Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (3): 404-412.DOI: 10.3969/j.issn.1004-1524.2021.03.04
• Animal Science • Previous Articles Next Articles
JIANG Xingcan1,2,3, LI Bing1,2,3, YANG Min1,2,3, ZHANG Jiyu1,2,3,*(
)
Received:2020-01-25
Online:2021-03-25
Published:2021-03-25
Contact:
ZHANG Jiyu
CLC Number:
JIANG Xingcan, LI Bing, YANG Min, ZHANG Jiyu. Optimization of preparation technology and stability evaluation of sarafloxacin/β-cyclodextrin inclusion complex by response surface method[J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 404-412.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.03.04
| 水平 Level | SAR与β-CD摩尔比 Molar ratio of SAR and β-CD | θ/℃ | t/h |
|---|---|---|---|
| 1 | 1∶1 | 40 | 3 |
| 2 | 1∶2 | 50 | 4 |
Table 1 Orthogonal test factor and levels of preparation technology
| 水平 Level | SAR与β-CD摩尔比 Molar ratio of SAR and β-CD | θ/℃ | t/h |
|---|---|---|---|
| 1 | 1∶1 | 40 | 3 |
| 2 | 1∶2 | 50 | 4 |
| 水平 Level | 进气温度 Intake air temperature/℃ | 泵速 Pump speed/(r·min-1) |
|---|---|---|
| 1 | 135 | 6.0 |
| 2 | 150 | 6.3 |
| 3 | 165 | 6.6 |
Table 2 Orthogonal test factor and levels of spray drying process
| 水平 Level | 进气温度 Intake air temperature/℃ | 泵速 Pump speed/(r·min-1) |
|---|---|---|
| 1 | 135 | 6.0 |
| 2 | 150 | 6.3 |
| 3 | 165 | 6.6 |
| 方差来源 Variance source | 均方 Mean square | 自由度 df | 均方差 Mean square error | F值 F value | P值 P value |
|---|---|---|---|---|---|
| 模型 Model | 4083.69 | 9 | 453.74 | 19.46 | 0.0004 |
| A | 1128.13 | 1 | 1128.13 | 48.37 | 0.0002 |
| B | 338.00 | 1 | 338.00 | 14.49 | 0.0067 |
| C | 528.13 | 1 | 528.13 | 22.65 | 0.0021 |
| AB | 36.00 | 1 | 36.00 | 1.54 | 0.2541 |
| AC | 156.25 | 1 | 156.25 | 6.70 | 0.0360 |
| BC | 16.00 | 1 | 16.00 | 0.69 | 0.4348 |
| A2 | 671.12 | 1 | 671.12 | 28.78 | 0.0010 |
| B2 | 295.33 | 1 | 295.33 | 12.66 | 0.0092 |
| C2 | 725.33 | 1 | 725.33 | 31.10 | 0.0008 |
| 残差 Residual | 163.25 | 7 | 23.32 | ||
| 失拟项 Lack of fit | 163.25 | 3 | 54.42 | ||
| 纯误差 Pure error | 0.000 | 4 | 0.000 |
Table 3 Variance analysis of regression model
| 方差来源 Variance source | 均方 Mean square | 自由度 df | 均方差 Mean square error | F值 F value | P值 P value |
|---|---|---|---|---|---|
| 模型 Model | 4083.69 | 9 | 453.74 | 19.46 | 0.0004 |
| A | 1128.13 | 1 | 1128.13 | 48.37 | 0.0002 |
| B | 338.00 | 1 | 338.00 | 14.49 | 0.0067 |
| C | 528.13 | 1 | 528.13 | 22.65 | 0.0021 |
| AB | 36.00 | 1 | 36.00 | 1.54 | 0.2541 |
| AC | 156.25 | 1 | 156.25 | 6.70 | 0.0360 |
| BC | 16.00 | 1 | 16.00 | 0.69 | 0.4348 |
| A2 | 671.12 | 1 | 671.12 | 28.78 | 0.0010 |
| B2 | 295.33 | 1 | 295.33 | 12.66 | 0.0092 |
| C2 | 725.33 | 1 | 725.33 | 31.10 | 0.0008 |
| 残差 Residual | 163.25 | 7 | 23.32 | ||
| 失拟项 Lack of fit | 163.25 | 3 | 54.42 | ||
| 纯误差 Pure error | 0.000 | 4 | 0.000 |
| 方差来源 Variance source | 均方 Mean square | 自由度 df | 均方差 Mean square error | F值 F value | P值 P value |
|---|---|---|---|---|---|
| 模型 Model | 21397.99 | 5 | 4279.60 | 17.84 | 0.0007 |
| D | 7285.53 | 1 | 7285.53 | 30.38 | 0.0009 |
| E | 7285.53 | 1 | 7285.53 | 30.38 | 0.0009 |
| DE | 2500.00 | 1 | 2500.00 | 10.42 | 0.0145 |
| D2 | 2445.65 | 1 | 2445.65 | 10.20 | 0.0152 |
| E2 | 2445.65 | 1 | 2445.65 | 10.20 | 0.0152 |
| 残差 Residual | 1678.93 | 7 | 239.85 | ||
| 失拟项 Lack of fit | 1678.93 | 3 | 559.64 | ||
| 纯误差 Pure error | 0.000 | 4 | 0.000 |
Table 4 Variance analysis of regression model
| 方差来源 Variance source | 均方 Mean square | 自由度 df | 均方差 Mean square error | F值 F value | P值 P value |
|---|---|---|---|---|---|
| 模型 Model | 21397.99 | 5 | 4279.60 | 17.84 | 0.0007 |
| D | 7285.53 | 1 | 7285.53 | 30.38 | 0.0009 |
| E | 7285.53 | 1 | 7285.53 | 30.38 | 0.0009 |
| DE | 2500.00 | 1 | 2500.00 | 10.42 | 0.0145 |
| D2 | 2445.65 | 1 | 2445.65 | 10.20 | 0.0152 |
| E2 | 2445.65 | 1 | 2445.65 | 10.20 | 0.0152 |
| 残差 Residual | 1678.93 | 7 | 239.85 | ||
| 失拟项 Lack of fit | 1678.93 | 3 | 559.64 | ||
| 纯误差 Pure error | 0.000 | 4 | 0.000 |
| 初始质量 Initial weight/g | 3 h后质量 Weight after 3 h/g | 3 h后质量损失 Weight loss after 3 h/g | 4 h后质量损失 Weight loss after 4 h/g | 4.5 h后质量损失 Weight loss after 4.5 h/g |
|---|---|---|---|---|
| 1.1165 | 1.1151 | 0.0014 | 0.0006 | 0.0002 |
| 0.9058 | 0.9043 | 0.0015 | 0.0005 | 0.0002 |
| 0.9675 | 0.9660 | 0.0015 | 0.0005 | 0 |
| 1.2946 | 1.2932 | 0.0014 | 0.0006 | 0 |
| 1.1341 | 1.1327 | 0.0014 | 0.0007 | 0.0002 |
| 1.0125 | 1.0111 | 0.0014 | 0.0005 | 0.0001 |
Table 5 Results of dry weight loss experiment results
| 初始质量 Initial weight/g | 3 h后质量 Weight after 3 h/g | 3 h后质量损失 Weight loss after 3 h/g | 4 h后质量损失 Weight loss after 4 h/g | 4.5 h后质量损失 Weight loss after 4.5 h/g |
|---|---|---|---|---|
| 1.1165 | 1.1151 | 0.0014 | 0.0006 | 0.0002 |
| 0.9058 | 0.9043 | 0.0015 | 0.0005 | 0.0002 |
| 0.9675 | 0.9660 | 0.0015 | 0.0005 | 0 |
| 1.2946 | 1.2932 | 0.0014 | 0.0006 | 0 |
| 1.1341 | 1.1327 | 0.0014 | 0.0007 | 0.0002 |
| 1.0125 | 1.0111 | 0.0014 | 0.0005 | 0.0001 |
| 批次 Number | 载药量 Drug loading/% | 溶解度 Solubility/(mg·mL-1) |
|---|---|---|
| 1 | 90.17 | 15.08 |
| 2 | 90.48 | 15.08 |
| 3 | 90.34 | 13.92 |
Table 6 Drug loading and solubility of SAR/β-CD
| 批次 Number | 载药量 Drug loading/% | 溶解度 Solubility/(mg·mL-1) |
|---|---|---|
| 1 | 90.17 | 15.08 |
| 2 | 90.48 | 15.08 |
| 3 | 90.34 | 13.92 |
| 保存时间 Storage time/d | 批次 Number | 相对含量 Relative content/% | 单一杂质 Single impurity/% | 总杂质 Total impurities/% | 有关物质 Relative substance/% |
|---|---|---|---|---|---|
| 5 | 1 | 100.35 | <0.5 | <1.0 | <0.5 |
| 2 | 99.21 | <0.5 | <1.0 | <0.5 | |
| 3 | 100.16 | <0.5 | <1.0 | <0.5 | |
| 10 | 1 | 96.11 | <0.5 | <1.0 | <0.5 |
| 2 | 99.76 | <0.5 | <1.0 | <0.5 | |
| 3 | 100.91 | <0.5 | <1.0 | <0.5 |
Table 7 High temperature exposure test of SAR/β-CD
| 保存时间 Storage time/d | 批次 Number | 相对含量 Relative content/% | 单一杂质 Single impurity/% | 总杂质 Total impurities/% | 有关物质 Relative substance/% |
|---|---|---|---|---|---|
| 5 | 1 | 100.35 | <0.5 | <1.0 | <0.5 |
| 2 | 99.21 | <0.5 | <1.0 | <0.5 | |
| 3 | 100.16 | <0.5 | <1.0 | <0.5 | |
| 10 | 1 | 96.11 | <0.5 | <1.0 | <0.5 |
| 2 | 99.76 | <0.5 | <1.0 | <0.5 | |
| 3 | 100.91 | <0.5 | <1.0 | <0.5 |
| 保存时间 Storage time/d | 批次 Number | 相对含量 Relative content/% | 单一杂质 Single impurity/% | 总杂质 Total impurities/% | 有关物质 Relative substance/% |
|---|---|---|---|---|---|
| 5 | 1 | 96.43 | <0.5 | <1.0 | <0.5 |
| 2 | 98.05 | <0.5 | <1.0 | <0.5 | |
| 3 | 97.21 | <0.5 | <1.0 | <0.5 | |
| 10 | 1 | 95.61 | <0.5 | <1.0 | <0.5 |
| 2 | 95.33 | <0.5 | <1.0 | <0.5 | |
| 3 | 96.02 | <0.5 | <1.0 | <0.5 |
Table 8 Strong light exposure test of SAR/β-CD
| 保存时间 Storage time/d | 批次 Number | 相对含量 Relative content/% | 单一杂质 Single impurity/% | 总杂质 Total impurities/% | 有关物质 Relative substance/% |
|---|---|---|---|---|---|
| 5 | 1 | 96.43 | <0.5 | <1.0 | <0.5 |
| 2 | 98.05 | <0.5 | <1.0 | <0.5 | |
| 3 | 97.21 | <0.5 | <1.0 | <0.5 | |
| 10 | 1 | 95.61 | <0.5 | <1.0 | <0.5 |
| 2 | 95.33 | <0.5 | <1.0 | <0.5 | |
| 3 | 96.02 | <0.5 | <1.0 | <0.5 |
| 保存时间 Storage time/d | 批次 Number | 吸湿后质量增加比例 Hygroscopic weight gain | 相对含量 Relative content/% | 单一杂质 Single impurity/% | 总杂质 Total impurities/% | 有关物质 Relative substance/% |
|---|---|---|---|---|---|---|
| 5 | 1 | <5% | 96.54 | <0.5 | <1.0 | <0.5 |
| 2 | <5% | 100.03 | <0.5 | <1.0 | <0.5 | |
| 3 | <5% | 98.65 | <0.5 | <1.0 | <0.5 | |
| 10 | 1 | <5% | 95.39 | <0.5 | <1.0 | <0.5 |
| 2 | <5% | 100.10 | <0.5 | <1.0 | <0.5 | |
| 3 | <5% | 98.05 | <0.5 | <1.0 | <0.5 |
Table 9 High humidity exposure test of SAR/β-CD
| 保存时间 Storage time/d | 批次 Number | 吸湿后质量增加比例 Hygroscopic weight gain | 相对含量 Relative content/% | 单一杂质 Single impurity/% | 总杂质 Total impurities/% | 有关物质 Relative substance/% |
|---|---|---|---|---|---|---|
| 5 | 1 | <5% | 96.54 | <0.5 | <1.0 | <0.5 |
| 2 | <5% | 100.03 | <0.5 | <1.0 | <0.5 | |
| 3 | <5% | 98.65 | <0.5 | <1.0 | <0.5 | |
| 10 | 1 | <5% | 95.39 | <0.5 | <1.0 | <0.5 |
| 2 | <5% | 100.10 | <0.5 | <1.0 | <0.5 | |
| 3 | <5% | 98.05 | <0.5 | <1.0 | <0.5 |
| [1] |
ANADON A, SUAREZ F H, MARTINEZ M A , et al. Plasma disposition and tissue depletion of difloxacin and its metabolite sarafloxacin in the food producing animals, chickens for fattening[J]. Food and Chemical Toxicology, 2011,49(2):441-449.
DOI URL |
| [2] | EZELARAB H A A, ABBAS S H, HASSAN H A , et al. Recent updates of fluoroquinolones as antibacterial agents[J]. Archiv der Pharmazie, 2018,351(9):64. |
| [3] |
CHEN W, YANG L J, MA S X , et al. Crassicauline A/β-cyclodextrin host-guest system: preparation, characterization, inclusion mode, solubilization and stability[J]. Carbohydrate Polymers, 2011,84(4):1321-1328.
DOI URL |
| [4] |
XIAO C F, LI K, HUANG R , et al. Investigation of inclusion complex of epothilone A with cyclodextrins[J]. Carbohydrate Polymers, 2014,102(11):297-305.
DOI URL |
| [5] |
NIIZAWA I, ESPINACO B Y, ZORRILLO S , et al. Natural astaxanthin encapsulation: Use of response surface methodology for the design of alginate beads[J]. International Journal of Biological Macromolecules, 2019,121(10):601-608.
DOI URL |
| [6] |
RUDKE R R, HELENO S A, FERNANDES I P , et al. Microencapsulation of ergosterol and Agaricus bisporus L. extracts by complex coacervation using whey protein and chitosan: Optimization study using response surface methodology[J]. LWT-Food Science and Technology, 2019,103(4):228-237.
DOI URL |
| [7] |
MARINOPUOLOU A, KARAGEORGIOU V, PAPASTERGIADIS E , et al. Production of spray-dried starch molecular inclusion complexes on an industrial scale[J]. Food and Bioproducts Processing, 2019,116(5):186-195.
DOI URL |
| [8] |
NAIR A, KHUNT D, MISRA M . Application of quality by design for optimization of spray drying process used in drying of risperidone nanosuspension[J]. Powder Technology, 2019,342(9):156-165.
DOI URL |
| [9] |
LU W D, THOMAS R, JUKKA R , et al. Inhalable co-amorphous budesonide-arginine dry powders prepared by spray drying[J]. International Journal of Pharmaceutics, 2019,565(6):1-8.
DOI URL |
| [10] |
YANG L J, CHANG Q, ZHOU S Y , et al. Host-guest interaction between brazilin and hydroxypropyl-β-cyclodextrin: Preparation, inclusion mode, molecular modelling and characterization[J]. Dyes and Pigments, 2018,150(3):193-201.
DOI URL |
| [11] | VARGHESE E, BHOWMIK A, JAGGI S , et al. On the generation of cost effective response surface designs[J]. Computers and Electronics in Agriculture, 2017,133(2):37-45. |
| [12] | LOH G O K, YAN Y T F, PEH K . Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin[J]. Asian Journal of Pharmaceutical Sciences, 2016,11(4):536-546. |
| [13] |
PATEL M, HIRLEKAR R . Multicomponent cyclodextrin system for improvement of solubility and dissolution rate of poorly water soluble drug[J]. Asian Journal of Pharmaceutical Sciences, 2019,14(1):104-115.
URL PMID |
| [14] | SHERJE A P, PATEL F, MURAHARI M , et al. Study on effect of L-arginine on solubility and dissolution of zaltoprofen: Preparation and characterization of binary and ternary cyclodextrin inclusion complexes[J]. Chemical Physics Letters, 2018,694(2):120-128. |
| [15] | Yang L J, XIA S, MA S X , et al. Host-guest system of hesperetin and β-cyclodextrin or its derivatives: Preparation, characterization, inclusion mode, solubilization and stability[J]. Materials Science and Engineering: C, 2016,59(2):1016-1024. |
| [16] | Yang L J, WANG S H, ZHOU S Y , et al. Supramolecular system of podophyllotoxin and hydroxypropyl-β-cyclodextrin: Characterization, inclusion mode, docking calculation, solubilization, stability and cytotoxic activity[J]. Materials Science and Engineering: C, 2017,76(7):1136-1145. |
| [17] | MOUSAVI M, HESHMATI A, GARMAKHANY A D , et al. Optimization of the viability of Lactobacillus acidophilus and physico-chemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology[J]. LWT-Food Science and Technology, 2019,102(3):80-88. |
| [18] | LOUGHRILL E, THOMPSOM S, OWUSU S , et al. Controlled release of microencapsulated docosahexaenoic acid (DHA) by spray-drying processing[J]. Food Chemistry, 2019,286(6):368-375. |
| [19] | ZHOU S Y, MA S X, CHENG H L , et al. Host-guest interaction between pinocembrin and cyclodextrins: Characterization, solubilization and stability[J]. Journal of Molecular Structure, 2014,1058(1):181-188. |
| [1] | ZHOU Maocuo, LU Jianxiong, GUO Xiaonong, FENG Yulan, CHAI Weiwei, GAO Pengfei. Optimization of quinoa straw fermentation process based on response surface methodology [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2020-2030. |
| [2] | CAO Naixin, LUO Yanglan, YAN Yong, XIE Xiuchao, ZHANG Wenlong. Optimization and antioxidant activity of liquid medium of extracellular polysaccharides from Sanghuangporus sanghuang JM-1 [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1245-1255. |
| [3] | WANG Haiji, WANG Min, LU Yongtao, YING Yukun, WANG Jiliang, XUE Li, QIN Chaomin, HE Yuze. Design and test of spring teeth chain rake type residual film reclaimer [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2465-2476. |
| [4] | LYU Jing, WU Zhiyong, GUO Xiaonong, FENG Yulan, LU Jianxiong, CHAI Weiwei. Optimization of fermented quinoa straw with lactic acid bacteria by response surface methodology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1866-1876. |
| [5] | PENG Caiwang, ZHOU Ting, SUN Songlin, XIE Yelin, WEI Yuan. Calibration of parameters of black soldier fly in discrete method simulation based on response angle of particle heap [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 814-823. |
| [6] | QIN Wei, YU Yingjie, LAI Qinghui, ZHAN Caixue, YUAN Haikuo, ZHANG Haijun. Parameter optimization experiment of seedling guiding tube transplanting machine of Panax notoginseng seedling [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 614-625. |
| [7] | YANG Yeshuang, ZHANG Yingping, CHEN Yifan, ZHANG Jin, LI Huanhuan, CHEN Lihong, TANG Honggang, GAO Bin. Optimization of formulation of reconstituted liquid egg by response surface methodology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 153-162. |
| [8] | KE Yiqiang, GUO Penghui, MA Hongxin, YANG Xuhua, GAO Dandan, LIU Xiangjun, MA Zhongren, DING Gongtao. Rapid propagation system establishment of Lanzhou lily [J]. , 2020, 32(6): 1000-1008. |
| [9] | YANG Zhi, LI Wenyi, GAO Yuntao, XIONG Huabin, CHEN Yijian, YANG Huijuan. Optimization of extraction process of total flavonoids from Acerola cherry by response surface methodology and their antioxidant activities [J]. , 2020, 32(10): 1866-1872. |
| [10] | JIANG Linjuan, ZOU Xue, HUANG Xueli, NI Su, LI Liqin, YANG Shimin. Optimization of efficient regeneration system in stem of potato using response surface methodology [J]. , 2018, 30(6): 918-925. |
| [11] | WEN Huiping, XIAO Jianzhong, LEI Weimin, JI Jiana. Optimization of extraction process of total flavonoids from Chimonanthus salicifolius S.Y.H by HPLC combined with response surface methodology and its antibacterial activity [J]. , 2018, 30(2): 298-306. |
| [12] | WANG Chuyan, CHENG Junwen, ZHU Chao. Optimization of extracellular polysaccharide production from Fructificatio amaurodermatis Rudae by liquid submerged fermentation and its antioxidant activity [J]. , 2018, 30(11): 1938-1945. |
| [13] | WU Jing\|na1,2, LU Hai\|xia1,2,JIN Yan\|fen3,WEI Shao\|hong1,2,LIU Zhi\|Yu1,2,*. Optimization of Maillard reaction conditions of abalone cooking liquor [J]. , 2016, 28(1): 157-. |
| [14] | MEI Yu1, WANG Le\|ying2, RAO Gui\|wei1, HUO Po1,*. Optimization of preparation process for potato starch\|based composite films by response surface methodology#br# [J]. , 2015, 27(6): 1083-. |
| [15] | WANG Lingli, TENG Hongmei*, GONG Miaomiao. Optimization on ultrasonic extraction of total yellow pigment from Forsythia suspensa Vahl. based on response surface methodology#br# [J]. , 2014, 26(4): 961-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||