Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (11): 2075-2084.DOI: 10.3969/j.issn.1004-1524.2021.11.10
• Horticultural Science • Previous Articles Next Articles
ZHAO Hua1(
), REN Qingwen2, WANG Xiyu2, LI Zhenni2, TANG Xiumei3, JIANG Lihui2, LIU Peng2, XING Chenghua1,*(
)
Received:2021-03-20
Online:2021-11-25
Published:2021-11-26
Contact:
XING Chenghua
CLC Number:
ZHAO Hua, REN Qingwen, WANG Xiyu, LI Zhenni, TANG Xiumei, JIANG Lihui, LIU Peng, XING Chenghua. Effects of arbuscular mycorrhizal fungi on antioxidant enzymes activities and photosynthetic characteristics of Solanum lycopersicum L. under salt stress[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2075-2084.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.11.10
Fig.1 The infection rate and density of tomato mycorrhizal under different AMF treatments C.e, Clariodeoglous etunicatum; D.v, Diversispora versiformis; R.i, Rhiaophagus intraradices; F.m, Funneliformis mosseas. Different lowercase letters indicate significant differences at P<0.05 level among different treatments. The same as below.
Fig.3 Changes of MDA and proline content of tomato in different treatment groups CK 0, Sterile water and 0 mmol·L-1 salt stress; D.v 0, Diversispora versiformis strain and 0 mmol·L-1 salt stress; C.e 0, Clariodeoglous etunicatum strain and 0 mmol·L-1 salt stress; CK 100, Sterile water and 100 mmol·L-1 salt stress; D.v 100, Diversispora versiformis strain and 100 mmol·L-1 salt stress; C.e 100, Clariodeoglous etunicatum strain and 100 mmol·L-1 salt stress. The same as below.
| 测定参数 Measured parameter | 处理组 Treatment group | 处理时间Treatment time/d | |||
|---|---|---|---|---|---|
| 15 | 30 | 45 | |||
| 初始荧光 (Fo)Initial fluorescence | CK 0 | 0.165±0.002 c | 0.170±0.004 d | 0.186±0.004 c | |
| D.v 0 | 0.146±0.003 d | 0.150±0.004 e | 0.156±0.002 d | ||
| C.e 0 | 0.156±0.005 cd | 0.157±0.002 e | 0.164±0.003 d | ||
| CK 100 | 0.213±0.004 a | 0.227±0.003 a | 0.235±0.003 a | ||
| D.v 100 | 0.187±0.004 b | 0.189±0.003 c | 0.192±0.002 c | ||
| C.e 100 | 0.189±0.003 b | 0.210±0.004 b | 0.214±0.004 b | ||
| 最大光化学效率 (Fv/Fm) | CK 0 | 0.802±0.003 c | 0.813±0.003 b | 0.807±0.005 b | |
| Maximal photochemical efficiency | D.v 0 | 0.832±0.003 a | 0.838±0.002 a | 0.835±0.002 a | |
| C.e 0 | 0.822±0.003 b | 0.820±0.005 b | 0.825±0.003 a | ||
| CK 100 | 0.745±0.004 e | 0.744±0.005 e | 0.735±0.006 e | ||
| D.v 100 | 0.796±0.002 c | 0.787±0.002 c | 0.790±0.002 c | ||
| C.e 100 | 0.777±0.003 d | 0.771±0.006 d | 0.776±0.004 d | ||
| 气孔导度 (Gs) | CK 0 | 0.377±0.009 b | 0.427±0.009 ab | 0.398±0.007 b | |
| Stomatal conductance/(mmol·m-2·s-1) | D.v 0 | 0.493±0.039 a | 0.464±0.022 a | 0.474±0.033 a | |
| C.e 0 | 0.386±0.025 b | 0.388±0.030 b | 0.385±0.023 b | ||
| CK 100 | 0.211±0.002 c | 0.196±0.013 c | 0.106±0.004 c | ||
| D.v 100 | 0.317±0.038 b | 0.201±0.020 c | 0.144±0.005 c | ||
| C.e 100 | 0.233±0.0043 c | 0.192±0.008 c | 0.117±0.004 c | ||
| 净光合速率 (Pn) | CK 0 | 9.614±0.312 b | 11.252±0.149 b | 10.386±0.540 a | |
| Net photosynthetic rate/(μmol·m-2·s-1) | D.v 0 | 11.451±0.059 a | 12.404±0.277 a | 10.250±0.211 a | |
| C.e 0 | 11.373±0.277 a | 11.316±0.308 b | 10.561±0.118 a | ||
| CK 100 | 8.623±0.417 c | 5.590±0.451 c | 3.109±0.176 c | ||
| D.v 100 | 10.776±0.106 a | 5.766±0.358 c | 4.629±0.328 b | ||
| C.e 100 | 9.549±0.046 b | 6.334±0.298 c | 3.340±0.631 c | ||
Table 1 Changes of chlorophyll fluorescence parameters and photosynthetic parameters of tomato in different treatment groups
| 测定参数 Measured parameter | 处理组 Treatment group | 处理时间Treatment time/d | |||
|---|---|---|---|---|---|
| 15 | 30 | 45 | |||
| 初始荧光 (Fo)Initial fluorescence | CK 0 | 0.165±0.002 c | 0.170±0.004 d | 0.186±0.004 c | |
| D.v 0 | 0.146±0.003 d | 0.150±0.004 e | 0.156±0.002 d | ||
| C.e 0 | 0.156±0.005 cd | 0.157±0.002 e | 0.164±0.003 d | ||
| CK 100 | 0.213±0.004 a | 0.227±0.003 a | 0.235±0.003 a | ||
| D.v 100 | 0.187±0.004 b | 0.189±0.003 c | 0.192±0.002 c | ||
| C.e 100 | 0.189±0.003 b | 0.210±0.004 b | 0.214±0.004 b | ||
| 最大光化学效率 (Fv/Fm) | CK 0 | 0.802±0.003 c | 0.813±0.003 b | 0.807±0.005 b | |
| Maximal photochemical efficiency | D.v 0 | 0.832±0.003 a | 0.838±0.002 a | 0.835±0.002 a | |
| C.e 0 | 0.822±0.003 b | 0.820±0.005 b | 0.825±0.003 a | ||
| CK 100 | 0.745±0.004 e | 0.744±0.005 e | 0.735±0.006 e | ||
| D.v 100 | 0.796±0.002 c | 0.787±0.002 c | 0.790±0.002 c | ||
| C.e 100 | 0.777±0.003 d | 0.771±0.006 d | 0.776±0.004 d | ||
| 气孔导度 (Gs) | CK 0 | 0.377±0.009 b | 0.427±0.009 ab | 0.398±0.007 b | |
| Stomatal conductance/(mmol·m-2·s-1) | D.v 0 | 0.493±0.039 a | 0.464±0.022 a | 0.474±0.033 a | |
| C.e 0 | 0.386±0.025 b | 0.388±0.030 b | 0.385±0.023 b | ||
| CK 100 | 0.211±0.002 c | 0.196±0.013 c | 0.106±0.004 c | ||
| D.v 100 | 0.317±0.038 b | 0.201±0.020 c | 0.144±0.005 c | ||
| C.e 100 | 0.233±0.0043 c | 0.192±0.008 c | 0.117±0.004 c | ||
| 净光合速率 (Pn) | CK 0 | 9.614±0.312 b | 11.252±0.149 b | 10.386±0.540 a | |
| Net photosynthetic rate/(μmol·m-2·s-1) | D.v 0 | 11.451±0.059 a | 12.404±0.277 a | 10.250±0.211 a | |
| C.e 0 | 11.373±0.277 a | 11.316±0.308 b | 10.561±0.118 a | ||
| CK 100 | 8.623±0.417 c | 5.590±0.451 c | 3.109±0.176 c | ||
| D.v 100 | 10.776±0.106 a | 5.766±0.358 c | 4.629±0.328 b | ||
| C.e 100 | 9.549±0.046 b | 6.334±0.298 c | 3.340±0.631 c | ||
| [1] |
ROUPHAEL Y, FRANKEN P, SCHNEIDER C, et al. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops[J]. Scientia Horticulturae, 2015, 196:91-108.
DOI URL |
| [2] | 卢鑫, 胡文友, 黄标, 等. 丛枝菌根真菌对玉米和续断菊间作镉吸收和累积的影响[J]. 土壤, 2017, 49(1):111-117. |
| LU X, HU W Y, HUANG B, et al. Effects of arbuscular mycorrhizal fungi(AMF) on Cd absorption and accumulation in maize and Sonchus asper L. hill using intercropping system[J]. Soils, 2017, 49(1):111-117.(in Chinese with English abstract) | |
| [3] |
PORCEL R, REDONDO-GÓMEZ S, MATEOS-NARANJO E, et al. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress[J]. Journal of Plant Physiology, 2015, 185:75-83.
DOI URL |
| [4] | 李少朋, 张凯, 邹书. 丛枝菌根真菌对盐碱化土壤中玉米生长的影响[J]. 环境生态学, 2019, 1(8):56-59. |
| LI S P, ZHANG K, ZOU S. Effects of arbuscular mycorrhizal fungi on maize growth in saline-alkali soil[J]. Environmental Ecology, 2019, 1(8):56-59.(in Chinese with English abstract) | |
| [5] | 刘耀臣, 王震, 王策, 等. 丛枝菌根真菌对盐胁迫下芹菜生长和生理指标的影响[J]. 北方园艺, 2019(18):47-51. |
| LIU Y C, WANG Z, WANG C, et al. Effects of arbuscular mycorrhizal fungi on growth and the physiological characteristics of celery under salt stress[J]. Northern Horticulture, 2019(18):47-51.(in Chinese with English abstract) | |
| [6] |
ZHANG X H, HAN C Z, GAO H M, et al. Comparative transcriptome analysis of the garden Asparagus(Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress[J]. Plant Physiology and Biochemistry, 2019, 141:20-29.
DOI URL |
| [7] | ZOU Y N, WU Q S. Efficiencies of five arbuscular mycorrhizal fungi in alleviating salt stress of trifoliate orange[J]. International Journal of Agriculture and Biology, 2011, 13(6):991-995. |
| [8] | 龙宣杞. 丛枝菌根真菌(AMF)高效菌种的选育[D]. 天津: 天津大学, 2009. |
| LONG X Q. Screening of arbuscular mycorrhizal fungi (AMF) efficient strains[D]. Tianjin: Tianjin University, 2009. (in Chinese with English abstract) | |
| [9] | 杨凤军, 高凤, 韩昱, 等. 不同基因型番茄幼苗期耐盐性分析[J]. 黑龙江八一农垦大学学报, 2018, 30(4):12-17. |
| YANG F J, GAO F, HAN Y, et al. Analysis of salt tolerance of different genotypic tomato seedlings[J]. Journal of Heilongjiang Bayi Agricultural University, 2018, 30(4):12-17.(in Chinese with English abstract) | |
| [10] |
ANANTHARAMAN S, PADMARAJAIAH N, AL-TAYAR N G S, et al. Ninhydrin-sodium molybdate chromogenic analytical probe for the assay of amino acids and proteins[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 173:897-903.
DOI URL |
| [11] |
SHABNAM N, TRIPATHI I, SHARMILA P, et al. A rapid, ideal, and eco-friendlier protocol for quantifying proline[J]. Protoplasma, 2016, 253(6):1577-1582.
DOI URL |
| [12] | 陈辰, 何小定, 秦金舟, 等. 4种含笑叶片叶绿素荧光参数Fv/Fm特性的比较[J]. 安徽农业大学学报, 2013, 40(1):32-37. |
| CHEN C, HE X D, QIN J Z, et al. Comparison of chlorophyll fluorescence Fv/Fm characteristics of four Michelia trees[J]. Journal of Anhui Agricultural University, 2013, 40(1):32-37.(in Chinese with English abstract) | |
| [13] | 杨世琼, 杨再强, 王琳, 等. 高温高湿交互对设施番茄叶片光合特性的影响[J]. 生态学杂志, 2018, 37(1):57-63. |
| YANG S Q, YANG Z Q, WANG L, et al. Effect of high humidity and high temperature interaction on photosynthetic characteristics of greenhouse tomato crops[J]. Chinese Journal of Ecology, 2018, 37(1):57-63.(in Chinese with English abstract) | |
| [14] | 赵炀, 李永生, 高秀峰. 基于愈创木酚荧光减量准确测定过氧化物酶活性的新方法[J]. 分析化学, 2015, 43(7):1040-1046. |
| ZHAO Y, LI Y S, GAO X F. A new method for accurate determination of peroxidase activity based on fluorescence decrease of guaiacol[J]. Chinese Journal of Analytical Chemistry, 2015, 43(7):1040-1046.(in Chinese with English abstract) | |
| [15] | 屠洁, 沈文飚, 林国庆, 等. 一氧化氮供体SNP干扰NBT光化还原法测定小麦叶片SOD活性的消除[J]. 植物生理学通讯, 2003, 39(5):483-485. |
| TU J, SHEN W B, LIN G Q, et al. Elimination of the interference of nitric oxide donor SNP in determining SOD activity of wheat leaves with NBT photoreduction method[J]. Plant Physiology Communications, 2003, 39(5):483-485.(in Chinese) | |
| [16] | 张志良. 植物生理学实验指导[M]. 5版. 北京: 高等教育出版社, 2016. |
| [17] | 章平泉, 金殿明, 杜秀敏, 等. 自动凯氏定氮仪测定烟草及其制品中的总氮[J]. 烟草科技, 2011, 44(3):43-45. |
| ZHANG P Q, JIN D M, DU X M, et al. Determination of total nitrogen in tobacco and tobacco products by automatic Kjeldahl nitrogen analyzer[J]. Tobacco Science & Technology, 2011, 44(3):43-45.(in Chinese with English abstract) | |
| [18] | 杨辉, 张林. 钒钼酸铵比色法测定羟基磷灰石中磷的含量[J]. 陕西科技大学学报(自然科学版), 2007, 25(1):71-73. |
| YANG H, ZHANG L. Determination of phosphorus content in hydroxyapatite with color comparison method of ammonium vanadate-molybdate[J]. Journal of Shaanxi University of Science & Technology, 2007, 25(1):71-73.(in Chinese with English abstract) | |
| [19] | 曹翠玲, 张玖玲, 杨向娜, 等. 金银花根系VAM真菌侵染过程观察[J]. 西北植物学报, 2016, 36(3):479-485. |
| CAO C L, ZHANG J L, YANG X N, et al. Investigation of the mycorrhiza forming in honeysuckle infected by vesicular arbuscular mycorrhizal(VAM)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(3):479-485.(in Chinese with English abstract) | |
| [20] | 冯固, 白灯莎, 杨茂秋, 等. 盐胁迫对VA菌根形成及接种VAM真菌对植物耐盐性的效应[J]. 应用生态学报, 1999, 10(1):79-82. |
| FENG G, BAI D S, YANG M Q, et al. Effects of salinity on VA mycorrhiza formation and of inoculation with VAM fungi on saline-tolerance of plants[J]. Chinese Journal of Applied Ecology, 1999, 10(1):79-82.(in Chinese) | |
| [21] | 田凡, 廖小锋, 颜凤霞, 等. 不同AMF对虎舌红幼苗生长与生理代谢的影响[J]. 北方园艺, 2021(10):59-65. |
| TIAN F, LIAO X F, YAN F X, et al. Effects of different arbuscular mycorrhizal fungi on seedling growth and physiological metabolism in Ardisia mamillata[J]. Northern Horticulture, 2021(10):59-65.(in Chinese with English abstract) | |
| [22] | 王敏强, 吴沛鸿, 沈益康, 等. 盐胁迫下接种丛枝苗根真菌对甜菊生长和氮磷吸收的影响[J]. 应用与环境生物学报, 2018, 24(5):960-966. |
| WANG M Q, WU P H, SHEN Y K, et al. Effects of arbuscular mycorrhizal fungi on the growth and nitrogen and phosphorus acquisition of salt-stressed Stevia rebaudiana[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(5):960-966.(in Chinese with English abstract) | |
| [23] |
RABIE G H. Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater[J]. Mycorrhiza, 2005, 15(3):225-230.
DOI URL |
| [24] | CARREÓN-ABUD Y, SORIANO-BELLO E, MARTÍNEZ-TRUJILLO M. Role of arbuscular mycorrhizal fungi in the uptake of phosphorus by micropropagated blackberry (Rubus fruticosus var. brazos) plants[C]// First International Meeting on Microbial Phosphate Solubilization, 2007, 102:161-165. |
| [25] | GUO S X, CHEN D M, LIU R J. Effects of arbuscular mycorrhizal fungi on antioxidant enzyme activity in peony seedlings under salt stress[J]. Acta Horticulturae Sinica, 2010, 37(11):1796-1802. |
| [26] | 邹晖, 林江波, 戴艺民, 等. 干旱胁迫下内生真菌对铁皮石斛抗旱性的影响[J]. 北方园艺, 2020(6):119-125. |
| ZOU H, LIN J B, DAI Y M, et al. Effects of endophyte on the drought resistance of Dendrobium officinale under drought stress[J]. Northern Horticulture, 2020(6):119-125.(in Chinese with English abstract) | |
| [27] | 吴秀红, 戚厚芸, 孙婷, 等. 内生菌根菌剂对水稻秧苗生长及生理特性的影响[J]. 江苏农业科学, 2018, 46(21):65-68. |
| WU X H, QI H Y, SUN T, et al. Effects of endogenous mycorrhizal fungi inoculant on growth and physiological characteristics of rice seedlings[J]. Jiangsu Agricultural Sciences, 2018, 46(21):65-68.(in Chinese) | |
| [28] |
GOUSSI R, MANAA A, DERBALI W, et al. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 183:275-287.
DOI URL |
| [29] |
ELHINDI K M, EL-DIN A S, ELGORBAN A M. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.)[J]. Saudi Journal of Biological Sciences, 2017, 24(1):170-179.
DOI URL |
| [30] |
MAURO R P, OCCHIPINTI A, LONGO A M G, et al. Effects of shading on chlorophyll content, chlorophyll fluorescence and photosynjournal of subterranean clover[J]. Journal of Agronomy and Crop Science, 2011, 197(1):57-66.
DOI URL |
| [31] | LIU L, LI D, MA Y L, et al. Alleviation of drought stress and the physiological mechanisms in tobacco seedlings treated[J]. Acta Prataculturae Sinica, 2019, 28(8):95-105. |
| [32] | 张淑彬, 纪晶晶, 王幼珊, 等. 内蒙古露天煤矿区回填土壤具生态适应能力丛枝菌根真菌的筛选[J]. 生态学报, 2009, 29(7):3729-3736. |
| ZHANG S B, JI J J, WANG Y S, et al. The screening of arbuscular mycorrhizal fungi with high ecological adaptations in backfill soil of open pit mining area in Inner Mongolia[J]. Acta Ecologica Sinica, 2009, 29(7):3729-3736.(in Chinese with English abstract) |
| [1] | HU Yingjie, DU Chenqi, WANG Liufan, SHOU Jianxin, WANG Chao, XU Mei, YAN Xu. Research progress of vesicle trafficking in plant response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 2003-2011. |
| [2] | GUAN Xiusheng, LIU Tieshan, WANG Juan, ZHANG Maolin, LIU Chunxiao, DONG Rui, GUAN Haiying, LIU Qiang, XU Yang, HE Chunmei. Bioinformatics analysis and cloning of NF-YA family genes in maize(Zea mays) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1605-1614. |
| [3] | LI Yancui, LI Fuqiang, ZHOU Bo. Effects of deficit irrigation at different growth stages on photosynthetic characteristics, yield and quality of Astragalus membranaceus var. mongholicus [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 779-789. |
| [4] | QIN Yukun, CHEN Junying, WANG Yuping, ZHANG Lijuan. Effects of reducing nitrogen and increasing carbon on cotton production and nitrogen absorption and utilization in the Yangtze River Basin of China [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 869-879. |
| [5] | LIAO Xiaolong, WANG Xingsheng, CHEN Yong, LI Bin, HONG Sidan, MEI Lina, GUO Ying. Identification of the HKT gene family members in Populus species and analysis of their expression patterns under salt stress [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2104-2115. |
| [6] | GAO Jing, LU Linghong, GU Xianbin, FAN Fei, SONG Genhua, ZHANG Huiqin. Cloning of AcWRKY94 gene from kiwifruit and its functional analysis under salt stress [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2501-2509. |
| [7] | TANG Yuehui, CHEN Shuying, HE Wenqiong, WANG Hanjin, BAO Xinxin, JIA Sainan, WANG Yaoyao, CHEN Yuyang, YANG Tongwen. Cloning and functional analysis of JcERF22 gene from Jatropha curcas [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2219-2228. |
| [8] | LIN Xianyu, LI Ziqian, BAI Song, LUO Jun, QU Yan. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611-2620. |
| [9] | FAN Liying, FAN Tingting, TONG Zongjun, LIANG Liyun, ZHAO Zhiyong, CHEN Hui, ZHOU Changyan, ZHAO Xiaoyan. Effects on accumulation of cadmium and antioxidant system of different Morchella spp. under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2321-2331. |
| [10] | FANG Mingya, YU Hongwei, WU Yaxian, HAN Wenyan, LI Xin, LIU Haihe. Effects of exogenous epigallocatechin gallate on resistance of melon seedlings to powdery mildew [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 138-145. |
| [11] | DING Dongxia, LI Nenghui, LI Jing, TANG Chaonan, WANG Cheng, NIU Tianhang, YANG Yan, YANG Haitao, XIE Jianming. Effects of exogenous melatonin on chlorophyll fluorescence and antioxidant system of pepper (Capsicum annuum L.) under low temperature and low light stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1935-1944. |
| [12] | MA Zhonghua, WU Na, CHEN Juan, ZHAO Cong, YAN Chenghong, LIU Jili. Effects of salt stress and phosphorus supply on physiological characteristics of switchgrass seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1205-1216. |
| [13] | LI Liyan, TAN Haixia, LI Jing, WANG Lianlong, DU Yinghui, XU Zhiwen. Screening of salt-tolerant growth-promoting Bacillus strains and their effect on oat growth under salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1268-1276. |
| [14] | WANG Xiaoli, ZHAO Yingwei, KONG Xiaona, CAO Zilin. Isolation and identification of mycorrhizal fungi in rhizosphere and their effect on growth and photosynthetic characteristics of Eucalyptus globulus seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1015-1023. |
| [15] | DU Hong, LI Yupeng, CHENG Wen, XIAO Rongying, HU Peng. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||