Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (5): 785-793.DOI: 10.3969/j.issn.1004-1524.2021.05.02
• Animal Science • Previous Articles Next Articles
CHEN Wen1(), ZHANG Weiwei1,2,*(
), SHAO Shuli1,2, FU Xuepeng1,2, HUANG Xin1,2, LI Tie1,2
Received:
2020-11-13
Online:
2021-05-25
Published:
2021-05-25
Contact:
ZHANG Weiwei
CLC Number:
CHEN Wen, ZHANG Weiwei, SHAO Shuli, FU Xuepeng, HUANG Xin, LI Tie. Expression of miR-423-5p in bovine muscle and predicted target genes[J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 785-793.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.05.02
引物名称 Primer name | 引物序列 Primer sequence |
---|---|
bta-miR-423 RT Primer | 5'-CTC AAC TGG TGT CGT GGA GTC GGC AAT TCA GTT GAG AAA GTC TC-3' |
bta-miR-423-5p Forward primer | 5'-ACA CTC CAG CTG GGT GAG GGG CAG AGA GCG AGA-3' |
bta-miR-423-5p Reverse primer | 5'-CTC AAC TGG TGT CGT GGA-3' |
18S Forward primer | 5'-GGA CAT CTA AGG GCA TCA CAG-3' |
18S Reverse primer | 5'-AAT TCC GAT AAC GAA CGA GAC T-3' |
Table 1 Primers sequences of bta-miR-423-5p and house-keeping genes
引物名称 Primer name | 引物序列 Primer sequence |
---|---|
bta-miR-423 RT Primer | 5'-CTC AAC TGG TGT CGT GGA GTC GGC AAT TCA GTT GAG AAA GTC TC-3' |
bta-miR-423-5p Forward primer | 5'-ACA CTC CAG CTG GGT GAG GGG CAG AGA GCG AGA-3' |
bta-miR-423-5p Reverse primer | 5'-CTC AAC TGG TGT CGT GGA-3' |
18S Forward primer | 5'-GGA CAT CTA AGG GCA TCA CAG-3' |
18S Reverse primer | 5'-AAT TCC GAT AAC GAA CGA GAC T-3' |
序号 No. | 名称 Name | 前体序列 Precursor sequence | 成熟序列 Mature sequence | 基因组位置 Genomic location | ||||
---|---|---|---|---|---|---|---|---|
1 | hsa-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAACCCGCGC | >hsa-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >hsa-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr17: 30117079-30117172 [+] | ||||
2 | mmu-mir- 423 | ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUG | >mmu-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >mmu-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr11: 77078064-77078172 [-] | ||||
3 | bta-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >bta-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >bta-miR-423-3p AAGCUCGGUCUGAGGCCCCUCAGU | chr19: 21923268-21923361 [+] | ||||
4 | cgr-mir- 423 | GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCC | >cgr-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >cgr-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | JH000631.1: 520509-520586 [-] | ||||
5 | ssc-mir- 423 | AAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAC | >ssc-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ssc-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr12: 48287019-48287098 [-] | ||||
6 | eca-mir- 423 | AGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >eca-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >eca-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr11: 43782441-43782503 [+] | ||||
7 | chi-mir- 423 | ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUGAGUUUCUCCCC | >chi-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >chi-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr19: 21574266-21574385 [+] | ||||
序号 No. | 名称 Name | 前体序列 Precursor sequence | 成熟序列 Mature sequence | 基因组位置 Genomic location | ||||
8 | pal-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >pal-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >pal-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | KB031150.1: 20857586-20857644 [+] | ||||
9 | ocu-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >ocu-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ocu-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | CM000808.1: 18146102-18146160 [-] | ||||
10 | dno-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >dno-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >dno-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | JH582994.1: 2753245-2753303 [-] | ||||
11 | rno-mir- 423 | GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCU | >rno-miR-423-5p UGAGGGGCAGAGAGCGAGACUUUU >rno-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr10: 63098366-63098444 [+] | ||||
12 | cpo-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >cpo-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >cpo-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | DS562887.1: 22509141-22509199 [-] | ||||
13 | mml-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >mml-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >mml-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr16: 24183848-24183941 [+] | ||||
14 | ppy-mir- 423 | AGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >ppy-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ppy-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr17:4902242-24902331 [+] |
Table 2 Gene information of miR-423
序号 No. | 名称 Name | 前体序列 Precursor sequence | 成熟序列 Mature sequence | 基因组位置 Genomic location | ||||
---|---|---|---|---|---|---|---|---|
1 | hsa-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAACCCGCGC | >hsa-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >hsa-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr17: 30117079-30117172 [+] | ||||
2 | mmu-mir- 423 | ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUG | >mmu-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >mmu-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr11: 77078064-77078172 [-] | ||||
3 | bta-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >bta-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >bta-miR-423-3p AAGCUCGGUCUGAGGCCCCUCAGU | chr19: 21923268-21923361 [+] | ||||
4 | cgr-mir- 423 | GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCC | >cgr-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >cgr-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | JH000631.1: 520509-520586 [-] | ||||
5 | ssc-mir- 423 | AAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUAC | >ssc-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ssc-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr12: 48287019-48287098 [-] | ||||
6 | eca-mir- 423 | AGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >eca-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >eca-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr11: 43782441-43782503 [+] | ||||
7 | chi-mir- 423 | ACUUGUGAGGAAAUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGCUUGAGUUUCUCCCC | >chi-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >chi-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr19: 21574266-21574385 [+] | ||||
序号 No. | 名称 Name | 前体序列 Precursor sequence | 成熟序列 Mature sequence | 基因组位置 Genomic location | ||||
8 | pal-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >pal-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >pal-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | KB031150.1: 20857586-20857644 [+] | ||||
9 | ocu-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >ocu-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ocu-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | CM000808.1: 18146102-18146160 [-] | ||||
10 | dno-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >dno-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >dno-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | JH582994.1: 2753245-2753303 [-] | ||||
11 | rno-mir- 423 | GAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCU | >rno-miR-423-5p UGAGGGGCAGAGAGCGAGACUUUU >rno-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr10: 63098366-63098444 [+] | ||||
12 | cpo-mir- 423 | UGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGU | >cpo-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >cpo-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | DS562887.1: 22509141-22509199 [-] | ||||
13 | mml-mir- 423 | AUAAAGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >mml-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >mml-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr16: 24183848-24183941 [+] | ||||
14 | ppy-mir- 423 | AGGAAGUUAGGCUGAGGGGCAGAGAGCGAGACUUUUCUAUUUUCCAAAAGCUCGGUCUGAGGCCCCUCAGUCUUGCUUCCUACCCCGCGC | >ppy-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU >ppy-miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU | chr17:4902242-24902331 [+] |
Fig.2 Homology analysis of miR-423 A, Homology prediction of pre-miR-423; B, Homology prediction of miR-423-3p mature sequence; C, Homology prediction of miR-423-5p mature sequence.
序号 No | 靶基因 Target gene | 靶基因名称 The name of target gene | 与靶基因mRNA 3'UTR结合位点 The binding site on 3'UTRs of target genes mRNA |
---|---|---|---|
1 | PEX26 | 过氧化物酶体生物发生因子26 Peroxisomal biogenesis factor 26 | 560~566 |
2 | THBS3 | 血小板反应蛋白3 Thrombospondin 3 | 76~83 |
3 | CLTB | 网格蛋白轻链B Clathrin light chain B | 153~159 |
4 | OPA3 | 线粒体外膜脂质代谢调节剂OPA3 | 171~177 |
Outer mitochondrial membrane lipid metabolism regulator OPA3 | |||
5 | LYNX1 | Ly6/神经毒素1 Ly6/neurotoxin 1 | 705~711 |
6 | SRM | 亚精胺合酶 Spermidine synthase | 232~239 |
7 | VGF | VGF可诱导神经生长因子 VGF nerve growth factor inducible | 415~421 |
8 | CAMKK1 | 钙/钙调蛋白依赖性蛋白激酶激酶1 | 61~67 |
Calcium/calmodulin dependent protein kinase kinase 1 | |||
9 | WNT9B | Wnt家庭成员9B Wnt family member 9B | 222~228 |
10 | PLA2G6 | 磷脂酶A2组Ⅵ Phospholipase A2 group Ⅵ | 424~430 |
11 | NRSN2 | 神经素2 Neurensin 2 | 843~849 |
12 | SYP | 突触素 Synaptophysin | 1 329~1 335 |
Table 3 Prediction of miR-423 target gene
序号 No | 靶基因 Target gene | 靶基因名称 The name of target gene | 与靶基因mRNA 3'UTR结合位点 The binding site on 3'UTRs of target genes mRNA |
---|---|---|---|
1 | PEX26 | 过氧化物酶体生物发生因子26 Peroxisomal biogenesis factor 26 | 560~566 |
2 | THBS3 | 血小板反应蛋白3 Thrombospondin 3 | 76~83 |
3 | CLTB | 网格蛋白轻链B Clathrin light chain B | 153~159 |
4 | OPA3 | 线粒体外膜脂质代谢调节剂OPA3 | 171~177 |
Outer mitochondrial membrane lipid metabolism regulator OPA3 | |||
5 | LYNX1 | Ly6/神经毒素1 Ly6/neurotoxin 1 | 705~711 |
6 | SRM | 亚精胺合酶 Spermidine synthase | 232~239 |
7 | VGF | VGF可诱导神经生长因子 VGF nerve growth factor inducible | 415~421 |
8 | CAMKK1 | 钙/钙调蛋白依赖性蛋白激酶激酶1 | 61~67 |
Calcium/calmodulin dependent protein kinase kinase 1 | |||
9 | WNT9B | Wnt家庭成员9B Wnt family member 9B | 222~228 |
10 | PLA2G6 | 磷脂酶A2组Ⅵ Phospholipase A2 group Ⅵ | 424~430 |
11 | NRSN2 | 神经素2 Neurensin 2 | 843~849 |
12 | SYP | 突触素 Synaptophysin | 1 329~1 335 |
[1] | 林君. miR-423在肝癌细胞增殖及周期转换中的作用及其分子机制[D]. 福州:福建医科大学, 2011. |
LIN J. The study on function and mechanism of miR-423 in the cell proliferation and cell cycle of liver cancer[D]. Fuzhou: Fujian Medical University, 2011. (in Chinese with English abstract) | |
[2] |
SETHI S, SETHI S, BLUTH M H. Clinical implication of MicroRNAs in molecular pathology: an update for 2018[J]. Clinics in Laboratory Medicine, 2018,38(2):237-251.
DOI URL |
[3] |
ZHANG S F, CHEN N. Regulatory role of MicroRNAs in muscle atrophy during exercise intervention[J]. International Journal of Molecular Sciences, 2018,19(2):405.
DOI URL |
[4] |
EULALIO A, MANO M, DAL FERRO M, et al. Functional screening identifies miRNAs inducing cardiac regeneration[J]. Nature, 2012,492(7429):376-381.
DOI URL |
[5] | 罗丹, 朱潇邦, 蒋明, 等. 肺动脉平滑肌细胞自噬与合成分泌功能的关系[J]. 实用医学杂志, 2019,35(7):1048-1051. |
LUO D, ZHU X B, JIANG M, et al. The relationship between autophagy and synthetic secretory function of pulmonary artery smooth muscle cells[J]. The Journal of Practical Medicine, 2019,35(7):1048-1051.(in Chinese with English abstract) | |
[6] | 余盈娟, 袁玉丰, 林琳. 胰岛素对结肠平滑肌细胞增殖及其表达干细胞因子的影响[J]. 世界华人消化杂志, 2011,19(7):674-679. |
YU Y J, YUAN Y F, LIN L. Insulin regulates the expression of stem cell factor in rat colonic smooth muscle cells[J]. World Chinese Journal of Digestology, 2011,19(7):674-679.(in Chinese with English abstract) | |
[7] | 刘秀娟. microRNAs在骨骼肌发育、损伤与再生中的调控作用[J]. 南京体育学院学报, 2019,2(12):38-47. |
LIU X J. The regulation role of MicroRNAs in skeletal muscle development, injury and regeneration[J]. Journal of Nanjing Sports Institute, 2019,2(12):38-47.(in Chinese with English abstract) | |
[8] | 黄建芳. 猪miRNA-423-5p靶向SRF基因调控肌肉发育的初步研究[D]. 南宁: 广西大学, 2016. |
HUANG J F. Regulation of miRNA-423-5p on muscle development by targeting SRF gene in pig[D]. Nanning: Guangxi University, 2016. (in Chinese with English abstract) | |
[9] | 赵曦雯, 张玉梅. MiR-92a通过靶向抑制PTEN的表达促进血管平滑肌细胞的增殖以及迁移[J]. 成都医学院学报, 2019,14(2):163-168. |
ZHAO X W, ZHANG Y M. MiR-92a promotes the proliferation and migration of vascular smooth muscle cells by targeting the inhibition of PTEN expression[J]. Journal of Chengdu Medical College, 2019,14(2):163-168.(in Chinese with English abstract) | |
[10] |
YANG F, CHEN Q S, HE S P, et al. miR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation[J]. Circulation, 2018,137(17):1824-1841.
DOI URL |
[11] |
SHEN H, LU S Y, DONG L L, et al. Hsa-miR-320d and hsa-miR-582, miRNA biomarkers of aortic dissection, regulate apoptosis of vascular smooth muscle cells[J]. Journal of Cardiovascular Pharmacology, 2018,71(5):275-282.
DOI URL |
[12] |
GE J, ZHU J Y, XIA B, et al. miR-423-5p inhibits myoblast proliferation and differentiation by targeting Sufu[J]. Journal of Cellular Biochemistry, 2018,119(9):7610-7620.
DOI URL |
[13] |
LI H T, ZHANG H, CHEN Y, et al. MiR-423-3p enhances cell growth through inhibition of p21Cip1/Waf1 in colorectal cancer[J]. Cellular Physiology and Biochemistry, 2015,37(3):1044-1054.
DOI URL |
[14] |
DEY B K, GAGAN J, DUTTA A. miR-206 and-486 induce myoblast differentiation by downregulating Pax7[J]. Molecular and Cellular Biology, 2011,31(1):203-214.
DOI URL |
[15] |
CHEN J F, MANDEL E M, MICHAEL THOMSON J, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nature Genetics, 2006,38(2):228-233.
DOI URL |
[16] |
CESANA M, DE CACCHIARELLI D, LEGNINI I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J]. Cell, 2011,147(2):358-369.
DOI URL |
[17] |
HUANG M B, XU H, XIE S J, et al. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis[J]. PLoS One, 2011,6(12):e29173.
DOI URL |
[18] |
FENG Y, CAO J H, LI X Y, et al. Inhibition of miR-214 expression represses proliferation and differentiation of C2C12 myoblasts[J]. Cell Biochemistry and Function, 2011,29(5):378-383.
DOI URL |
[19] | 盛熙晖, 邓桂馨, 倪和民, 等. microRNAs调控动物骨骼肌发育的研究进展[J]. 畜牧兽医学报, 2015,46(2):179-185. |
SHENG X H, DENG G X, NI H M, et al. Research progress on MicroRNAs regulating animal skeletal muscle development[J]. Chinese Journal of Animal and Veterinary Sciences, 2015,46(2):179-185.(in Chinese with English abstract) | |
[20] |
MCDANELD T G, SMITH T P L, DOUMIT M E, et al. MicroRNA transcriptome profiles during swine skeletal muscle development[J]. BMC Genomics, 2009,10:77.
DOI URL |
[21] | 宋广忠, 万双双, 周茜, 等. miR-423-5p在小鼠急性肝衰竭模型中的功能研究[J]. 科技视界, 2019(17):214-215. |
SONG G Z, WAN S S, ZHOU Q, et al. Studying the function of MiR-423-5p in the mouse model of acute hepatic failure model[J]. Science & Technology Vision, 2019(17):214-215.(in Chinese with English abstract) | |
[22] |
KONG P F, ZHU X F, GENG Q R, et al. The microRNA-423-3p-bim axis promotes cancer progression and activates oncogenic autophagy in gastric cancer[J]. Molecular Therapy, 2017,25(4):1027-1037.
DOI URL |
[23] | LI J, SUN H J, LIU T, et al. MicroRNA-423 promotes proliferation, migration and invasion and induces chemoresistance of endometrial cancer cells[J]. Experimental and Therapeutic Medicine, 2018,16(5):4213-4224. |
[24] |
WANG J, REN Q L, HUA L S, et al. Comprehensive analysis of differentially expressed mRNA, lncRNA and circRNA and their CeRNA networks in the longissimus dorsi muscle of two different pig breeds[J]. International Journal of Molecular Sciences, 2019,20(5):1107.
DOI URL |
[25] |
CHENG X F, LI L, SHI G L, et al. MEG3 promotes differentiation of porcine satellite cells by sponging miR-423-5p to relieve inhibiting effect on SRF[J]. Cells, 2020,9(2):449.
DOI URL |
[26] |
CHANG C C, VENØ M T, CHEN L, et al. Global MicroRNA profiling in human bone marrow skeletal—stromal or mesenchymal-stem cells identified candidates for bone regeneration[J]. Molecular Therapy, 2018,26(2):593-605.
DOI URL |
[27] |
SIENGDEE P, TRAKOOLJUL N, MURANI E, et al. MicroRNAs regulate cellular ATP levels by targeting mitochondrial energy metabolism genes during C2C12 myoblast differentiation[J]. PLoS One, 2015,10(5):e0127850.
DOI URL |
[28] | 罗海静, 沈洋, 曲世玮, 等. miR-2400在牛各组织中表达及其靶基因预测[J]. 基因组学与应用生物学, 2020,39(9):3929-3934. |
LUO H J, SHEN Y, QU S W, et al. The expression of miR-2400 in bovine tissues and predicted target genes[J]. Genomics and Applied Biology, 2020,39(9):3929-3934.(in Chinese with English abstract) | |
[29] | 马喜山, 唐中林, 肖冲, 等. THBS3基因在长白猪和通城猪不同组织和不同时期骨骼肌中的表达分析[J]. 中国畜牧兽医, 2016,43(4):1032-1038. |
MA X S, TANG Z L, XIAO C, et al. Expression analysis of THBS3 gene in different tissues and skeletal muscles at different periods from Landrace and Tongcheng pigs[J]. China Animal Husbandry & Veterinary Medicine, 2016,43(4):1032-1038.(in Chinese with English abstract) | |
[30] |
FU X W, SONG P F, SPINDEL E R. Role of Lynx1 and related Ly6 proteins as modulators of cholinergic signaling in normal and neoplastic bronchial epithelium[J]. International Immunopharmacology, 2015,29(1):93-98.
DOI URL |
[31] |
TAKEUCHI H, INAGAKI S, MOROZUMI W, et al. VGF nerve growth factor inducible is involved in retinal ganglion cells death induced by optic nerve crush[J]. Scientific Reports, 2018,8:16443.
DOI URL |
[32] | YANG D X, ZHANG W B, PADHIAR A, et al. NPAS3 regulates transcription and expression of VGF: implications for neurogenesis and psychiatric disorders[J]. Frontiers in Molecular Neuroscience, 2016,9:109. |
[33] |
KARNER C M, DAS A, MA Z D, et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development[J]. Development (Cambridge, England), 2011,138(7):1247-1257.
DOI URL |
[34] | KAMEI C N, GALLEGOS T F, LIU Y, et al. Wnt signaling mediates new nephron formation during zebrafish kidney regeneration[J]. Development, 2019,146(8): dev168294. |
[1] | LONG Ming, ZHANG Peng, LIU Yuanlin, BAI Xiaoqin, ZHANG Fumei, TIAN Xiaojing, CAO Hong, ZHOU Xueyan, MA Zhongren, LUO Li, SONG Li, Nurul Izza NORDIN. Identification of functional effects of bovine whey protein based on odor information of mouse feces [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 714-723. |
[2] | LIU Kang, HU Chengxiao, CAI Miaomiao, GAO Lin, ZHANG Mengjiao, BA Lei, YANG Dandan, WANG Xu, ZHAO Xiaohu. Effect of selenium on spectral characteristics of chromium interaction with bovine serum albumin [J]. , 2020, 32(1): 149-159. |
[3] | ZENG Xueqin, LIU Chenjian, YANG Xue, LI Xiaoran. Microbial community structure and diversity of mastitis cows by 16S rRNA high-throughput sequencing [J]. , 2019, 31(9): 1437-1445. |
[4] | BAI Dongdong, LI Xinpu, YANG Feng, LUO Jinyin, WANG Xurong, LI Hongsheng. Clinical efficacy and mechanism prediction of Difutongrusan in treatment of bovine mastitis [J]. , 2019, 31(5): 730-736. |
[5] | YANG Mingxian, ZUO Zhicai, LI Bi, WANG Yu. Analysis of differential expression of TLR4-MyD88 independent pathway genes under resistin-induced bovine alveolar macrophages [J]. , 2019, 31(3): 379-383. |
[6] | ZHANG Kang, ZHANG Xuan, YAN Zunxiang, WANG Lei, ZHANG Kai, ZHANG Jingyan, LUO Yongjiang, QIU Zhengying, XUE Huan, LI Jianxi. Prokaryotic expression of Core protein of bovine viral diarrhoea viruses and preparation of polyclonal antibodies [J]. , 2019, 31(11): 1819-1824. |
[7] | ZHANG Xiang\|ying1,2, SHI Hong\|xia1, DI He\|shuang2,WANG Gen\|lin1. Effects of glutamine on the growth, proliferation and expression of HSP70 in bovine mammary epithelial cells#br# [J]. , 2015, 27(9): 1535-. |
[8] | QIAO Li-min;QIAO Fu-qiang;YAO Hua;LI Xiang-chen;GUAN Wei-jun;*;MA Yue-hui;*. Effects of different chemical activation methods and number of cumulus cell layers on in vitro parthenogenetic development of matured bovine oocytes [J]. , 2011, 23(4): 0-697. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||