIZRACHI E, COETZEE B, et al. The Arabidopsis domain of unknown function 1218(DUF1218)containing proteins, modifying wall lignin-1 and 2(at1g31720/mwl-1 and at4g19370/mwl-2)function redundantly to alter secondary cell wall lignin content[J]. PLoS One, 2016, 11(3): e0150254. |
[55] | 陈文玲, 张晴晴, 唐韶华, 等. 甘油-3-磷酸酰基转移酶在植物脂质代谢、生长及逆境反应中的作用[J]. 植物生理学报, 2018, 54(5): 725-735. |
CHEN W L, ZHANG Q Q, TANG S H, et al. Glycerol-3-phosphate acyltransferase in lipid metabolism, growth and response to stresses in plants[J]. Plant Physiology Journal, 2018, 54(5): 725-735. (in Chinese with English abstract) |
[1] | ZHENG Fushun, WANG Xiaomin, LI Guohua, LI Honglei, LIU Peijun, HU Xinhua, FU Jinjun. Construction strategy of core collections of tomato germplasm resources in Ningxia, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1877-1888. |
[2] | YANG Hailong, WANG Hui, LEI Jinchao, CAI Jinyang. Analysis and evaluation of phenotypic diversities of early indica rice germplasm resources in Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1571-1581. |
[3] | MO Yanling, ZHANG Wenjing, LUO Yalan, ZENG Jing, CHEN Jingjing, LIU Yihua. Identification and evaluation of agronomic traits and nutritional quality traits in wide handle mustard germplam resources [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 317-328. |
[4] | HE Qinghai, LIU Bentong, ZHOU Zhengde, FANG Ru, YANG Shaozong. Diversity of Rubus chingii germplasm resources based on twig and leaf phenotypic traits [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1660-1667. |
[5] | ZHANG Jingzhen, WANG Lianjun, LEI Jian, CHAI Shasha, YANG Xinsun, ZHANG Wenying. Genetic diversity analysis and construction of DNA fingerprint of yam (Dioscorea oppositeac Thunb.) germplasm by cpSSR marker [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1222-1233. |
[6] | ZHAI Xiuming, LI Jie, TANG Min, HU Fangjie, ZHANG Jun, HOU Yujia, XU Ze. Diversity analysis of 30 tea (Camelia sinensis) germplasm resources in Chongqing based on agronomic traits and biochemical components [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1244-1255. |
[7] | ZHAO Ke, LI Qiurong, HOU Lu, BAI Yaobo, JIANG Liling, WEI Youhai, GUO Qingyun. Genetic analysis of stripe rust resistance genes in 2 spring wheat germplasm resources at adult stage [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 595-601. |
[8] | SHEN Shengfa, XIANG Chao, WU Liehong, LI Bing, LUO Zhigao. Determination and difference analysis of soluble sugar content in 11 sweetpotato germplasm resources [J]. , 2020, 32(11): 1934-1940. |
[9] | XU Xiao, LUAN Haiye, ZHANG Yinghu, LU Jian, QIAO Hailong, ZANG Hui, YANG Hongyan, SHEN Huiquan. Morphological diversity of hulless barley accessions from Qinghai-Tibetan Plateau [J]. , 2019, 31(7): 1037-1044. |
[10] | LU Xin, ZHOU Jinghang, YANG Chaoyun, ZHANG Menghua, YE Lianmeng, LI Shuzhen, HUANG Xixia, MA Yun, WANG Xingping, SHI Yuangang. Functional annotation of candidate genes for milk production and reproductive traits in Xinjiang Brown cattle [J]. , 2019, 31(12): 1987-1995. |
[11] | CHEN Yue, ZHANG Dunyu, DING Mingliang, WANG Lingxian, XIAO Suqin, KE Xue, CHENG Zaiquan. Phenotypic diversity of rice resources in multiple provinces and screening of excellent resources [J]. , 2019, 31(11): 1779-1789. |
[12] | CHENG Hua, LU Fengjun, LIU Qing. Whole chain closed-loop pattern on development and utilization of livestock and poultry germplasm resources: an illustration from Yukou Poultry Co., Ltd. [J]. , 2019, 31(10): 1734-1744. |
[13] | HONG Senrong, ZHANG Mingxin, YE Siyu, NING Bensong. Genetic diversity analysis of alpine potato germplasm resources by isozyme [J]. , 2018, 30(9): 1445-1453. |
[14] | WANG Xiangdong, MA Yanzhi, KE Shaoying. Analysis of germplasm resources in 11 varieties Schizonepeta tenuifolia Briq. by ISSR [J]. , 2018, 30(4): 614-621. |
[15] | JIA Xiaoping, ZHANG Bo, QUAN Jianzhang, WANG Yongfang, DONG Zhiping, YUAN Xilei, LI Jianfeng. Genome-wide association analysis of lodging resistance of millet in Luoyang and Jilin ecological regions [J]. , 2018, 30(12): 1981-1991. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||