Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (9): 2181-2191.DOI: 10.3969/j.issn.1004-1524.20221470
• Environmental Science • Previous Articles Next Articles
GU Kechen(), JIANG Junjie, PAN Chenxin, SUN Qisong, YIN Wenjie, HU Junguo(
)
Received:
2022-10-24
Online:
2023-09-25
Published:
2023-10-09
CLC Number:
GU Kechen, JIANG Junjie, PAN Chenxin, SUN Qisong, YIN Wenjie, HU Junguo. A soil respiration monitoring equipment based on open chamber method[J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2181-2191.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221470
介质 Medium | 孔隙率 Porosity/ (m3·m-3) | 渗透率 Permeability/ m2 |
---|---|---|
多孔介质1 Porous medium 1 | 0.3 | 2×10-11 |
多孔介质2 Porous medium 2 | 0.4 | 2×10-10 |
多孔介质3 Porous medium 3 | 0.5 | 2×10-9 |
Table 1 Porosities and permeabilities of three porous media
介质 Medium | 孔隙率 Porosity/ (m3·m-3) | 渗透率 Permeability/ m2 |
---|---|---|
多孔介质1 Porous medium 1 | 0.3 | 2×10-11 |
多孔介质2 Porous medium 2 | 0.4 | 2×10-10 |
多孔介质3 Porous medium 3 | 0.5 | 2×10-9 |
Fig.6 CO2 volume fraction contours within chamber at different soil respiration rates The soil respiration rates in a-d are 0.5, 2, 5, 10 μmol·m-2·s-1, respectively.
簇编号 Cluster No. | 质心坐标 Centroid coordinate/m | 样本点数量 Sample quantity |
---|---|---|
1 | (-0.008 3, 0.112 0, 0.200 0) | 711 |
2 | (-0.101 0, 0.101 0, 0.206 0) | 881 |
3 | (-0.105 0, 0.033 5, 0.206 0) | 717 |
4 | (-0.047 3, 0.081 3, 0.117 0) | 447 |
5 | (-0.046 5, 0.071 7, 0.209 0) | 1 335 |
Table 2 Centroid coordinates and number of samples of each cluster
簇编号 Cluster No. | 质心坐标 Centroid coordinate/m | 样本点数量 Sample quantity |
---|---|---|
1 | (-0.008 3, 0.112 0, 0.200 0) | 711 |
2 | (-0.101 0, 0.101 0, 0.206 0) | 881 |
3 | (-0.105 0, 0.033 5, 0.206 0) | 717 |
4 | (-0.047 3, 0.081 3, 0.117 0) | 447 |
5 | (-0.046 5, 0.071 7, 0.209 0) | 1 335 |
指标Index | 2022-03-15 | 2022-04-19 | 2022-04-20 | 2022-04-21 | 2022-07-07 | 2022-07-09 |
---|---|---|---|---|---|---|
样本数Sample size | 8 | 6 | 3 | 6 | 5 | 3 |
LI-8100测量值 | 1.76±0.06 | — | — | — | 5.90±0.32 | 5.75±0.98 |
Measured value by LI-8100/ (μmol·m-2·s-1) | ||||||
SMCC测量值 | — | 3.68±0.998 | 2.40±0.0532 | 3.35±0.928 | — | — |
Measured value by SMCC/ (μmol·m-2·s-1) | ||||||
SRME测量值 | 1.57±0.18 | 3.77±1.19 | 2.71±0.26 | 3.31±0.98 | 5.45±0.71 | 6.30±1.24 |
Measured value by SRME/ (μmol·m-2·s-1) | ||||||
平均误差Mean error/% | 12.8 | 7.9 | 12.7 | 8.1 | 11.4 | 12.1 |
Table 3 Measurement of soil respiration rate
指标Index | 2022-03-15 | 2022-04-19 | 2022-04-20 | 2022-04-21 | 2022-07-07 | 2022-07-09 |
---|---|---|---|---|---|---|
样本数Sample size | 8 | 6 | 3 | 6 | 5 | 3 |
LI-8100测量值 | 1.76±0.06 | — | — | — | 5.90±0.32 | 5.75±0.98 |
Measured value by LI-8100/ (μmol·m-2·s-1) | ||||||
SMCC测量值 | — | 3.68±0.998 | 2.40±0.0532 | 3.35±0.928 | — | — |
Measured value by SMCC/ (μmol·m-2·s-1) | ||||||
SRME测量值 | 1.57±0.18 | 3.77±1.19 | 2.71±0.26 | 3.31±0.98 | 5.45±0.71 | 6.30±1.24 |
Measured value by SRME/ (μmol·m-2·s-1) | ||||||
平均误差Mean error/% | 12.8 | 7.9 | 12.7 | 8.1 | 11.4 | 12.1 |
[1] | HURSH A, BALLANTYNE A, COOPER L, et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale[J]. Global Change Biology, 2017, 23(5): 2090-2103. |
[2] | JASSAL R S, BLACK T A, NESIC Z, et al. Using automated non-steady-state chamber systems for making continuous long-term measurements of soil CO2 efflux in forest ecosystems[J]. Agricultural and Forest Meteorology, 2012, 161: 57-65. |
[3] | LASHOF D A, AHUJA D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266): 529-531. |
[4] | LUO Y, ZHOU X. Soil respiration and the environment[M]. Burlington: Elsevier Science, 2010. |
[5] | XU M, SHANG H. Contribution of soil respiration to the global carbon equation[J]. Journal of Plant Physiology, 2016, 203: 16-28. |
[6] | KUTSCH W, BAHN M, HEINEMEYER A. Soil carbon dynamics: an integrated methodology[M]. Cambridge, UK: Cambridge University Press, 2009. |
[7] | BALDOCCHI D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future[J]. Global Change Biology, 2003, 9(4): 479-492. |
[8] | MAIER M, SCHACK-KIRCHNER H. Using the gradient method to determine soil gas flux: a review[J]. Agricultural and Forest Meteorology, 2014, 192/193: 78-95. |
[9] | HATFIELD J L, BAKER J M, VINEY M K. Micrometeorology in agricultural systems[M]. Madison: American Society of Agronomy, 2005. |
[10] | NAKAYAMA F S. Soil respiration[J]. Remote Sensing Reviews, 1990, 5(1): 311-321. |
[11] | BEKKU Y, KOIZUMI H, OIKAWA T, et al. Examination of four methods for measuring soil respiration[J]. Applied Soil Ecology, 1997, 5(3): 247-254. |
[12] | GÖRRES C M, KAMMANN C, CEULEMANS R. Automation of soil flux chamber measurements: potentials and pitfalls[J]. Biogeosciences, 2016, 13(6): 1949-1966. |
[13] | FUJIUCHI N, INABA K, KANOH T, et al. Method to calculate net CO2 exchange rate of whole plants under continuously increasing or decreasing CO2 concentrations in a greenhouse using a real-time photosynthesis and transpiration monitoring system[J]. Environment Control in Biology, 2022, 60(1): 13-21. |
[14] | HEGER A, KLEINSCHMIDT V, GRÖNGRÖFT A, et al. Application of a low-cost NDIR sensor module for continuous measurements of in situ soil CO2 concentration[J]. Journal of Plant Nutrition and Soil Science, 2020, 183(5): 557-561. |
[15] | CURCOLL R, MORGUÍ J A, KAMNANG A, et al. Metrology for low-cost CO2 sensors applications: the case of a steady-state through-flow (SS-TF) chamber for CO2 fluxes observations[J]. Atmospheric Measurement Techniques, 2022, 15(9): 2807-2818. |
[16] | FANG C, MONCRIEFF J B. An open-top chamber for measuring soil respiration and the influence of pressure difference on CO2 efflux measurement[J]. Functional Ecology, 1998, 12(2): 319-325. |
[17] | PUMPANEN J, ILVESNIEMI H, KERONEN P, et al. An open chamber system for measuring soil surface CO2 efflux: analysis of error sources related to the chamber system[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D8): 7985-7992. |
[18] | GAO F, YATES S R. Simulation of enclosure-based methods for measuring gas emissions from soil to the atmosphere[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D20): 26127-26136. |
[19] | REICHMAN R, ROLSTON D E. Design and performance of a dynaniic gas flux chamber[J]. Journal of Environmental Quality, 2002, 31(6): 1774-1781. |
[20] | AUBINET M, VESALA T, PAPALE D. Eddy covariance: a practical guide to measurement and data analysis[M]. Dordrecht: Springer Netherlands, 2012. |
[21] | RIVEROS-IREGUI D A, MCGLYNN B L, EPSTEIN H E, et al. Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: discrete surface chambers and continuous soil CO2 concentration probes[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113: G04027. |
[22] | ALFONSI G. Reynolds-averaged navier-stokes equations for turbulence modeling[J]. Applied Mechanics Reviews, 2009, 62(4): 1. |
[23] | LIN C J, ZHU W, LI X C, et al. Novel dynamic flux chamber for measuring air-surface exchange of Hgo from soils[J]. Environmental Science & Technology, 2012, 46(16): 8910-8920. |
[24] | MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[EB/OL]. (2014-07-16) [2022-10-24]. https://www.researchgate.net/profile/Florian-Menter/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model/links/0046353c6330b1c0a4000000/Ten-years-of-industrial-experience-with-the-SST-turbulence-model.pdf. |
[25] | WALLACE J M, HOBBS P V. Atmospheric science: an introductory survey[M]. 2nd ed. Burlington, MA: Elsevier Academic Press, 2006. |
[26] | AL MAKKY A, ALASWAD A, GIBSON D, et al. A numerical and experimental study of a new design of closed dynamic respiration chamber[J]. Computers and Electronics in Agriculture, 2018, 145: 326-340. |
[27] | CARTER M R, GREGORICH E G. Soil sampling and methods of analysis[M]. 2nd ed. Boca Raton, FL, US: CRC Press, 2007. |
[28] | NAZAROFF W W. Radon transport from soil to air[J]. Reviews of Geophysics, 1992, 30(2): 137. |
[29] | BAHN M, RODEGHIERO M, ANDERSON-DUNN M, et al. Soil respiration in European grasslands in relation to climate and assimilate supply[J]. Ecosystems, 2008, 11(8): 1352-1367. |
[30] | KODINARIYA T, MAKWANA P. Review on determining of cluster in k-means clustering[J]. International Journal of Advance Research in Computer Science and Management Studies, 2013, 1(6): 90-95. |
[31] | MADSEN R, XU L K, CLAASSEN B, et al. Surface monitoring method for carbon capture and storage projects[J]. Energy Procedia, 2009, 1(1): 2161-2168. |
[32] | ROCHETTE P, GREGORICH E G, DESJARDINS R L. Comparison of static and dynamic closed chambers for measurement of soil respiration under field conditions[J]. Canadian Journal of Soil Science, 1992, 72(4): 605-609. |
[33] | JIANG J J, YIN W J, HU J G, et al. Study of a calibration system for soil respiration measurement chambers[J]. Environmental Research Communications, 2022, 4(9): 095006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||