Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (7): 1558-1568.DOI: 10.3969/j.issn.1004-1524.20230863
• Horticultural Science • Previous Articles Next Articles
ZENG Hongxue(), QU Xinghong*(
)
Received:
2023-07-11
Online:
2024-07-25
Published:
2024-08-05
CLC Number:
ZENG Hongxue, QU Xinghong. Effect of low-temperature stress on proline metabolism and ascorbic acid-glutathione cycle during germination of three Pueraria lobata germplasm lines[J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1558-1568.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230863
Fig.1 Effect of low temperature stress on malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents of three P. lobata germplasms Bars marked without the same uppercase letters indicate significant (P<0.05) difference within germplasms under the same treatment, while bars marked without the same lowercase letters indicate significant (P<0.05) difference within treatments for the same germplasm. The same as below.
Fig.2 Effects of low temperature stress on proline content and key enzymes activity for proline metabolism of three P. lobata germplasms P5CS, Pyrroline-5-carboxylate synthase; OAT, Ornithine aminotransferase; ProDH, Proline dehydrogenase.
Fig.3 Effects of low temperature stress on ascorbic acid (AsA), dehydroascorbic acid (DHA) contents of three P. lobata germplasms AsA/DHA represents the ratio of AsA content to DHA content.
Fig.4 Effects of low temperature stress on glutathione (GSH), glutathione disulfide (GSSG) contents of three P. lobata germplasms GSH/GSSG represents the ratio of GSH content to GSSG content.
指标 Indices | 指标间的相关系数Correlation coefficient within indices | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O2 | MDA | Pro | P5CS | ProDH | OAT | GSSG | GSH | AsA | DHA | APX | GR | AsA/DHA | |
MDA | 0.836** | ||||||||||||
Pro | 0.428** | 0.669** | |||||||||||
P5CS | 0.693** | 0.724** | 0.365* | ||||||||||
ProDH | -0.460** | -0.541** | -0.787** | -0.273 | |||||||||
OAT | 0.735** | 0.897** | 0.634** | 0.755** | -0.491** | ||||||||
GSSG | 0.647** | 0.797** | 0.265 | 0.648** | -0.124 | 0.810** | |||||||
GSH | 0.672** | 0.802** | 0.470** | 0.696** | -0.256 | 0.895** | 0.865** | ||||||
AsA | 0.759** | 0.816** | 0.328 | 0.769** | -0.173 | 0.825** | 0.876** | 0.931** | |||||
DHA | 0.806** | 0.894** | 0.524** | 0.649** | -0.388* | 0.928** | 0.853** | 0.889** | 0.843** | ||||
APX | 0.604** | 0.765** | 0.628** | 0.693** | -0.411* | 0.912** | 0.716** | 0.898** | 0.777** | 0.833** | |||
GR | 0.604** | 0.765** | 0.628** | 0.693** | -0.411* | 0.913** | 0.715** | 0.899** | 0.777** | 0.828** | 0.998** | ||
AsA/DHA | -0.326 | -0.403* | -0.476** | -0.054 | 0.465** | -0.483** | -0.240 | -0.244 | -0.041 | -0.569** | -0.398* | -0.390* | |
GSH/GSSG | -0.211 | -0.291 | 0.238 | -0.159 | -0.143 | -0.160 | -0.590** | -0.106 | -0.248 | -0.259 | 0.034 | 0.040 | 0.066 |
Table 1 Correlation analysis of physiological and biochemical characteristics of three P. lobata germplasms under low temperature stress
指标 Indices | 指标间的相关系数Correlation coefficient within indices | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O2 | MDA | Pro | P5CS | ProDH | OAT | GSSG | GSH | AsA | DHA | APX | GR | AsA/DHA | |
MDA | 0.836** | ||||||||||||
Pro | 0.428** | 0.669** | |||||||||||
P5CS | 0.693** | 0.724** | 0.365* | ||||||||||
ProDH | -0.460** | -0.541** | -0.787** | -0.273 | |||||||||
OAT | 0.735** | 0.897** | 0.634** | 0.755** | -0.491** | ||||||||
GSSG | 0.647** | 0.797** | 0.265 | 0.648** | -0.124 | 0.810** | |||||||
GSH | 0.672** | 0.802** | 0.470** | 0.696** | -0.256 | 0.895** | 0.865** | ||||||
AsA | 0.759** | 0.816** | 0.328 | 0.769** | -0.173 | 0.825** | 0.876** | 0.931** | |||||
DHA | 0.806** | 0.894** | 0.524** | 0.649** | -0.388* | 0.928** | 0.853** | 0.889** | 0.843** | ||||
APX | 0.604** | 0.765** | 0.628** | 0.693** | -0.411* | 0.912** | 0.716** | 0.898** | 0.777** | 0.833** | |||
GR | 0.604** | 0.765** | 0.628** | 0.693** | -0.411* | 0.913** | 0.715** | 0.899** | 0.777** | 0.828** | 0.998** | ||
AsA/DHA | -0.326 | -0.403* | -0.476** | -0.054 | 0.465** | -0.483** | -0.240 | -0.244 | -0.041 | -0.569** | -0.398* | -0.390* | |
GSH/GSSG | -0.211 | -0.291 | 0.238 | -0.159 | -0.143 | -0.160 | -0.590** | -0.106 | -0.248 | -0.259 | 0.034 | 0.040 | 0.066 |
指标 Indices | 不同种质的隶属度Member degree of germplasms | ||
---|---|---|---|
AUS | HN | JS | |
H2O2 | 0.534 | 0.502 | 0.525 |
MDA | 0.469 | 0.603 | 0.408 |
Pro | 0.494 | 0.487 | 0.421 |
P5CS | 0.527 | 0.510 | 0.474 |
ProDH | 0.517 | 0.532 | 0.461 |
OAT | 0.462 | 0.475 | 0.573 |
GSSG | 0.479 | 0.482 | 0.523 |
GSH | 0.566 | 0.527 | 0.507 |
AsA | 0.572 | 0.533 | 0.468 |
DHA | 0.474 | 0.462 | 0.485 |
APX | 0.506 | 0.483 | 0.502 |
GR | 0.506 | 0.483 | 0.502 |
AsA/DHA | 0.429 | 0.569 | 0.524 |
GSH/GSSG | 0.520 | 0.545 | 0.461 |
平均值Average | 0.504 | 0.514 | 0.488 |
Table 2 Membership degree among all physiological and biochemical indices of three P. lobata germplasms under low temperature stress
指标 Indices | 不同种质的隶属度Member degree of germplasms | ||
---|---|---|---|
AUS | HN | JS | |
H2O2 | 0.534 | 0.502 | 0.525 |
MDA | 0.469 | 0.603 | 0.408 |
Pro | 0.494 | 0.487 | 0.421 |
P5CS | 0.527 | 0.510 | 0.474 |
ProDH | 0.517 | 0.532 | 0.461 |
OAT | 0.462 | 0.475 | 0.573 |
GSSG | 0.479 | 0.482 | 0.523 |
GSH | 0.566 | 0.527 | 0.507 |
AsA | 0.572 | 0.533 | 0.468 |
DHA | 0.474 | 0.462 | 0.485 |
APX | 0.506 | 0.483 | 0.502 |
GR | 0.506 | 0.483 | 0.502 |
AsA/DHA | 0.429 | 0.569 | 0.524 |
GSH/GSSG | 0.520 | 0.545 | 0.461 |
平均值Average | 0.504 | 0.514 | 0.488 |
[1] | ZHANG B, JIA D, GAO Z Q, et al. Physiological responses to low temperature in spring and winter wheat varieties[J]. Journal of the Science of Food and Agriculture, 2016, 96(6): 1967-1973. |
[2] | AGURLA S, GAHIR S, MUNEMASA S, et al. Mechanism of stomatal closure in plants exposed to drought and cold stress[J]. Advances in Experimental Medicine and Biology, 2018, 1081: 215-232. |
[3] | HURRY V M, HUNER N P A. Low-temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye[J]. Plant Physiology, 1993, 101(1): 245-250. |
[4] | 许娟, 郑虚, 闫海锋, 等. 不同马铃薯品种苗期叶片对低温胁迫的生理响应[J]. 南方农业学报, 2016, 47(11): 1837-1843. |
XU J, ZHENG X, YAN H F, et al. Physiological responses of different potato varieties to cold stress at seedling stage[J]. Journal of Southern Agriculture, 2016, 47(11): 1837-1843.(in Chinese with English abstract) | |
[5] | 沈子奇, 向世鹏, 许金亮, 等. 喷施外源EBR和H2O2对烤烟幼苗抗低温胁迫的影响[J]. 云南农业大学学报(自然科学), 2022, 37(4): 623-629. |
SHEN Z Q, XIANG S P, XU J L, et al. Effect of spraying exogenous EBR and H2O2 on the resistance of tobacco seedlings to low temperature stress[J]. Journal of Yunnan Agricultural University(Natural Science), 2022, 37(4): 623-629.(in Chinese with English abstract) | |
[6] | 刘晓青, 赵晖, 耿兴敏, 等. 高温胁迫下杜鹃叶片AsA-GSH循环的亚细胞定位分析[J]. 江苏农业科学, 2021, 49(18): 128-133. |
LIU X Q, ZHAO H, GENG X M, et al. Study on sub-cellular distribution of AsA-GSH cycle in rhododendron leaves under high temperature stress[J]. Jiangsu Agricultural Sciences, 2021, 49(18): 128-133.(in Chinese) | |
[7] | 赵野, 刘威, 王贺, 等. 外源CaCl2对盐胁迫下西伯利亚白刺活性氧代谢的影响[J]. 植物生理学报, 2021, 57(5): 1105-1112. |
ZHAO Y, LIU W, WANG H, et al. Effects of exogenous CaCl2 on reactive oxygen species metabolism in Nitraria sibirica under NaCl stress[J]. Plant Physiology Journal, 2021, 57(5): 1105-1112.(in Chinese with English abstract) | |
[8] | 张韫璐, 王琦, 王金缘, 等. 干旱预处理对盐胁迫下水稻幼苗抗氧化酶活性及AsA-GSH循环的影响[J]. 江苏农业科学, 2018, 46(7): 58-60. |
ZHANG Y L, WANG Q, WANG J Y, et al. Effects of PEG pretreatment on antioxidant enzyme activity and AsA-GSH cycle under salt stress in rice seedlings[J]. Jiangsu Agricultural Sciences, 2018, 46(7): 58-60.(in Chinese) | |
[9] | 魏国芹, 杨洪强, 付全娟, 等. H2S对低温胁迫下甜樱桃柱头和子房AsA-GSH循环的响应[J]. 核农学报, 2017, 31(6): 1217-1225. |
WEI G Q, YANG H Q, FU Q J, et al. Effects of H2S on ascorbate-glutathione cycle in sweet cherry stigma and ovary under low temperature stress[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(6): 1217-1225.(in Chinese with English abstract) | |
[10] | KISHOR P, SANGAM S, NAIDU K R, et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance[J]. Current Science, 2005, 88: 424-438. |
[11] | 李丹阳. 外源SPD和NO对盐胁迫下玉竹渗透调节及脯氨酸代谢的影响[D]. 哈尔滨: 东北农业大学, 2018. |
LI D Y. Effects of spermidine and nitric oxide on osmotic adjustment and proline metabolic pathways of Polygonatum odoratum(Mill.) druce under salt stress[D]. Harbin: Northeast Agricultural University, 2018.(in Chinese with English abstract) | |
[12] | 孙聪聪, 赵海燕, 郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响[J]. 植物生理学报, 2017, 53(3): 470-476. |
SUN C C, ZHAO H Y, ZHENG C X. Effects of NaCl stress on osmolyte and proline metabolism in Ginkgo biloba seedling[J]. Plant Physiology Journal, 2017, 53(3): 470-476.(in Chinese with English abstract) | |
[13] | 刘婷婷. 低温胁迫下AM真菌调控水稻脯氨酸代谢机制[D]. 哈尔滨: 东北农业大学, 2019. |
LIU T T. Mechanisms of AM fungi regulating proline metabolism in rice under low temperature stress[D]. Harbin: Northeast Agricultural University, 2019.(in Chinese with English abstract) | |
[14] | 梅瑜, 李向荣, 蔡时可, 等. 药食同源植物甘葛藤的全长转录组分析[J]. 华北农学报, 2021, 36(5): 10-17. |
MEI Y, LI X R, CAI S K, et al. Full-length transcriptome analysis of a homology of medicine and food of Pueraria thomsonii[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(5): 10-17.(in Chinese with English abstract) | |
[15] | 谢文辉, 赵文武, 赵丽丽, 等. 优良葛藤种质资源评价筛选技术[J]. 安徽农学通报, 2021, 27(6): 85-88. |
XIE W H, ZHAO W W, ZHAO L L, et al. Evaluation and selection techniques of excellent Pueraria lobata(Wild.) Ohwi germplasm resources[J]. Anhui Agricultural Science Bulletin, 2021, 27(6): 85-88.(in Chinese with English abstract) | |
[16] | 谢文辉, 黄莉娟, 赵丽丽, 等. 钙盐胁迫对3份葛藤种质种子萌发及幼苗生理特性的影响[J]. 草业学报, 2022, 31(7): 220-233. |
XIE W H, HUANG L J, ZHAO L L, et al. Effects of calcium salt stress on seed germination and seedling physiological characteristics of three Pueraria lobata germplasm lines[J]. Acta Prataculturae Sinica, 2022, 31(7): 220-233.(in Chinese with English abstract) | |
[17] | 李鑫. 干旱胁迫下粉葛根细胞淀粉粒积累及葛藤逆境生理响应[D]. 贵阳: 贵州大学, 2021. |
LI X. The accumulation of starch grains in root cells and the physiological response of Pueraria montana var.thomsonii under drought stress[D]. Guiyang: Guizhou University, 2021.(in Chinese with English abstract) | |
[18] | 张淑炜, 赵丽丽, 陈超, 等. 低磷胁迫下3种不同种源葛藤的生长生理响应[J]. 中国农业科技导报, 2022, 24(1): 71-82. |
ZHANG S W, ZHAO L L, CHEN C, et al. Growth and physiological response of 3 different provenances of Pueraria lobata under low phosphorus stress[J]. Journal of Agricultural Science and Technology, 2022, 24(1): 71-82.(in Chinese with English abstract) | |
[19] | 张柔, 许建新, 薛立, 等. 低温胁迫和解除对4种阔叶幼苗生理特征的影响[J]. 生态科学, 2014, 33(3): 419-425. |
ZHANG R, XU J X, XUE L, et al. Effects of low temperature stress and release by chilling on physiological characteristics of four broadleaf seedling types[J]. Ecological Science, 2014, 33(3): 419-425.(in Chinese with English abstract) | |
[20] | 孟诗原, 吕桂云, 张明忠, 等. 5种卫矛属植物对低温胁迫的生理响应及抗寒性评价[J]. 西北植物学报, 2020, 40(4): 624-634. |
MENG S Y, LÜ G Y, ZHANG M Z, et al. Physiological response to cold stress and evaluation of cold resistance for five species of Euonymus Linn[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(4): 624-634.(in Chinese with English abstract) | |
[21] | 王艳, 李建龙, 余醉, 等. 信号分子H2O2调节抗氧化系统提高高羊茅耐热性研究[J]. 草业学报, 2010, 19(1): 89-94. |
WANG Y, LI J L, YU Z, et al. The signaling molecule H2O2 improved the heat-tolerance system of Festuca arundinacea by up-regulating antioxidative activity[J]. Acta Prataculturae Sinica, 2010, 19(1): 89-94.(in Chinese with English abstract) | |
[22] | 张顺凯, 王端, 陶雨佳, 等. H2O2浸种和播期对油菜越冬期前后光合作用、糖代谢及生长的影响[J]. 南京农业大学学报, 2020, 43(1): 26-32. |
ZHANG S K, WANG D, TAO Y J, et al. Effects of H2O2 immersion and sowing date on photosynthesis, sugar metabolism and growth of rape before and after the winter[J]. Journal of Nanjing Agricultural University, 2020, 43(1): 26-32.(in Chinese with English abstract) | |
[23] | 张曼. H2O2浸种对低温胁迫下油菜种子萌发和幼苗生长的影响[D]. 南京: 南京农业大学, 2017. |
ZHANG M. Effects of seed soaking with hydrogen peroxide on seed germination and seedling growth in rape under chilling stress[D]. Nanjing: Nanjing Agricultural University, 2017.(in Chinese with English abstract) | |
[24] | 王端. 温度对H2O2浸种油菜低温萌发的影响[D]. 南京: 南京农业大学, 2020. |
WANG D. Effects of soaking temperture on germination of seeds soaked with H2O2 under low temperature in rapeseed[D]. Nanjing: Nanjing Agricultural University, 2020.(in Chinese with English abstract) | |
[25] | SUN H J, LUO M L, ZHOU X, et al. Exogenous glycine betaine treatment alleviates low temperature-induced pericarp browning of ‘Nanguo’ pears by regulating antioxidant enzymes and proline metabolism[J]. Food Chemistry, 2020, 306: 125626. |
[26] | 娄慧, 赵曾强, 朱金成, 等. 褪黑素对低温胁迫下棉花种子萌发特性的影响[J]. 中国农学通报, 2021, 37(35): 13-19. |
LOU H, ZHAO Z Q, ZHU J C, et al. Melatonin under low temperature stress: effects on germination characteristics of cotton seeds[J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 13-19.(in Chinese with English abstract) | |
[27] | 茹刚, 陈学林, 于文惠, 等. 外源NO对低温胁迫下伏毛铁棒锤种子萌发及幼苗生理特性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(2): 137-144. |
RU G, CHEN X L, YU W H, et al. Effects of exogenous NO on seed germination and seedling physiological characteristics of Aconitum flavum Hand.-Mazz under low temperature stress[J]. Journal of Northwest A & F University(Natural Science Edition), 2021, 49(2): 137-144.(in Chinese with English abstract) | |
[28] | 刁倩楠, 范红伟, 张文献, 等. 外源物质对低温下甜瓜种子萌发和幼苗生理特性的影响[J]. 分子植物育种, 2020, 18(21): 7209-7216. |
DIAO Q N, FAN H W, ZHANG W X, et al. Exogenous substances on seed germination, physiological characteristics of melon under chilling stress[J]. Molecular Plant Breeding, 2020, 18(21): 7209-7216.(in Chinese with English abstract) | |
[29] | VERBRUGGEN N, HERMANS C. Proline accumulation in plants: a review[J]. Amino Acids, 2008, 35(4): 753-759. |
[30] | MATTIOLI R, COSTANTINO P, TROVATO M. Proline accumulation in plants: not only stress[J]. Plant Signaling & Behavior, 2009, 4(11): 1016-1018. |
[31] | HE H Y, HE L F. Regulation of gaseous signaling molecules on proline metabolism in plants[J]. Plant Cell Reports, 2018, 37(3): 387-392. |
[32] | 余燕, 张雅婷, 赵雪, 等. H2O2浸种对低温胁迫下花生种子萌发的调控作用[J]. 中国油料作物学报, 2020, 42(5): 860-868. |
YU Y, ZHANG Y T, ZHAO X, et al. Effects of seed soaking with H2O2 on seed germination of peanut under low temperature conditions[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(5): 860-868.(in Chinese with English abstract) | |
[33] | 张美华. 低温对玉米生理生化的影响及耐低温浸种剂的研究[D]. 沈阳: 沈阳农业大学, 2017. |
ZHANG M H. Effects of low temperature on physiological and biochemical characteristics of maize and study on maize seed soaking agent resist to low temperature[D]. Shenyang: Shenyang Agricultural University, 2017.(in Chinese with English abstract) | |
[34] | 李忠光. 冷激诱导的小桐子幼苗的耐冷性及其生理机制[D]. 昆明: 云南师范大学, 2015. |
LI Z G. Chilling shock-induced chilling tolerance and its physiological mechanism in Jatropha curcas seedlings[D]. Kunming: Yunnan Normal University, 2015.(in Chinese with English abstract) | |
[35] | NAHAR K, HASANUZZAMAN M, ALAM M M, et al. Exogenous spermidine alleviates low temperature injury in mung bean (Vigna radiata L.) seedlings by modulating ascorbate-glutathione and glyoxalase pathway[J]. International Journal of Molecular Sciences, 2015, 16(12): 30117-30132. |
[36] | GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. |
[37] | SAHOO M R, DEVI T R, DASGUPTA M, et al. Reactive oxygen species scavenging mechanisms associated with polyethylene glycol mediated osmotic stress tolerance in Chinese potato[J]. Scientific Reports, 2020, 10: 5404. |
[38] | NOCTOR G, FOYER C H. Ascorbate and glutathione: keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 249-279. |
[39] | 杨颖丽, 吕丽荣, 李晶, 等. 盐胁迫下2种小麦幼苗抗坏血酸-谷胱甘肽循环的比较[J]. 西北师范大学学报(自然科学版), 2018, 54(3): 65-70. |
YANG Y L, LÜ L R, LI J, et al. Comparison of ascorbic acid-glutathione cycle in two wheat seedlings under salt stress[J]. Journal of Northwest Normal University(Natural Science), 2018, 54(3): 65-70.(in Chinese with English abstract) | |
[40] | 李进, 雷斌, 翟梦华, 等. 棉花幼苗AsA-GSH循环对低温胁迫的响应机制研究[J]. 核农学报, 2021, 35(1): 221-228. |
LI J, LEI B, ZHAI M H, et al. Study on the response mechanism of the AsA-GSH cycle in cotton seedling under low temperature stress[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 221-228.(in Chinese with English abstract) | |
[41] | 杨宁, 丁芳霞, 李宜珅, 等. 低温胁迫对高山离子芥试管苗膜脂过氧化及AsA-GSH循环系统的影响[J]. 西北师范大学学报(自然科学版), 2014, 50(5): 79-84. |
YANG N, DING F X, LI Y S, et al. Effects of low temperature stress on membrane peroxidatio and ascorbate-glutathione cycle in Chorispora bungeana plantlets in vitro[J]. Journal of Northwest Normal University(Natural Science), 2014, 50(5): 79-84.(in Chinese with English abstract) | |
[42] | 山溪, 秦文斌, 张振超, 等. 低温胁迫对不同品系甘蓝幼叶AsA-GSH循环代谢的影响[J]. 南方农业学报, 2018, 49(11): 2230-2235. |
SHAN X, QIN W B, ZHANG Z C, et al. Effects of low temperature stress on leaf AsA-GSH cycle metabolism in different varieties Brassica oleracea L[J]. Journal of Southern Agriculture, 2018, 49(11): 2230-2235.(in Chinese with English abstract) | |
[43] | 王利华, 章艺, 吴玉环, 等. 水杨酸对栝楼AsA-GSH循环系统及耐寒性的影响[J]. 水土保持学报, 2013, 27(4): 234-240. |
WANG L H, ZHANG Y, WU Y H, et al. Effect of exogenous salicylic acid on enzymes of ascorbate-glutathione cycle and cold tolerance of Trichosanthes kirilowii maxim[J]. Journal of Soil and Water Conservation, 2013, 27(4): 234-240.(in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||