Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (9): 1650-1659.DOI: 10.3969/j.issn.1004-1524.2021.09.09
• Horticultural Science • Previous Articles Next Articles
ZHENG Ganga,b,c(
), GU Cuihuaa,b,c, WANG Jiea,b,c, LIN Lina,b,c,*(
)
Received:2020-11-13
Online:2021-09-25
Published:2021-10-09
Contact:
LIN Lin
CLC Number:
ZHENG Gang, GU Cuihua, WANG Jie, LIN Lin. Effects of drought stress on photosynthetic characteristics and several physiological and biochemical indexes of Heimia myrtifolia Cham.et Schlechtend.[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1650-1659.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.09.09
Fig.1 Changes of malondialdehyde content and antioxidant enzymes activities in leaves of Heimia myrtifolia under different treatments Bars marked without the same letters indicated significant difference at P<0.05. The same as below. MDA, Malondialdehyde; CAT, Catalase; SOD, Superoxide dismutase; POD, Peroxidase.The same as below.
Fig.3 Changes of photosynthetic parameters in leaves of Heimia myrtifolia under different treatments Pn, Net photosynthetic rate; Tr, Transpiration rate; Ci, Intercellular carbon dioxide; Gs, Stomatal conductance.
| 处理Treatment | SL/μm | SW/μm | SA/μm2 | SD/μm-2 |
|---|---|---|---|---|
| CK | 30.8±1.8 a | 20.6±1.7 a | 487.1±53.6 a | 177.6±8.7 a |
| T1 | 29.1±1.3 b | 19.4±1.4 b | 435.1±32.0 b | 164.3±5.4 b |
| T2 | 25.2±1.8 c | 16.2±1.2 c | 327.3±34.1 c | 162.7±4.0 b |
| T3 | 23.1±1.1 d | 15.5±1.2 d | 297.4±19.6 d | 149.8±4.4 c |
| T4 | 22.9±1.3 e | 16.0±1.4 cd | 285.9±24.7 d | 143.3±5.5 d |
Table 1 Stomatal length, width, area and density in leaves of Heimia myrtifolia under different treatments
| 处理Treatment | SL/μm | SW/μm | SA/μm2 | SD/μm-2 |
|---|---|---|---|---|
| CK | 30.8±1.8 a | 20.6±1.7 a | 487.1±53.6 a | 177.6±8.7 a |
| T1 | 29.1±1.3 b | 19.4±1.4 b | 435.1±32.0 b | 164.3±5.4 b |
| T2 | 25.2±1.8 c | 16.2±1.2 c | 327.3±34.1 c | 162.7±4.0 b |
| T3 | 23.1±1.1 d | 15.5±1.2 d | 297.4±19.6 d | 149.8±4.4 c |
| T4 | 22.9±1.3 e | 16.0±1.4 cd | 285.9±24.7 d | 143.3±5.5 d |
| 指标 Index | MDA | POD | CAT | SOD | Pro | SS | Chl | Pn | Ci | Gs | Tr | SA |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| POD | -0.524** | |||||||||||
| CAT | -0.483* | 0.877** | ||||||||||
| SOD | -0.875** | 0.676** | 0.730* | |||||||||
| Pro | 0.782** | -0.838** | -0.679** | -0.818** | ||||||||
| SS | 0.882** | -0.255 | -0.077 | -0.642** | 0.653** | |||||||
| Chl | 0.904** | -0.409* | -0.221 | -0.661** | 0.729** | 0.943** | ||||||
| Pn | -0.945** | 0.348 | 0.242 | 0.767** | -0.711** | -0.974** | -0.926** | |||||
| Ci | -0.271 | -0.579** | -0.672** | -0.066 | 0.129 | -0.589** | -0.462* | 0.493* | ||||
| Gs | -0.889** | 0.202 | 0.067 | 0.607** | -0.583** | -0.973** | -0.942** | 0.963** | 0.631** | |||
| Tr | -0.740** | -0.146 | -0.177 | 0.418* | -0.265 | -0.861* | -0.786** | 0.842** | 0.808** | 0.925* | ||
| SA | -0.856** | 0.222 | 0.034 | 0.612** | -0.617** | -0.984** | -0.916** | 0.953** | 0.611** | 0.964** | 0.865** | |
| SD | -0.875** | 0.202 | 0.140 | 0.631** | -0.533** | -0.905** | -0.906** | 0.913** | 0.555** | 0.946** | 0.891** | 0.897** |
Table 2 Correlation of physiological and biochemical indexes in leaves of Heimia myrtifolia under different treatments
| 指标 Index | MDA | POD | CAT | SOD | Pro | SS | Chl | Pn | Ci | Gs | Tr | SA |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| POD | -0.524** | |||||||||||
| CAT | -0.483* | 0.877** | ||||||||||
| SOD | -0.875** | 0.676** | 0.730* | |||||||||
| Pro | 0.782** | -0.838** | -0.679** | -0.818** | ||||||||
| SS | 0.882** | -0.255 | -0.077 | -0.642** | 0.653** | |||||||
| Chl | 0.904** | -0.409* | -0.221 | -0.661** | 0.729** | 0.943** | ||||||
| Pn | -0.945** | 0.348 | 0.242 | 0.767** | -0.711** | -0.974** | -0.926** | |||||
| Ci | -0.271 | -0.579** | -0.672** | -0.066 | 0.129 | -0.589** | -0.462* | 0.493* | ||||
| Gs | -0.889** | 0.202 | 0.067 | 0.607** | -0.583** | -0.973** | -0.942** | 0.963** | 0.631** | |||
| Tr | -0.740** | -0.146 | -0.177 | 0.418* | -0.265 | -0.861* | -0.786** | 0.842** | 0.808** | 0.925* | ||
| SA | -0.856** | 0.222 | 0.034 | 0.612** | -0.617** | -0.984** | -0.916** | 0.953** | 0.611** | 0.964** | 0.865** | |
| SD | -0.875** | 0.202 | 0.140 | 0.631** | -0.533** | -0.905** | -0.906** | 0.913** | 0.555** | 0.946** | 0.891** | 0.897** |
| [1] |
ABDELGAWAD H, FARFAN-VIGNOLO E R, DE VOS D, et al. Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes[J]. Plant Science, 2015, 231:1-10.
DOI URL |
| [2] |
FATHI A, TARI D B. Effect of drought stress and its mechanism in plants[J]. International Journal of Life Sciences, 2016, 10(1):1-6.
DOI URL |
| [3] | 李磊, 贾志清, 朱雅娟, 等. 我国干旱区植物抗旱机理研究进展[J]. 中国沙漠, 2010, 30(5):1053-1059. |
| LI L, JIA Z Q, ZHU Y J, et al. Research advances on drought resistance mechanism of plant species in arid area of China[J]. Journal of Desert Research, 2010, 30(5):1053-1059.(in Chinese with English abstract) | |
| [4] |
GODOY O, DE LEMOS-FILHO J P, VALLADARES F. Invasive species can handle higher leaf temperature under water stress than Mediterranean natives[J]. Environmental and Experimental Botany, 2011, 71(2):207-214.
DOI URL |
| [5] | 方文培. 中国植物志[M]. 北京: 科学出版社, 2004. |
| [6] | RAWAT G S, CHANDOLA S, NAITHANI H B. A note on the occurrence of Heimia myrtifolia (Lythraceae) in India[J]. Indian Forester, 2007, 133(5):697-699. |
| [7] |
王传琛, 刘际松. 杭州城市气候[J]. 地理学报, 1982, 37(2):164-173.
DOI |
| WANG C C, LIU J S. The climate of the City of Hangzhou[J]. Acta Geographica Sinica, 1982, 37(2):164-173.(in Chinese with English abstract) | |
| [8] | 陈柯辰. 1961—2012年杭州的升温趋势和四季分配之变化[J]. 中国农学通报, 2013, 29(35):345-350. |
| CHEN K C. Warming trend and seasonal variation in Hangzhou from 1961 to 2012[J]. Chinese Agricultural Science Bulletin, 2013, 29(35):345-350.(in Chinese with English abstract) | |
| [9] | 张午朝, 高冰, 马育军. 长江流域1961—2015年不同等级干旱时空变化分析[J]. 人民长江, 2019, 50(2):53-57. |
| ZHANG W Z, GAO B, MA Y J. Temporal and spatial variation characteristics of different drought grades from 1961 to 2015 in Yangtze River Basin[J]. Yangtze River, 2019, 50(2):53-57.(in Chinese with English abstract) | |
| [10] | 李静. 大豆和反枝苋生物量及养分积累对季节性干旱的响应[D]. 哈尔滨: 东北农业大学, 2019. |
| LI J. Response of biomass and nutrient accumulation of soybean and Amaranthus retroflexus to seasonal drought[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese with English abstract) | |
| [11] |
RIZHSKY L, LIANG H J, MITTLER R. The combined effect of drought stress and heat shock on gene expression in tobacco[J]. Plant Physiology, 2002, 130(3):1143-1151.
DOI URL |
| [12] | 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5):868-882. |
| ZHANG C M, SHI S L, WU F. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties[J]. Scientia Agricultura Sinica, 2018, 51(5):868-882.(in Chinese with English abstract) | |
| [13] | 韩蕊莲, 李丽霞, 梁宗锁. 干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J]. 西北植物学报, 2003, 23(1):23-27. |
| HAN R L, LI L X, LIANG Z S. Seabuckthorn relative membrane conductivity and osmotic adjustment under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(1):23-27.(in Chinese with English abstract) | |
| [14] | 陈振, 元慕田, 曹琪琪, 等. 土壤含水量对苜蓿和沙棘气孔导度与叶水势的影响[J]. 中国水土保持科学, 2019, 17(2):37-43. |
| CHEN Z, YUAN M T, CAO Q Q, et al. Effects of soil water content on stomatal conductance and leaf water potential of Medicago sativa and Hippophae rhamnoides[J]. Science of Soil and Water Conservation, 2019, 17(2):37-43.(in Chinese with English abstract) | |
| [15] | 王凯丽, 高彦钊, 李姗, 等. 短期干旱胁迫下棉花气孔表现及光合特征研究[J]. 中国生态农业学报(中英文), 2019, 27(6):901-907. |
| WANG K L, GAO Y Z, LI S, et al. Response of leaf stomata and photosynthetic parameters to short-term drought stress in cotton (Gossypium hirsutum L.)[J]. Chinese Journal of Eco-Agriculture, 2019, 27(6):901-907.(in Chinese with English abstract) | |
| [16] | 黄莉娟, 赵丽丽, 唐华江, 等. 不同毛花雀稗种质对干旱胁迫的响应及其抗旱性评价[J]. 西南农业学报, 2019, 32(11):2557-2563. |
| HUANG L J, ZHAO L L, TANG H J, et al. Drought stress responses of six Paspalum dilatatum germplasms and drought resistance evaluation[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(11):2557-2563.(in Chinese with English abstract) | |
| [17] | AYOUB N, SINGAB A N, EL-NAGGAR M, et al. Investigation of phenolic leaf extract of Heimia myrtifolia(Lythraceae): pharmacological properties (stimulation of mineralization of SaOS-2 osteosarcoma cells) and identification of polyphenols[J]. Drug Discoveries & Therapeutics, 2010, 4(5):341-348. |
| [18] |
RUMALLA C S, JADHAV A N, SMILLIE T, et al. Alkaloids from Heimia salicifolia[J]. Phytochemistry, 2008, 69(8):1756-1762.
DOI URL |
| [19] |
GU C H, DONG B, XU L, et al. The complete chloroplast genome of Heimia myrtifolia and comparative analysis within Myrtales[J]. Molecules, 2018, 23(4):846-865.
DOI URL |
| [20] | 顾帆, 季梦成, 顾翠花, 等. 高温干旱胁迫对黄薇抗氧化防御系统的影响[J]. 浙江农林大学学报, 2019, 36(5):894-901. |
| GU F, JI M C, GU C H, et al. Heat and drought stress with an antioxidant defense system in Heimia myrtifolia[J]. Journal of Zhejiang A & F University, 2019, 36(5):894-901.(in Chinese with English abstract) | |
| [21] |
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways[J]. Current Opinion in Plant Biology, 2000, 3(3):217-223.
DOI URL |
| [22] | 李得孝, 郭月霞, 员海燕, 等. 玉米叶绿素含量测定方法研究[J]. 中国农学通报, 2005, 21(6):153-155. |
| LI D X, GUO Y X, YUN H Y, et al. Determined methods of chlorophyll from maize[J]. Chinese Agricultural Science Bulletin, 2005, 21(6):153-155.(in Chinese with English abstract) | |
| [23] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 164-260. |
| [24] | 乔滨杰, 王德秋, 高海燕, 等. 干旱胁迫下杨树无性系苗期光合与气孔形态变异研究[J]. 植物研究, 2020, 40(2):177-188. |
| QIAO B J, WANG D Q, GAO H Y, et al. Photosynthetic and stomatal morphological variation of poplar clones in seedling stage under drought stress[J]. Bulletin of Botanical Research, 2020, 40(2):177-188.(in Chinese with English abstract) | |
| [25] |
GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12):909-930.
DOI URL |
| [26] |
NIU Y, WANG Y P, LI P, et al. Drought stress induces oxidative stress and the antioxidant defense system in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana[J]. Acta Physiologiae Plantarum, 2013, 35(4):1189-1200.
DOI URL |
| [27] |
GUO Y Y, YU H Y, YANG M M, et al. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling[J]. Russian Journal of Plant Physiology, 2018, 65(2):244-250.
DOI URL |
| [28] | LAWLOR D W, CORNIC G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant, Cell & Environment, 2002, 25(2):275-294. |
| [29] |
DE SOYZA A G, KILLINGBECK K T, WHITFORD W G. Plant water relations and photosynjournal during and after drought in a Chihuahuan desert arroyo[J]. Journal of Arid Environments, 2004, 59(1):27-39.
DOI URL |
| [30] |
WALL G W, GARCIA R L, KIMBALL B A, et al. Interactive effects of elevated carbon dioxide and drought on wheat[J]. Agronomy Journal, 2006, 98(2):354-381.
DOI URL |
| [31] | 井大炜, 邢尚军, 杜振宇, 等. 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J]. 应用生态学报, 2013, 24(7):1809-1816. |
| JING D W, XING S J, DU Z Y, et al. Effects of drought stress on the growth, photosynthetic characteristics, and active oxygen metabolism of poplar seedlings[J]. Chinese Journal of Applied Ecology, 2013, 24(7):1809-1816.(in Chinese with English abstract) | |
| [32] |
EARL H J. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency[J]. Environmental and Experimental Botany, 2002, 48(3):237-246.
DOI URL |
| [33] | 程宇飞, 刘卫东. 4个品种新西兰麻的抗旱生理研究及评价[J]. 经济林研究, 2017, 35(4):164-170. |
| CHENG Y F, LIU W D. Research and evaluation on drought-resistant physiology of four cultivars of Phormium tenax[J]. Nonwood Forest Research, 2017, 35(4):164-170.(in Chinese with English abstract) | |
| [34] | 马富举, 李丹丹, 蔡剑, 等. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J]. 应用生态学报, 2012, 23(3):724-730. |
| MA F J, LI D D, CAI J, et al. Responses of wheat seedlings root growth and leaf photosynjournal to drought stress[J]. Chinese Journal of Applied Ecology, 2012, 23(3):724-730.(in Chinese with English abstract) | |
| [35] |
JEON M W, ALI M B, HAHN E J, et al. Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature[J]. Environmental and Experimental Botany, 2006, 55(1/2):183-194.
DOI URL |
| [36] | 王兴荣, 张彦军, 李玥, 等. 干旱胁迫对大豆生长的影响及抗旱性评价方法与指标筛选[J]. 植物遗传资源学报, 2018, 19(1):49-56. |
| WANG X R, ZHANG Y J, LI Y, et al. Effects of drought stress on growth and screening methods and indexes for drought-resistance in soybean[J]. Journal of Plant Genetic Resources, 2018, 19(1):49-56.(in Chinese with English abstract) | |
| [37] | JAVID M G, SOROOSHZADEH A, MORADI F, et al. The role of phytohormones in alleviating salt stress in crop plants[J]. Australian Journal of Crop Science, 2011, 5(6):726-734. |
| [38] | 王洪瑞, 敖红. 干旱胁迫对红皮云杉和嫩江云杉渗透调节及抗氧化系统的影响[J]. 东北林业大学学报, 2020, 48(8):16-21. |
| WANG H R, AO H. Response of osmotic regulation and antioxidant system to drought stress in Korean spruce and Nenjiang spruce[J]. Journal of Northeast Forestry University, 2020, 48(8):16-21. (in Chinese with English abstract) | |
| [39] |
GOMES F P, OLIVA M A, MIELKE M S, et al. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress[J]. Scientia Horticulturae, 2010, 126(3):379-384.
DOI URL |
| [40] | 安玉艳, 梁宗锁, 郝文芳. 杠柳幼苗对不同强度干旱胁迫的生长与生理响应[J]. 生态学报, 2011, 31(3):716-725. |
| AN Y Y, LIANG Z S, HAO W F. Growth and physiological responses of the Periploca sepium Bunge seedlings to drought stress[J]. Acta Ecologica Sinica, 2011, 31(3):716-725.(in Chinese with English abstract) | |
| [41] |
MITTLER R, VANDERAUWERA S, SUZUKI N, et al. ROS signaling: the new wave?[J]. Trends in Plant Science, 2011, 16(6):300-309.
DOI URL |
| [42] | 裴斌, 张光灿, 张淑勇, 等. 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J]. 生态学报, 2013, 33(5):1386-1396. |
|
PEI B, ZHANG G C, ZHANG S Y, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn.seedings[J]. Acta Ecologica Sinica, 2013, 33(5):1386-1396.(in Chinese with English abstract)
DOI URL |
|
| [43] | 谢志玉, 张文辉, 刘新成. 干旱胁迫对文冠果幼苗生长和生理生化特征的影响[J]. 西北植物学报, 2010, 30(5):948-954. |
| XIE Z Y, ZHANG W H, LIU X C. Growth and physiological characteristics of Xanthoceras sorbifolia seedlings under soil drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(5):948-954.(in Chinese with English abstract) | |
| [44] | 王宁, 袁美丽, 陈浩, 等. 干旱胁迫及复水对入侵植物节节麦幼苗生长及生理特性的影响[J]. 草业学报, 2019, 28(1):70-78. |
| WANG N, YUAN M L, CHEN H, et al. Effects of drought stress and rewatering on growth and physiological characteristics of invasive Aegilops tauschii seedlings[J]. Acta Prataculturae Sinica, 2019, 28(1):70-78.(in Chinese with English abstract) | |
| [45] |
SOHRABI Y, HEIDARI G, WEISANY W, et al. Changes of antioxidative enzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress[J]. Symbiosis, 2012, 56(1):5-18.
DOI URL |
| [46] | 吴永波, 叶波. 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响[J]. 生态学报, 2016, 36(2):403-410. |
| WU Y B, YE B. Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings[J]. Acta Ecologica Sinica, 2016, 36(2):403-410.(in Chinese with English abstract) |
| [1] | LI Yujing, HUANG Qianru, ZHANG Aidong, WU Xuexia, ZHU Dongxing, XIAO Kai. Function of the SmMYB13 gene in drought stress response in eggplant (Solanum melongena L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1666-1679. |
| [2] | REN Yuanlong, MA Rong, WANG Xiaozhuo, ZHANG Xueyan. Mitigative effect of foliar spraying melatonin on drought stress of cabbage seedlings [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 338-348. |
| [3] | CUI Bowen, ZHANG Siyi, WANG Jialing, WANG Jinghong, LIN Jixiang, YANG Qingjie. Bioinformatics analysis and drought-tolerant gene mining of WRKY family members in Carex siderosticta [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2087-2103. |
| [4] | MIN Jiangyan, TANG Zhuolei, YANG Xue, HUANG Xiaoyan, HUANG Kaifeng, HE Peiyun. Effect of different drought-rewatering modes on growth and yield of Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2000-2009. |
| [5] | YANG Mingfeng, JI Chunrong, LIU Yong, BAI Shujun, CHEN Xue, LIU Ailin. Effects of continuous drought stress on cotton growth and soil drought threshold at flowering and boll stage [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 738-747. |
| [6] | TIAN Xiaoming, XIANG Guangfeng, MOU Cun, LYU Hao, MA Tao, ZHU Lu, PENG Jing, ZHANG Min, HE Yan. Drought tolerance evaluation of four species of Ormosia [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 308-324. |
| [7] | LIN Xianyu, LI Ziqian, BAI Song, LUO Jun, QU Yan. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611-2620. |
| [8] | FAN Liying, FAN Tingting, TONG Zongjun, LIANG Liyun, ZHAO Zhiyong, CHEN Hui, ZHOU Changyan, ZHAO Xiaoyan. Effects on accumulation of cadmium and antioxidant system of different Morchella spp. under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2321-2331. |
| [9] | WEI Xiya, LIANG Lamei, LIN Xinqi, QIN Zhongwei, LI Yingzhi. Effects of melatonin seed priming on growth and physiological characteristics of Capsicum annuum under drought stress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2378-2388. |
| [10] | FANG Mingya, YU Hongwei, WU Yaxian, HAN Wenyan, LI Xin, LIU Haihe. Effects of exogenous epigallocatechin gallate on resistance of melon seedlings to powdery mildew [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 138-145. |
| [11] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
| [12] | DING Dongxia, LI Nenghui, LI Jing, TANG Chaonan, WANG Cheng, NIU Tianhang, YANG Yan, YANG Haitao, XIE Jianming. Effects of exogenous melatonin on chlorophyll fluorescence and antioxidant system of pepper (Capsicum annuum L.) under low temperature and low light stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1935-1944. |
| [13] | ZHANG Zhiguo, CONG Lin, ZHANG Shijie, LI Rongguang, ZOU Weina, CHI Fa'an, ZHANG Bao, JIANG Yuping. Effects of root-zone temperature on growth, development and flowering of Hemerocallis fulva [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1005-1014. |
| [14] | LI Yuting, LI Sha, CAO Jie, LI Jiaoyang, ZHANG Liang, XU Xiaofeng. Effects of microplastics on growth and antioxidant system of ectomycorrhizal fungi [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1049-1060. |
| [15] | LI Xinyan, WANG Fangling, ZHANG Mingyue, SHAO Zhihui, WANG Jun, YANG Weili, ZHAO Mingqin. Effects of water retaining agent on carbon-nitrogen metabolism and neutral aroma substances content in cigar tobacco leaves under drought stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2610-2621. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||