Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (6): 1413-1424.DOI: 10.3969/j.issn.1004-1524.20230822
• Biosystems Engineering • Previous Articles Next Articles
ZHU Mingmin1(), ZHANG Guoping1,*(
), TAN Jianjun2, SUN Lingjiao2, ZHU Li1,3, JIAO Jie2
Received:
2023-07-03
Online:
2024-06-25
Published:
2024-07-02
CLC Number:
ZHU Mingmin, ZHANG Guoping, TAN Jianjun, SUN Lingjiao, ZHU Li, JIAO Jie. A lightweight tea buds terminal detection model based on YOLOv5s[J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1413-1424.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230822
Fig.2 Structure diagram of YOLOv5s Conv2d, Two-dimensional convolution; BN, Batch normalization; SiLU, Activation function; CBS, Convolutional block; Bottleneck, Bottleneck structure; C3, Lightweight semantic segmentation network; SPPF, Fast spatial pyramid pooling module; Concat, Tensor splicing; Upsample, Upsampling; MaxPool, Maximum pooling.
Fig.5 Structure diagram of coordinate attention (CA) mechanism Residual, Residual module; AvgPooling, Average pooling; BatchNorm, Batch normalization; Sigmaid, Activation function; Re weight, Reweighting module.
Fig.7 Structure diagram of the improved YOLOv5s network Ghost CBS, Ghost convolutional block; Ghost C3, Ghost lightweight semantic segmentation network; DWConv, Depth separable convolution; CA, Attention mechanism; MSC, Multi-scale feature fusion module; Ghost Bottleneck, Ghost Bottleneck.
模型 Models | 参数量 Params/Mb | 计算量 FLOPs/Gb | 模型大小 Size/Mb | 精准率 P/% | 召回率 R/% | 平均精度 AP/% |
---|---|---|---|---|---|---|
MobileNetV3 | 3.54 | 7.0 | 7.5 | 62.2 | 64.0 | 65.2 |
ShuffleNetV2 | 3.68 | 7.8 | 7.6 | 66.3 | 66.5 | 68.4 |
GhostNet | 3.67 | 8.0 | 7.9 | 67.0 | 68.2 | 71.2 |
Table 1 Comparison of different lightweight models
模型 Models | 参数量 Params/Mb | 计算量 FLOPs/Gb | 模型大小 Size/Mb | 精准率 P/% | 召回率 R/% | 平均精度 AP/% |
---|---|---|---|---|---|---|
MobileNetV3 | 3.54 | 7.0 | 7.5 | 62.2 | 64.0 | 65.2 |
ShuffleNetV2 | 3.68 | 7.8 | 7.6 | 66.3 | 66.5 | 68.4 |
GhostNet | 3.67 | 8.0 | 7.9 | 67.0 | 68.2 | 71.2 |
模型 Models | 参数量 Params/Mb | 计算量 FLOPs/Gb | 模型大小 Size/Mb | 精准率 P/% | 召回率 R/% | 平均精度 AP/% |
---|---|---|---|---|---|---|
YOLOv5s | 7.01 | 15.8 | 14.50 | 68.8 | 67.5 | 72.7 |
A | 3.67 | 8.0 | 7.90 | 67.0 | 68.2 | 71.2 |
B | 3.74 | 8.1 | 8.00 | 67.5 | 68.4 | 72.0 |
C | 3.98 | 8.5 | 8.13 | 68.4 | 68.5 | 72.5 |
D | 4.01 | 8.5 | 8.13 | 68.5 | 68.8 | 73.0 |
Table 2 Comparison of ablation test results
模型 Models | 参数量 Params/Mb | 计算量 FLOPs/Gb | 模型大小 Size/Mb | 精准率 P/% | 召回率 R/% | 平均精度 AP/% |
---|---|---|---|---|---|---|
YOLOv5s | 7.01 | 15.8 | 14.50 | 68.8 | 67.5 | 72.7 |
A | 3.67 | 8.0 | 7.90 | 67.0 | 68.2 | 71.2 |
B | 3.74 | 8.1 | 8.00 | 67.5 | 68.4 | 72.0 |
C | 3.98 | 8.5 | 8.13 | 68.4 | 68.5 | 72.5 |
D | 4.01 | 8.5 | 8.13 | 68.5 | 68.8 | 73.0 |
模型 Models | 参数量 params/Mb | 计算量 FLOPs/Gb | 模型大小 size/Mb | 精准率 P/% | 召回率 R/% | 平均精度 AP/% | t/s |
---|---|---|---|---|---|---|---|
Faster R-CNN[ | — | — | — | 89.00 | 58.00 | 54.00 | — |
YOLOv3[ | — | — | — | 74.51 | 69.56 | 71.96 | — |
Compact-YOLO v4[ | — | — | 23.20 | 51.07 | 78.67 | 72.93 | 0.023 |
YOLOv5-Lite | 1.54 | 3.70 | 3.40 | 60.30 | 61.70 | 60.00 | 0.063 |
YOLOv5s | 7.01 | 15.8 | 14.50 | 68.80 | 67.50 | 72.70 | 0.014 |
Ours | 4.01 | 8.50 | 8.13 | 68.50 | 68.80 | 73.00 | 0.016 |
Table 3 Comparison of different detection algorithm models
模型 Models | 参数量 params/Mb | 计算量 FLOPs/Gb | 模型大小 size/Mb | 精准率 P/% | 召回率 R/% | 平均精度 AP/% | t/s |
---|---|---|---|---|---|---|---|
Faster R-CNN[ | — | — | — | 89.00 | 58.00 | 54.00 | — |
YOLOv3[ | — | — | — | 74.51 | 69.56 | 71.96 | — |
Compact-YOLO v4[ | — | — | 23.20 | 51.07 | 78.67 | 72.93 | 0.023 |
YOLOv5-Lite | 1.54 | 3.70 | 3.40 | 60.30 | 61.70 | 60.00 | 0.063 |
YOLOv5s | 7.01 | 15.8 | 14.50 | 68.80 | 67.50 | 72.70 | 0.014 |
Ours | 4.01 | 8.50 | 8.13 | 68.50 | 68.80 | 73.00 | 0.016 |
模型 Models | t1 | t2 | t3 | t4 |
---|---|---|---|---|
YOLOv5s | 0.014 | 0.155 | 16.572 | 0.892 |
Ours | 0.016 | 0.145 | 9.157 | 0.723 |
Table 4 Detection time of different models s
模型 Models | t1 | t2 | t3 | t4 |
---|---|---|---|---|
YOLOv5s | 0.014 | 0.155 | 16.572 | 0.892 |
Ours | 0.016 | 0.145 | 9.157 | 0.723 |
[1] | 刘顺星, 张慧坚, 刘晓青. 中国茶产业国际竞争力的比较分析与提升对策[J/OL]. 中国食物与营养, 2023: 1-8. |
LIU S X, ZHANG H J, LIU X Q. Comparative analysis and promotion countermeasures of international competitiveness of Chinese tea industry[J/OL]. Food and Nutrition in China, 2023: 1-8. (in Chinese with English abstract) | |
[2] | SHAO P D, WU M H, WANG X W, et al. Research on the tea bud recognition based on improved k-means algorithm[J]. MATEC Web of Conferences, 2018, 232: 03050. |
[3] | 刘自强, 周铁军, 傅冬和, 等. 基于颜色和形状的鲜茶叶图像特征提取及在茶树品种识别中的应用[J]. 江苏农业科学, 2021, 49(12): 168-172. |
LIU Z Q, ZHOU T J, FU D H, et al. Color and shape based feature extraction of fresh tea image and its application in tea tree variety recognition[J], Jiangsu Agricultural Sciences, 2021, 49(12): 168-172. (in Chinese with English abstract) | |
[4] | 吴雪梅, 张富贵, 吕敬堂. 基于图像颜色信息的茶叶嫩叶识别方法研究[J]. 茶叶科学, 2013, 33(6): 584-589. |
WU X M, ZHANG F G, LV J T. Research on recognition of tea tender leaf based on image color information[J]. Journal of Tea Science, 2013, 33(6): 584-589. (in Chinese with English abstract) | |
[5] | OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. |
[6] | 王子钰, 赵怡巍, 刘振宇. 基于SSD算法的茶叶嫩芽检测研究[J]. 微处理机, 2020, 41(4): 42-48. |
WANG Z Y, ZHAO Y W, LIU Z Y. Research on tea buds detection based on SSD algorithmon[J]. Microprocessors, 2020, 41(4): 42-48. (in Chinese with English abstract) | |
[7] | GAO M, SHI M, LI C. Research and implementation of image recognition of tea based on deep learning[C]// ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter), January 28-30, 2021. Ho Chi Minh City, Vietnam. IEEE, 2021: 63-68. |
[8] | FUKUSHIMA K. Neural network model for a mechanism of patten recognition unaffected by shift in position - Neocognitron[J]. IEICE Technical Report, 1989, 62(10): 658-665. (in Chinese with English abstract) |
[9] | FUKUSHIMA K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193-202. |
[10] | XU W K, ZHAO L G, LI J, et al. Detection and classification of tea buds based on deep learning[J]. Computers and Electronics in Agriculture, 2022, 192: 106547. |
[11] | GONG T, WANG Z L. A tea tip detection method suitable for tea pickers based on YOLOv4 network[C]// International Symposium on Robotics & Intelligent Manufacturing Technology (ISRIMT). September 24-26, 2021. Changzhou, China. IEEE, 2021: 264-268. |
[12] | 尹川, 苏议辉, 潘勉, 等. 基于改进YOLOv5s的名优绿茶品质检测[J]. 农业工程学报, 2023, 39(8): 179-187. |
YIN C, SU Y H, PAN M, et al. Detection of the quality of famous green tea based on improved YOLOv5s[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(8): 179-187. (in Chinese with English abstract) | |
[13] | GUI Z Y, CHEN J N, LI Y, et al. A lightweight tea bud detection model based on Yolov5[J]. Computers and Electronics in Agriculture, 2023, 205: 107636. |
[14] | 刘翀豪, 潘理虎, 杨帆, 等. 改进YOLOv5的轻量化口罩检测算法[J]. 计算机工程与应用, 2023, 59(7): 232-241. |
LIU C H, PAN L H, YANG F, et al. Improved YOLOv5 lightweight mask detection algorithm[J]. Computer Engineering and Applications, 2023, 59(7): 232-241. (in Chinese with English abstract) | |
[15] | Howard A, Ruoming Pang, Adam H, et al. Searching for MobileNetV3[C]// IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019. Seoul, Korea (South). IEEE, 2019: 1314-1324. |
[16] | HAN K, WANG Y H, TIAN Q, et al. GhostNet: More Features From Cheap Operations[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020. Seattle, WA, USA. IEEE, 2020: 1577-1586. |
[17] | WANG L, LI B, FU R G. Feature fusion and coordinate attention for small target detection[C]// International Conference on Intelligent Computing and Signal Processing (ICSP). April 15-17, 2022. Xi’an, China. IEEE, 2022: 629-633. |
[18] | ZHANG Z, DENG Z J, WU Z P, et al. An improved EIoU-Yolov5 algorithm for blood cell detection and counting[C]// International Conference on Pattern Recognition and Artificial Intelligence (PRAI). August 19-21, 2022. Chengdu, China. IEEE, 2022: 989-993. |
[19] | XUE J L, CHENG F, LI Y Q, et al. Detection of farmland obstacles based on an improved YOLOv5s algorithm by using CIoU and anchor box scale clustering[J]. Sensors, 2022, 22(5): 1790. |
[20] | ZHANG Y M, HSIEH J W, LEE C C, et al. SFPN: synthetic FPN for object detection[C]// IEEE International Conference on Image Processing (ICIP). October 16-19, 2022. Bordeaux, France. IEEE, 2022: 1316-1320. |
[21] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 8759-8768. |
[22] | CAO M L, FU H, ZHU J Y, et al. Lightweight tea bud recognition network integrating GhostNet and YOLOv5[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12897-12914. |
[23] | LU X, TAO M Y, FU X, et al. Lightweight network design based on ResNet structure for modulation recognition[C]// 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). September 27-30, 2021. Norman, OK, USA. IEEE, 2021: 1-5. |
[24] | 李晨, 张辉, 张邹铨, 等. 融合多尺度特征与全局上下文信息的X光违禁物品检测[J]. 中国图象图形学报, 2022, 27(10): 3043-3057. |
LI C, ZHANG H, ZHANG Z Q, et al. Integrated multi-scale features and global context in X-ray detection for prohibited items[J]. Journal of Image and Graphics, 2022, 27(10): 3043-3057. (in Chinese with English abstract) | |
[25] | GUO S Y, LI Z Y, GUO S W. Pulmonary nodule detection algorithm based on YOLOv3[C]// 2022 4th International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM). October 7-9, 2022. Hamburg, Germany. IEEE, 2022: 677-679. |
[26] | HUA Y H, XIAO B G, LI J Y, et al. Design and implementation of face recognition system based on raspberry pie[C]// 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). October 25-28, 2021. AB, Canada. IEEE, 2021: 673-678. |
[27] | RAN H H, WEN S P, WANG S Q, et al. Memristor-based edge computing of ShuffleNetV2 for image classification[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(8): 1701-1710. |
[28] | 朱红春, 李旭, 孟炀, 等. 基于Faster R-CNN网络的茶叶嫩芽检测[J]. 农业机械学报, 2022, 53(5): 217-224. |
ZHU H C, LI X, MENG Y, et al. Tea bud detection based on faster R-CNN network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 217-224. (in Chinese with English abstract) | |
[29] | CHEN C L, LU J Z, ZHOU M C, et al. A YOLOv3-based computer vision system for identification of tea buds and the picking point[J]. Computers and Electronics in Agriculture, 2022, 198(1): 107116. |
[30] | 黄家才, 唐安, 陈光明, 等. 基于Compact-YOLO v4的茶叶嫩芽移动端识别方法[J]. 农业机械学报, 2023, 54(3): 282-290. |
HUANG J C, TANG A, CHEN G M, et al. Mobile recognition solution of tea buds based on compact-YOLO v4 algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 282-290. (in Chinese with English abstract) |
[1] | LI Dahua, KONG Shu, LI Dong, YU Xiao. Lightweight detection model of citrus leaf disease based on improved SSD [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 662-670. |
[2] | LI Qi, LI Yuzhe. Detection of piggery cleaning target under low-light condition [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2240-2249. |
[3] | LI Rongpeng, MAMAT Sawut, SHENG Yanfang, HE Xugang. Identification and application of walnut disease based on CA-MobileNet-V2 [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2977-2987. |
[4] | WANG Yingyun, LONG Yan, YANG Zhiyou, HUANG Lyuwen. Semantic segmentation method of apple leaf disease based on improved U-Net network [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2731-2741. |
[5] | ZHOU Pinzhi, PEI Yuekun, WEI Ran, ZHANG Yongfei, GU Yu. Real-time detection of orchard cherry based on YOLOV4 model [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2522-2532. |
[6] | ZHANG Ning, WU Huarui, HAN Xiao, MIAO Yisheng. Tomato disease recognition scheme based on multi-scale and attention mechanism [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1329-1338. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||