Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (9): 1710-1719.DOI: 10.3969/j.issn.1004-1524.2021.09.15
• Environmental Science • Previous Articles Next Articles
WANG Can1(), FU Tianling2, GONG Sitong2, LOU Fei1, ZHOU Kai3, DAI Liangyu4, LIU Jing4, LIN Dasong5, HE Tengbing1,2,*(
)
Received:
2021-01-09
Online:
2021-09-25
Published:
2021-10-09
Contact:
HE Tengbing
CLC Number:
WANG Can, FU Tianling, GONG Sitong, LOU Fei, ZHOU Kai, DAI Liangyu, LIU Jing, LIN Dasong, HE Tengbing. Effects of foliar control agents on cadmium enrichment characteristics of rice in karst area in central Guizhou[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1710-1719.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.09.15
处理 Treatment | pH | 有机质 Organic matter/(g·kg-1) | Cd/(mg·kg-1) | Zn(mg·kg-1) | Fe/(g·kg-1) | Si/(g·kg-1) |
---|---|---|---|---|---|---|
CK | 6.52±0.45 | 49.93±0.23 ab | 0.76±0.02 | 140.30±2.08 b | 15.31±0.17 c | 25.88±0.82 |
SE | 6.37±0.20 | 48.15±0.59 ab | 0.75±0.05 | 139.47±1.15 b | 15.76±0.14 bc | 24.98±0.37 |
GWY | 6.35±0.18 | 48.20±1.79 ab | 0.76±0.01 | 157.78±3.38 a | 16.68±0.39 b | 23.92±0.69 |
SI | 6.38±0.26 | 52.20±6.34 a | 0.73±0.05 | 149.03±3.75 ab | 15.62±0.08 bc | 25.32±0.20 |
ZN | 6.28±0.09 | 49.50±0.35 ab | 0.78±0.04 | 146.36±3.08 b | 15.54±0.40 bc | 23.27±0.55 |
FE | 6.32±0.08 | 45.70±3.16 b | 0.81±0.04 | 159.28±1.85 a | 18.11±0.38 a | 25.35±0.26 |
Table 1 Changes of soil pH, and contents of organic matter and Cd, Si, Zn, Fe under different treatments
处理 Treatment | pH | 有机质 Organic matter/(g·kg-1) | Cd/(mg·kg-1) | Zn(mg·kg-1) | Fe/(g·kg-1) | Si/(g·kg-1) |
---|---|---|---|---|---|---|
CK | 6.52±0.45 | 49.93±0.23 ab | 0.76±0.02 | 140.30±2.08 b | 15.31±0.17 c | 25.88±0.82 |
SE | 6.37±0.20 | 48.15±0.59 ab | 0.75±0.05 | 139.47±1.15 b | 15.76±0.14 bc | 24.98±0.37 |
GWY | 6.35±0.18 | 48.20±1.79 ab | 0.76±0.01 | 157.78±3.38 a | 16.68±0.39 b | 23.92±0.69 |
SI | 6.38±0.26 | 52.20±6.34 a | 0.73±0.05 | 149.03±3.75 ab | 15.62±0.08 bc | 25.32±0.20 |
ZN | 6.28±0.09 | 49.50±0.35 ab | 0.78±0.04 | 146.36±3.08 b | 15.54±0.40 bc | 23.27±0.55 |
FE | 6.32±0.08 | 45.70±3.16 b | 0.81±0.04 | 159.28±1.85 a | 18.11±0.38 a | 25.35±0.26 |
Fig.1 Rice yields under different treatments Bars marked without the same lowercase letters indicate significant difference at P<0.05. The same as below.
Fig.2 Heat map of Cd distribution in various parts of rice plants under different treatments The rows reflect treatments. The columns reflect different parts of rice plant. The color indicates the level of Cd content.The data are mean ± standard error of three replicates. Data marked without the same lowercase letters indicate significant difference of Cd content in the same part of rice plants under different treatments at P<0.05.
处理 Treatment | 根 Root | 茎 Stem | 茎节 Stem node | 叶 Leaf | 穗轴 Cob | 枝梗 Branch | 稻壳 Rice husk | 糙米 Brown rice |
---|---|---|---|---|---|---|---|---|
CK | 3.340 ±0.284 | 3.144 ±0.497 | 14.686 ±3.117 ab | 0.715 ±0.109 b | 2.959 ±0.267 ab | 1.137 ±0.160 | 0.351 ±0.038 | 0.671 ±0.030 ab |
SE | 2.987 ±0.394 | 2.675 ±0.797 | 8.111 ±2.006 b | 0.799 ±0.242 ab | 3.564 ±1.345 ab | 0.645 ±0.340 | 0.158 ±0.075 | 0.339 ±0.165 ab |
GWY | 3.815 ±0.228 | 2.968 ±0.378 | 12.590 ±0.852 ab | 0.830 ±0.198 ab | 2.386 ±1.147 ab | 1.027 ±0.306 | 0.205 ±0.043 | 0.408 ±0.107 ab |
SI | 4.903 ±0.586 | 4.390 ±0.455 | 18.929 ±3.440 a | 1.671 ±0.219 a | 5.103 ±0.468 a | 1.261 ±0.439 | 0.365 ±0.065 | 0.735 ±0.099 a |
ZN | 4.466 ±0.140 | 2.887 ±0.315 | 11.584 ±2.562 ab | 0.556 ±0.126 b | 1.332 ±0.309 b | 0.706 ±0.431 | 0.120 ±0.013 | 0.282 ±0.039 b |
FE | 4.507 ±0.861 | 4.477 ±1.401 | 13.299 ±2.211 ab | 1.394 ±0.486 ab | 4.387 ±0.990 ab | 1.331 ±0.487 | 0.333 ±0.128 | 0.598 ±0.199 ab |
Table 2 Cd enrichment coefficient in various parts of rice plants under different treatments
处理 Treatment | 根 Root | 茎 Stem | 茎节 Stem node | 叶 Leaf | 穗轴 Cob | 枝梗 Branch | 稻壳 Rice husk | 糙米 Brown rice |
---|---|---|---|---|---|---|---|---|
CK | 3.340 ±0.284 | 3.144 ±0.497 | 14.686 ±3.117 ab | 0.715 ±0.109 b | 2.959 ±0.267 ab | 1.137 ±0.160 | 0.351 ±0.038 | 0.671 ±0.030 ab |
SE | 2.987 ±0.394 | 2.675 ±0.797 | 8.111 ±2.006 b | 0.799 ±0.242 ab | 3.564 ±1.345 ab | 0.645 ±0.340 | 0.158 ±0.075 | 0.339 ±0.165 ab |
GWY | 3.815 ±0.228 | 2.968 ±0.378 | 12.590 ±0.852 ab | 0.830 ±0.198 ab | 2.386 ±1.147 ab | 1.027 ±0.306 | 0.205 ±0.043 | 0.408 ±0.107 ab |
SI | 4.903 ±0.586 | 4.390 ±0.455 | 18.929 ±3.440 a | 1.671 ±0.219 a | 5.103 ±0.468 a | 1.261 ±0.439 | 0.365 ±0.065 | 0.735 ±0.099 a |
ZN | 4.466 ±0.140 | 2.887 ±0.315 | 11.584 ±2.562 ab | 0.556 ±0.126 b | 1.332 ±0.309 b | 0.706 ±0.431 | 0.120 ±0.013 | 0.282 ±0.039 b |
FE | 4.507 ±0.861 | 4.477 ±1.401 | 13.299 ±2.211 ab | 1.394 ±0.486 ab | 4.387 ±0.990 ab | 1.331 ±0.487 | 0.333 ±0.128 | 0.598 ±0.199 ab |
处理 Treatment | 根—茎 Root-stem | 茎—茎节 Stem-stem node | 茎节—叶 Stem node-leaf | 叶—穗轴 Leaf-cob | 穗轴—枝梗 Cob-branch | 枝梗—稻壳 Brunch-rice husk | 稻壳—糙米 Rice husk-brown rice |
---|---|---|---|---|---|---|---|
CK | 0.930±0.060 | 4.792±0.795 | 0.050±0.002 b | 1.595±0.017 a | 0.384±0.031 ab | 0.120±0.009 a | 1.939±0.121 |
SE | 0.863±0.117 | 3.157±0.435 | 0.105±0.024 a | 0.754±0.172 b | 0.162±0.021 b | 0.041±0.005 b | 2.187±0.168 |
GWY | 0.772±0.046 | 4.313±0.236 | 0.064±0.010 ab | 1.187±0.131 ab | 0.517±0.113 a | 0.117±0.028 a | 1.988±0.262 |
SI | 0.899±0.017 | 4.233±0.298 | 0.090±0.005 ab | 0.748±0.167 b | 0.236±0.049 ab | 0.071±0.006 ab | 2.039±0.076 |
ZN | 0.643±0.044 | 4.065±0.669 | 0.050±0.010 b | 1.119±0.378 ab | 0.451±0.148 ab | 0.095±0.009 ab | 2.378±0.309 |
FE | 0.947±0.101 | 3.284±0.429 | 0.099±0.015 ab | 0.943±0.015 ab | 0.301±0.054 ab | 0.075±0.014 ab | 1.865±0.079 |
Table 3 Cd translocation coefficient in various parts of rice under different treatments
处理 Treatment | 根—茎 Root-stem | 茎—茎节 Stem-stem node | 茎节—叶 Stem node-leaf | 叶—穗轴 Leaf-cob | 穗轴—枝梗 Cob-branch | 枝梗—稻壳 Brunch-rice husk | 稻壳—糙米 Rice husk-brown rice |
---|---|---|---|---|---|---|---|
CK | 0.930±0.060 | 4.792±0.795 | 0.050±0.002 b | 1.595±0.017 a | 0.384±0.031 ab | 0.120±0.009 a | 1.939±0.121 |
SE | 0.863±0.117 | 3.157±0.435 | 0.105±0.024 a | 0.754±0.172 b | 0.162±0.021 b | 0.041±0.005 b | 2.187±0.168 |
GWY | 0.772±0.046 | 4.313±0.236 | 0.064±0.010 ab | 1.187±0.131 ab | 0.517±0.113 a | 0.117±0.028 a | 1.988±0.262 |
SI | 0.899±0.017 | 4.233±0.298 | 0.090±0.005 ab | 0.748±0.167 b | 0.236±0.049 ab | 0.071±0.006 ab | 2.039±0.076 |
ZN | 0.643±0.044 | 4.065±0.669 | 0.050±0.010 b | 1.119±0.378 ab | 0.451±0.148 ab | 0.095±0.009 ab | 2.378±0.309 |
FE | 0.947±0.101 | 3.284±0.429 | 0.099±0.015 ab | 0.943±0.015 ab | 0.301±0.054 ab | 0.075±0.014 ab | 1.865±0.079 |
处理 Treatment | Zn/(mg·kg-1) | Fe/(mg·kg-1) | Si/(g·kg-1) |
---|---|---|---|
CK | 22.300±0.478 ab | 11.687±0.210 a | 2.685±0.087 b |
SE | 23.273±0.702 ab | 9.220±0.244 cd | 3.036±0.059 ab |
GWY | 23.670±0.881 ab | 9.973±0.250 bc | 3.129±0.175 a |
SI | 19.587±0.745 b | 8.703±0.175 d | 2.699±0.101 b |
ZN | 23.337±1.811 ab | 8.827±0.154 d | 2.987±0.040 ab |
FE | 25.893±0.904 a | 10.600±0.352 b | 2.854±0.063 ab |
Table 4 Zn, Fe and Si content in brown rice under different treatments
处理 Treatment | Zn/(mg·kg-1) | Fe/(mg·kg-1) | Si/(g·kg-1) |
---|---|---|---|
CK | 22.300±0.478 ab | 11.687±0.210 a | 2.685±0.087 b |
SE | 23.273±0.702 ab | 9.220±0.244 cd | 3.036±0.059 ab |
GWY | 23.670±0.881 ab | 9.973±0.250 bc | 3.129±0.175 a |
SI | 19.587±0.745 b | 8.703±0.175 d | 2.699±0.101 b |
ZN | 23.337±1.811 ab | 8.827±0.154 d | 2.987±0.040 ab |
FE | 25.893±0.904 a | 10.600±0.352 b | 2.854±0.063 ab |
[1] | 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9):1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9):1689-1692.(in Chinese with English abstract) | |
[2] | 于焕云, 崔江虎, 乔江涛, 等. 稻田镉砷污染阻控原理与技术应用[J]. 农业环境科学学报, 2018, 37(7):1418-1426. |
YU H Y, CUI J H, QIAO J T, et al. Principle and technique of arsenic and cadmium pollution control in paddy field[J]. Journal of Agro-Environment Science, 2018, 37(7):1418-1426.(in Chinese with English abstract) | |
[3] | 汪鹏, 王静, 陈宏坪, 等. 我国稻田系统镉污染风险与阻控[J]. 农业环境科学学报, 2018, 37(7):1409-1417. |
WANG P, WANG J, CHEN H P, et al. Cadmium risk and mitigation in paddy systems in China[J]. Journal of Agro-Environment Science, 2018, 37(7):1409-1417.(in Chinese with English abstract) | |
[4] | 邓思涵, 陈聪颖, 严冬, 等. 水稻重金属污染及其阻控技术研究[J]. 中国稻米, 2019, 25(4):27-30. |
DENG S H, CHEN C Y, YAN D, et al. Study on heavy metal pollution in rice and its control techniques[J]. China Rice, 2019, 25(4):27-30.(in Chinese with English abstract) | |
[5] | 张烁, 陆仲烟, 唐琦, 等. 水稻叶面调理剂的降Cd效果及其对营养元素转运的影响[J]. 农业环境科学学报, 2018, 37(11):2507-2513. |
ZHANG S, LU Z Y, TANG Q, et al. Effects of foliar modulators on cadmium accumulation and transport of nutrient elements in rice[J]. Journal of Agro-Environment Science, 2018, 37(11):2507-2513.(in Chinese with English abstract) | |
[6] |
GAO M, ZHOU J, LIU H L, et al. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]. Science of the Total Environment, 2018, 631/632:1100-1108.
DOI URL |
[7] |
LIU J H, HOU H, ZHAO L, et al. Mitigation of Cd accumulation in rice from Cd-contaminated paddy soil by foliar dressing of S and P[J]. Science of the Total Environment, 2019, 690:321-328.
DOI URL |
[8] | 龙思斯, 宋正国, 雷鸣, 等. 不同阻控剂阻控重度Cd污染区水稻富集Cd的效果[J]. 中国稻米, 2017, 23(3):30-34. |
LONG S S, SONG Z G, LEI M, et al. Effects of different inhibitor on reducing cadmium content of rice[J]. China Rice, 2017, 23(3):30-34.(in Chinese with English abstract) | |
[9] |
WANG C R, RONG H, ZHANG X B, et al. Effects and mechanisms of foliar application of silicon and selenium composite sols on diminishing cadmium and lead translocation and affiliated physiological and biochemical responses in hybrid rice (Oryza sativa L.) exposed to cadmium and lead[J]. Chemosphere, 2020, 251:126347.
DOI URL |
[10] |
CHEN X W, WU L, LUO N, et al. Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice[J]. Geoderma, 2019, 337:749-757.
DOI URL |
[11] |
CUI J H, LIU T X, LI F B, et al. Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects[J]. Environmental Pollution, 2017, 228:363-369.
DOI URL |
[12] |
LIAN J P, ZHAO L F, WU J N, et al. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.)[J]. Chemosphere, 2020, 239:124794.
DOI URL |
[13] |
YANG J Y, CHEN X, LU W C, et al. Reducing Cd accumulation in rice grain with foliar application of glycerol and its mechanisms of Cd transport inhibition[J]. Chemosphere, 2020, 258:127135.
DOI URL |
[14] |
WANG Y F, ZHANG K, LU L, et al. Novel insights into effects of silicon-rich biochar (Sichar) amendment on cadmium uptake, translocation and accumulation in rice plants[J]. Environmental Pollution, 2020, 265:114772.
DOI URL |
[15] | 韩潇潇, 任兴华, 王培培, 等. 叶面喷施锌离子对水稻各器官镉积累特性的影响[J]. 农业环境科学学报, 2019, 38(8):1809-1817. |
HAN X X, REN X H, WANG P P, et al. Effects of foliar application with zinc on the characteristics of cadmium accumulation in organs of rice plants[J]. Journal of Agro-Environment Science, 2019, 38(8):1809-1817.(in Chinese with English abstract) | |
[16] | 刘利杉. 有机水溶肥料对水稻生长及镉吸收的影响与机理探讨[D]. 长沙: 湖南农业大学, 2017. |
LIU L S. Effects and mechanism of organic water-soluble fertilizer on rice growth and the uptake of Cd in rice[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese with English abstract) | |
[17] | 刘永贤, 潘丽萍, 黄雁飞, 等. 外源喷施硒与硅对水稻籽粒镉累积的影响[J]. 西南农业学报, 2017, 30(7):1588-1592. |
LIU Y X, PAN L P, HUANG Y F, et al. Effects of selenium or silicon foliar fertilizer on cadmium accumulation in rice[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(7):1588-1592.(in Chinese with English abstract) | |
[18] | 章明奎, 倪中应, 沈倩. 农作物重金属污染的生理阻控研究进展[J]. 环境污染与防治, 2017, 39(1):96-101. |
ZHANG M K, NI Z Y, SHEN Q. Research progress on physiological control of heavy metal pollution in crops[J]. Environmental Pollution & Control, 2017, 39(1):96-101.(in Chinese with English abstract) | |
[19] | 邓思涵, 龙九妹, 陈聪颖, 等. 叶面肥阻控水稻富集镉的研究进展[J]. 中国农学通报, 2020, 36(1):1-5. |
DENG S H, LONG J M, CHEN C Y, et al. Foliar fertilizers mitigate cadmium accumulation in rice: a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(1):1-5.(in Chinese with English abstract) | |
[20] | 朱立军, 李景阳. 碳酸盐岩风化成土作用及其环境效应[M]. 北京: 地质出版社, 2004. |
[21] | 任明强, 赵宾, 赵国宣, 等. 贵州茶叶品质与地质环境的关系[J]. 贵州农业科学, 2011, 39(2):30-33. |
REN M Q, ZHAO B, ZHAO G X, et al. Correlation between tea quality and geological environment in Guizhou[J]. Guizhou Agricultural Sciences, 2011, 39(2):30-33.(in Chinese with English abstract) | |
[22] |
YAO W S, XIE X J, ZHAO P Z, et al. Global scale geochemical mapping program: contributions from China[J]. Journal of Geochemical Exploration, 2014, 139:9-20.
DOI URL |
[23] | 罗慧, 刘秀明, 王世杰, 等. 中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018, 37(5):1538-1544. |
LUO H, LIU X M, WANG S J, et al. Pollution characteristics and sources of cadmium in soils of the Karst area in South China[J]. Chinese Journal of Ecology, 2018, 37(5):1538-1544.(in Chinese with English abstract) | |
[24] |
BASHIR A, RIZWAN M, ALI S, et al. Effect of foliar-applied iron complexed with lysine on growth and cadmium (Cd) uptake in rice under Cd stress[J]. Environmental Science and Pollution Research International, 2018, 25(21):20691-20699.
DOI URL |
[25] |
RIZWAN M, ALI S, HUSSAIN A, et al. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment[J]. Chemosphere, 2017, 187:35-42.
DOI URL |
[26] | 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012: 38-84. |
[27] | 杨寒雯, 刘秀明, 刘方, 等. 喀斯特高镉地质背景区水稻镉的富集、转运特征与机理[J]. 地球与环境, 2021, 49(1):18-24. |
YANG H W, LIU X M, LIU F, et al. Translocation and accumulation of cadmium in rice in a karst area with high geochemical background and its mechanism[J]. Earth and Environment, 2021, 49(1):18-24. (in Chinese with English abstract) | |
[28] |
SOURI M K. Aminochelate fertilizers: the new approach to the old problem: a review[J]. Open Agriculture, 2016, 1(1):118-123.
DOI URL |
[29] | 彭鸥, 刘玉玲, 铁柏清, 等. 施硅对镉胁迫下水稻镉吸收和转运的调控效应[J]. 生态学杂志, 2019, 38(4):1049-1056. |
PENG O, LIU Y L, TIE B Q, et al. Effects of silicon application on cadmium uptake and translocation of rice under cadmium stress[J]. Chinese Journal of Ecology, 2019, 38(4):1049-1056.(in Chinese with English abstract) | |
[30] |
WU Z C, LIU S, ZHAO J, et al. Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress[J]. Environmental and Experimental Botany, 2017, 133:1-11.
DOI URL |
[31] |
HUANG Q Q, XU Y M, LIU Y Y, et al. Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil[J]. Environmental Science and Pollution Research, 2018, 25(31):31175-31182.
DOI URL |
[32] |
YUAN K, WANG C R, ZHANG C B, et al. Rice grains alleviate cadmium toxicity by expending glutamate and increasing manganese in the cadmium contaminated farmland[J]. Environmental Pollution, 2020, 262:114236.
DOI URL |
[33] | 郭勇军, 杜建军, 伍志波, 等. 一种抑制水稻重金属镉吸收和富集的水溶肥料及制备方法: CN106810382B[P]. 2017-06-09. |
[34] | 佛山市铁人环保科技有限公司. 一种降镉叶面硅肥及其制备方法和应用: 201610978176[P]. 2018-06-26. |
[35] |
URAGUCHI S, FUJIWARA T. Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation[J]. Rice (New York), 2012, 5(1):5.
DOI URL |
[36] | 谷建诚, 郭彬, 林义成, 等. 根表铁膜对水稻镉吸收的影响[J]. 浙江农业学报, 2020, 32(6):963-970. |
GU J C, GUO B, LIN Y C, et al. Effects of iron plaque in root surface on cadmium uptake of rice[J]. Acta Agriculturae Zhejiangensis, 2020, 32(6):963-970.(in Chinese with English abstract) | |
[37] | 田茂苑. 贵州喀斯特地区不同水稻土镉污染风险格局划分[D]. 贵阳: 贵州大学, 2019. |
TIAN M Y. Classification of cadmium pollution risk patterns of different paddy soils in Karst area of Guizhou[D]. Guiyang: Guizhou University, 2019. (in Chinese with English abstract) | |
[38] | 任明强, 张家德, 卢正艳, 等. 贵州喀斯特与非喀斯特农业生态地质环境质量对比研究[J]. 中国岩溶, 2009, 28(4):397-401. |
REN M Q, ZHANG J D, LU Z Y, et al. Contrastive studies on agro-ecological geology environment quality between Karst and non-Karst area in Guizhou[J]. Carsologica Sinica, 2009, 28(4):397-401.(in Chinese with English abstract) |
[1] | HUANG Xuan, JIN Lincan, YE Chaohui, JIANG Jiefeng, SHI Xianbo. Molecular detection and breeding application of some disease and insect resistance genes of japonica rice varieties/lines recently developed in Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1159-1169. |
[2] | ZHANG Huiyun, QIN Lijie, JIA Li. Temporal and spatial characteristics of carbon footprint and water footprint in rice production in Jilin Province [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 974-983. |
[3] | WANG Feng, SHEN Jianghua, CHEN Ruoxia, SHI Jun, REN Shaopeng, JIN Shuquan, YAO Hongyan, ZHU Defeng, DAI Yaolu. Effects of reduced nitrogen application on yield and nitrogen agronomic efficiency of Yongyou indica-japonica hybrid rice [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 984-992. |
[4] | WANG Zhi, HU Zhonghao, GUI Xueer, FENG Shibin, LI Yu, WANG Xichun, LI Jinchun, WU Jinjie. Effects of high protein diets on serum uric acid levels, liver and kidney ultrastructure and expression of ABCG2 in goslings [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 801-808. |
[5] | ZHU Yun, GUO Bin, LIN Yicheng, FU Qinglin, LIU Chen, LI Ningyu, LI Hua. Effects of self-developed soil conditioner on soil physiochemical properties and rice yield in coastal saline soil [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 885-892. |
[6] | WU Peicong, ZHANG Peng, SHAN Ying, ZOU Ganghua, DING Zheli, ZHU Zhiqiang, ZHAO Fengliang. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687. |
[7] | LI Baoxian, WANG Baojun, HUAI Yan, SHEN Yaqiang, ZHANG Hongmei, CHENG Wangda. Effects of integrated rice-redclaw crayfish farming system on soil nutrients, carbon pool and rice quality [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 688-696. |
[8] | LIU Jun, ZHU Dequan1, YU Congyang, XUE Kang, ZHANG Shun, LIAO Juan. Design and experiment on scoop hole-wheel precision seed-metering device for rice [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 739-752. |
[9] | CHEN Dan, TANG Cuifeng, DONG Chao, GAN Shuxian, LI Jun, A Xinxiang, ZHANG Feifei, YANG Yayun, NIU Saisai, DAI Luyuan. Grain starch quality characteristics of Yunnan soft rice landraces [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 203-214. |
[10] | ZOU Wenxiong, WU Wei, GUAN Yajing, CAO Dongdong, BIAN Xiaobo, SHI Deyun, DING Liling. Research progress of regulation techniques of rice seed dormancy [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 369-379. |
[11] | ZHENG Xusong, ZHONG Liequan, WANG Huifu, CHEN Fangjing, CHENG Liping, XU Qiqiang, LI Yang, ZHONG Xuhua, LYU Zhongxian. Demonstration on rice pests control by fertilizer regulation technique in different geographic rice growing areas of Zhejiang Province [J]. , 2020, 32(9): 1656-1664. |
[12] | LIU Jiaojiao, ZHANG Gangren, GAO Qun. Study on price relevance of livestock products based on VEC-BEKK-GARCH and spillover index model [J]. , 2020, 32(9): 1711-1721. |
[13] | GU Jiancheng, GUO Bin, LIN Yicheng, FU Qinglin, LIU Chen, DING Nengfei, LI Hua, LI Ningyu. Effects of iron plaque in root surface on cadmium uptake of rice [J]. , 2020, 32(6): 963-970. |
[14] | SHAO Wenqi, ZHONG Ping, DONG Yubing, SUN Chunmei, JI Li, ZHUANG Chun, CHEN Chuan, ZHANG Ankang. Difference of light and temperature resources in tray seedling and its effect on seedling quality in rice [J]. , 2020, 32(2): 191-199. |
[15] | WANG Nianyi, YU Fenghua, XU Tongyu, DU Wen, GUO Zhonghui, ZHANG Guosheng. Hyperspectral retrieval modelling for chlorophyll contents of japonica-rice leaves based on machine learning [J]. , 2020, 32(2): 359-366. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||