Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (9): 1856-1865.DOI: 10.3969/j.issn.1004-1524.2022.09.05
• Animal Science • Previous Articles Next Articles
GUO Dandan(), LIU Feng, NIU Baolong, LOU Bao(
)
Received:
2022-01-04
Online:
2022-09-25
Published:
2022-09-30
Contact:
LOU Bao
CLC Number:
GUO Dandan, LIU Feng, NIU Baolong, LOU Bao. Genetic diversity of wild and cultured populations of little yellow croaker (Larimichthys polyactis) based on mitochondrial Cytb gene and D-loop region[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1856-1865.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.09.05
基因Gene | 群体Population | N | S | H | Hd | Pi | K | Tajima’s D | Fu and Li's |
---|---|---|---|---|---|---|---|---|---|
Cytb | 嵊泗SS | 30 | 40 | 26 | 0.984 | 0.004 85 | 4.078 | -2.195 69** | -2.835 55* |
三门口SMK | 30 | 42 | 27 | 0.993 | 0.005 53 | 4.646 | -2.115 48* | -3.012 68* | |
养殖YZ | 30 | 22 | 12 | 0.857 | 0.004 29 | 3.600 | -1.237 44 | -2.089 72 | |
总计Total | 90 | 74 | 62 | 0.980 | 0.005 07 | 4.258 | -2.355 00** | -4.211 26** | |
D-loop | 嵊泗SS | 30 | 44 | 27 | 0.993 | 0.011 74 | 7.301 | -1.377 92 | -1.206 13 |
三门口SMK | 30 | 50 | 30 | 1.000 | 0.012 67 | 7.832 | -1.414 35 | -0.971 75 | |
养殖YZ | 30 | 27 | 10 | 0.805 | 0.009 64 | 5.984 | -0.437 16 | -0.229 81 | |
总计Total | 90 | 66 | 65 | 0.978 | 0.011 52 | 7.073 | -1.572 08 | -2.012 02 |
Table 1 Genetic diversity parameters in the mtDNA Cytb gene and D-loop region sequence of three populations of L. polyactis
基因Gene | 群体Population | N | S | H | Hd | Pi | K | Tajima’s D | Fu and Li's |
---|---|---|---|---|---|---|---|---|---|
Cytb | 嵊泗SS | 30 | 40 | 26 | 0.984 | 0.004 85 | 4.078 | -2.195 69** | -2.835 55* |
三门口SMK | 30 | 42 | 27 | 0.993 | 0.005 53 | 4.646 | -2.115 48* | -3.012 68* | |
养殖YZ | 30 | 22 | 12 | 0.857 | 0.004 29 | 3.600 | -1.237 44 | -2.089 72 | |
总计Total | 90 | 74 | 62 | 0.980 | 0.005 07 | 4.258 | -2.355 00** | -4.211 26** | |
D-loop | 嵊泗SS | 30 | 44 | 27 | 0.993 | 0.011 74 | 7.301 | -1.377 92 | -1.206 13 |
三门口SMK | 30 | 50 | 30 | 1.000 | 0.012 67 | 7.832 | -1.414 35 | -0.971 75 | |
养殖YZ | 30 | 27 | 10 | 0.805 | 0.009 64 | 5.984 | -0.437 16 | -0.229 81 | |
总计Total | 90 | 66 | 65 | 0.978 | 0.011 52 | 7.073 | -1.572 08 | -2.012 02 |
Cytb | D-loop | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ |
Hap1 | 1 | 1 | 0 | Hap34 | 0 | 1 | 0 | Hap1 | 1 | 0 | 0 | Hap34 | 0 | 1 | 0 |
Hap2 | 1 | 0 | 0 | Hap35 | 0 | 1 | 0 | Hap2 | 2 | 0 | 0 | Hap35 | 0 | 1 | 0 |
Hap3 | 2 | 0 | 0 | Hap36 | 0 | 1 | 0 | Hap3 | 1 | 0 | 0 | Hap36 | 0 | 1 | 0 |
Hap4 | 1 | 0 | 0 | Hap37 | 0 | 2 | 0 | Hap4 | 1 | 1 | 0 | Hap37 | 0 | 1 | 0 |
Hap5 | 1 | 0 | 0 | Hap38 | 0 | 1 | 0 | Hap5 | 2 | 0 | 0 | Hap38 | 0 | 1 | 0 |
Hap6 | 1 | 0 | 0 | Hap39 | 0 | 1 | 0 | Hap6 | 2 | 0 | 0 | Hap39 | 0 | 1 | 0 |
Hap7 | 1 | 0 | 0 | Hap40 | 0 | 1 | 0 | Hap7 | 1 | 0 | 0 | Hap40 | 0 | 1 | 0 |
Hap8 | 1 | 0 | 0 | Hap41 | 0 | 1 | 1 | Hap8 | 1 | 0 | 0 | Hap41 | 0 | 1 | 0 |
Hap9 | 1 | 0 | 0 | Hap42 | 0 | 1 | 0 | Hap9 | 1 | 0 | 0 | Hap42 | 0 | 1 | 0 |
Hap10 | 1 | 0 | 0 | Hap43 | 0 | 1 | 0 | Hap10 | 1 | 0 | 0 | Hap43 | 0 | 1 | 0 |
Hap11 | 1 | 0 | 0 | Hap44 | 0 | 1 | 0 | Hap11 | 1 | 0 | 0 | Hap44 | 0 | 1 | 0 |
Hap12 | 1 | 0 | 0 | Hap45 | 0 | 1 | 0 | Hap12 | 1 | 0 | 0 | Hap45 | 0 | 1 | 0 |
Hap13 | 4 | 2 | 0 | Hap46 | 0 | 1 | 0 | Hap13 | 1 | 0 | 0 | Hap46 | 0 | 1 | 0 |
Hap14 | 1 | 0 | 0 | Hap47 | 0 | 1 | 0 | Hap14 | 1 | 0 | 0 | Hap47 | 0 | 1 | 0 |
Hap15 | 1 | 0 | 0 | Hap48 | 0 | 1 | 0 | Hap15 | 1 | 0 | 0 | Hap48 | 0 | 1 | 0 |
Hap16 | 1 | 0 | 0 | Hap49 | 0 | 1 | 0 | Hap16 | 1 | 0 | 0 | Hap49 | 0 | 1 | 0 |
Hap17 | 1 | 0 | 0 | Hap50 | 0 | 1 | 0 | Hap17 | 1 | 0 | 0 | Hap50 | 0 | 1 | 0 |
Hap18 | 1 | 0 | 0 | Hap51 | 0 | 1 | 0 | Hap18 | 1 | 0 | 0 | Hap51 | 0 | 1 | 0 |
Hap19 | 1 | 0 | 0 | Hap52 | 0 | 0 | 1 | Hap19 | 1 | 0 | 0 | Hap52 | 0 | 1 | 0 |
Hap20 | 1 | 0 | 0 | Hap53 | 0 | 0 | 10 | Hap20 | 1 | 0 | 0 | Hap53 | 0 | 1 | 0 |
Hap21 | 1 | 0 | 0 | Hap54 | 0 | 0 | 3 | Hap21 | 1 | 0 | 0 | Hap54 | 0 | 1 | 0 |
Hap22 | 1 | 0 | 0 | Hap55 | 0 | 0 | 1 | Hap22 | 1 | 0 | 0 | Hap55 | 0 | 1 | 0 |
Hap23 | 1 | 0 | 0 | Hap56 | 0 | 0 | 5 | Hap23 | 2 | 0 | 0 | Hap56 | 0 | 0 | 1 |
Hap24 | 1 | 0 | 0 | Hap57 | 0 | 0 | 1 | Hap24 | 1 | 0 | 0 | Hap57 | 0 | 0 | 12 |
Hap25 | 1 | 0 | 0 | Hap58 | 0 | 0 | 1 | Hap25 | 1 | 0 | 0 | Hap58 | 0 | 0 | 4 |
Hap26 | 1 | 0 | 0 | Hap59 | 0 | 0 | 2 | Hap26 | 1 | 0 | 0 | Hap59 | 0 | 0 | 1 |
Hap27 | 0 | 2 | 0 | Hap60 | 0 | 0 | 1 | Hap27 | 0 | 1 | 0 | Hap60 | 0 | 0 | 5 |
Hap28 | 0 | 1 | 0 | Hap61 | 0 | 0 | 3 | Hap28 | 0 | 1 | 0 | Hap61 | 0 | 0 | 1 |
Hap29 | 0 | 1 | 0 | Hap62 | 0 | 0 | 1 | Hap29 | 0 | 1 | 0 | Hap62 | 0 | 0 | 1 |
Hap30 | 0 | 1 | 0 | Hap30 | 0 | 1 | 0 | Hap63 | 0 | 0 | 3 | ||||
Hap31 | 0 | 1 | 0 | Hap31 | 0 | 1 | 0 | Hap64 | 0 | 0 | 1 | ||||
Hap32 | 0 | 1 | 0 | Hap32 | 0 | 1 | 0 | Hap65 | 0 | 0 | 1 | ||||
Hap33 | 0 | 1 | 0 | Hap33 | 0 | 1 | 0 |
Table 2 Population distribution of Cytb gene and D-loop sequence haplotypes
Cytb | D-loop | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ | 单倍型 Haplotype | 嵊泗 SS | 三门口 SMK | 养殖 YZ |
Hap1 | 1 | 1 | 0 | Hap34 | 0 | 1 | 0 | Hap1 | 1 | 0 | 0 | Hap34 | 0 | 1 | 0 |
Hap2 | 1 | 0 | 0 | Hap35 | 0 | 1 | 0 | Hap2 | 2 | 0 | 0 | Hap35 | 0 | 1 | 0 |
Hap3 | 2 | 0 | 0 | Hap36 | 0 | 1 | 0 | Hap3 | 1 | 0 | 0 | Hap36 | 0 | 1 | 0 |
Hap4 | 1 | 0 | 0 | Hap37 | 0 | 2 | 0 | Hap4 | 1 | 1 | 0 | Hap37 | 0 | 1 | 0 |
Hap5 | 1 | 0 | 0 | Hap38 | 0 | 1 | 0 | Hap5 | 2 | 0 | 0 | Hap38 | 0 | 1 | 0 |
Hap6 | 1 | 0 | 0 | Hap39 | 0 | 1 | 0 | Hap6 | 2 | 0 | 0 | Hap39 | 0 | 1 | 0 |
Hap7 | 1 | 0 | 0 | Hap40 | 0 | 1 | 0 | Hap7 | 1 | 0 | 0 | Hap40 | 0 | 1 | 0 |
Hap8 | 1 | 0 | 0 | Hap41 | 0 | 1 | 1 | Hap8 | 1 | 0 | 0 | Hap41 | 0 | 1 | 0 |
Hap9 | 1 | 0 | 0 | Hap42 | 0 | 1 | 0 | Hap9 | 1 | 0 | 0 | Hap42 | 0 | 1 | 0 |
Hap10 | 1 | 0 | 0 | Hap43 | 0 | 1 | 0 | Hap10 | 1 | 0 | 0 | Hap43 | 0 | 1 | 0 |
Hap11 | 1 | 0 | 0 | Hap44 | 0 | 1 | 0 | Hap11 | 1 | 0 | 0 | Hap44 | 0 | 1 | 0 |
Hap12 | 1 | 0 | 0 | Hap45 | 0 | 1 | 0 | Hap12 | 1 | 0 | 0 | Hap45 | 0 | 1 | 0 |
Hap13 | 4 | 2 | 0 | Hap46 | 0 | 1 | 0 | Hap13 | 1 | 0 | 0 | Hap46 | 0 | 1 | 0 |
Hap14 | 1 | 0 | 0 | Hap47 | 0 | 1 | 0 | Hap14 | 1 | 0 | 0 | Hap47 | 0 | 1 | 0 |
Hap15 | 1 | 0 | 0 | Hap48 | 0 | 1 | 0 | Hap15 | 1 | 0 | 0 | Hap48 | 0 | 1 | 0 |
Hap16 | 1 | 0 | 0 | Hap49 | 0 | 1 | 0 | Hap16 | 1 | 0 | 0 | Hap49 | 0 | 1 | 0 |
Hap17 | 1 | 0 | 0 | Hap50 | 0 | 1 | 0 | Hap17 | 1 | 0 | 0 | Hap50 | 0 | 1 | 0 |
Hap18 | 1 | 0 | 0 | Hap51 | 0 | 1 | 0 | Hap18 | 1 | 0 | 0 | Hap51 | 0 | 1 | 0 |
Hap19 | 1 | 0 | 0 | Hap52 | 0 | 0 | 1 | Hap19 | 1 | 0 | 0 | Hap52 | 0 | 1 | 0 |
Hap20 | 1 | 0 | 0 | Hap53 | 0 | 0 | 10 | Hap20 | 1 | 0 | 0 | Hap53 | 0 | 1 | 0 |
Hap21 | 1 | 0 | 0 | Hap54 | 0 | 0 | 3 | Hap21 | 1 | 0 | 0 | Hap54 | 0 | 1 | 0 |
Hap22 | 1 | 0 | 0 | Hap55 | 0 | 0 | 1 | Hap22 | 1 | 0 | 0 | Hap55 | 0 | 1 | 0 |
Hap23 | 1 | 0 | 0 | Hap56 | 0 | 0 | 5 | Hap23 | 2 | 0 | 0 | Hap56 | 0 | 0 | 1 |
Hap24 | 1 | 0 | 0 | Hap57 | 0 | 0 | 1 | Hap24 | 1 | 0 | 0 | Hap57 | 0 | 0 | 12 |
Hap25 | 1 | 0 | 0 | Hap58 | 0 | 0 | 1 | Hap25 | 1 | 0 | 0 | Hap58 | 0 | 0 | 4 |
Hap26 | 1 | 0 | 0 | Hap59 | 0 | 0 | 2 | Hap26 | 1 | 0 | 0 | Hap59 | 0 | 0 | 1 |
Hap27 | 0 | 2 | 0 | Hap60 | 0 | 0 | 1 | Hap27 | 0 | 1 | 0 | Hap60 | 0 | 0 | 5 |
Hap28 | 0 | 1 | 0 | Hap61 | 0 | 0 | 3 | Hap28 | 0 | 1 | 0 | Hap61 | 0 | 0 | 1 |
Hap29 | 0 | 1 | 0 | Hap62 | 0 | 0 | 1 | Hap29 | 0 | 1 | 0 | Hap62 | 0 | 0 | 1 |
Hap30 | 0 | 1 | 0 | Hap30 | 0 | 1 | 0 | Hap63 | 0 | 0 | 3 | ||||
Hap31 | 0 | 1 | 0 | Hap31 | 0 | 1 | 0 | Hap64 | 0 | 0 | 1 | ||||
Hap32 | 0 | 1 | 0 | Hap32 | 0 | 1 | 0 | Hap65 | 0 | 0 | 1 | ||||
Hap33 | 0 | 1 | 0 | Hap33 | 0 | 1 | 0 |
Fig.1 Nucleotide mismatch analysis of Cytb and D-loop A, Cytb sequence of SS; B, Cytb sequence of SMK; C, Cytb sequence of YZ; D, D-loop sequence of SS; E, D-loop sequence of SMK; F, D-loop sequence of YZ.
基因 gene | 群体 population | 嵊泗 SS | 三门口 SMK | 养殖 YZ |
---|---|---|---|---|
Cytb | 嵊泗SS | 0.005 | 0.012 11 | 0.063 39 |
三门口SMK | 0.005 | 0.006 | 0.078 78 | |
养殖YZ | 0.005 | 0.005 | 0.004 | |
D-loop | 嵊泗SS | 0.011 | -0.002 30 | 0.081 04 |
三门口SMK | 0.012 | 0.013 | 0.050 51 | |
养殖YZ | 0.012 | 0.012 | 0.010 |
Table 3 Genetic differentiation and genetic distances
基因 gene | 群体 population | 嵊泗 SS | 三门口 SMK | 养殖 YZ |
---|---|---|---|---|
Cytb | 嵊泗SS | 0.005 | 0.012 11 | 0.063 39 |
三门口SMK | 0.005 | 0.006 | 0.078 78 | |
养殖YZ | 0.005 | 0.005 | 0.004 | |
D-loop | 嵊泗SS | 0.011 | -0.002 30 | 0.081 04 |
三门口SMK | 0.012 | 0.013 | 0.050 51 | |
养殖YZ | 0.012 | 0.012 | 0.010 |
基因 Gene | 变异来源 Source of variation | 自由度 Degree of freedom | 方差和 Sum of squares | 变异组分 Variance components | 变异贡献率 Percentage of variation/% |
---|---|---|---|---|---|
Cytb | 群体间Among populations | 2 | 10.767 | 0.110 98 Va | 5.13 |
群体内Within populations | 87 | 178.700 | 2.054 02 Vb | 94.87 | |
总计Total | 89 | 189.467 | 2.165 00 | ||
D-loop | 群体间Among populations | 2 | 16.033 | 0.152 77 Va | 4.26 |
群体内Within populations | 87 | 298.733 | 3.433 72 Vb | 95.74 | |
总计Total | 89 | 314.767 | 3.586 48 |
Table 4 Analysis of molecular variances (AMOVA)
基因 Gene | 变异来源 Source of variation | 自由度 Degree of freedom | 方差和 Sum of squares | 变异组分 Variance components | 变异贡献率 Percentage of variation/% |
---|---|---|---|---|---|
Cytb | 群体间Among populations | 2 | 10.767 | 0.110 98 Va | 5.13 |
群体内Within populations | 87 | 178.700 | 2.054 02 Vb | 94.87 | |
总计Total | 89 | 189.467 | 2.165 00 | ||
D-loop | 群体间Among populations | 2 | 16.033 | 0.152 77 Va | 4.26 |
群体内Within populations | 87 | 298.733 | 3.433 72 Vb | 95.74 | |
总计Total | 89 | 314.767 | 3.586 48 |
[1] | 倪勇, 伍汉霖. 江苏鱼类志[M]. 北京: 中国农业出版社, 2006. |
[2] | 高春霞, 麻秋云, 田思泉, 等. 浙江南部近海小黄鱼生长、死亡和单位补充量渔获量[J]. 中国水产科学, 2019, 26(5): 925-937. |
GAO C X, MA Q Y, TIAN S Q, et al. Growth, mortality and yield per recruitment of small yellow croaker in offshore waters of southern Zhejiang[J]. Journal of Fishery Sciences of China, 2019, 26(5): 925-937. (in Chinese with English abstract) | |
[3] | 金显仕. 黄海小黄鱼(Pseudosciaena polyactis)生态和种群动态的研究[J]. 中国水产科学, 1996, 3(1): 32-46. |
JIN X S. Ecology and population dynamics of small yellow croaker (Pseudosciaena polyactis Bleeker) in the Yellow Sea[J]. Journal of Fishery Sciences of China, 1996, 3(1): 32-46. (in Chinese with English abstract) | |
[4] | 楼宝, 詹炜, 陈睿毅, 等. 小黄鱼全人工繁育技术研究[J]. 浙江海洋学院学报(自然科学版), 2016, 35(5): 361-365. |
LOU B, ZHAN W, CHEN R Y, et al. Studies on techniques of the artificial breeding of Larimichthys polyactis[J]. Journal of Zhejiang Ocean University (Natural Science), 2016, 35(5): 361-365. (in Chinese with English abstract) | |
[5] |
AVISE J C, ARNOLD J, BALL R M, et al. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics[J]. Annual Review of Ecology and Systematics, 1987, 18: 489-522.
DOI URL |
[6] |
LEE W J, KOCHER T D. Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization[J]. Genetics, 1995, 139(2): 873-887.
DOI PMID |
[7] | 颉晓勇, 李思发. 罗非鱼选育群体Cytb与D-loop序列变异信息对比分析[J]. 基因组学与应用生物学, 2014, 33(5): 982-985. |
XIE X Y, LI S F. Comparison of base sequence diversity of Cytb and D-loop gene of Nile tilapia[J]. Genomics and Applied Biology, 2014, 33(5): 982-985. (in Chinese with English abstract) | |
[8] | 程磊, 何苹萍, 韦嫔媛, 等. 基于线粒体D-loop区和Cytb基因分析广西禾花鲤三个群体遗传结构[J]. 水生生物学报, 2021, 45(1): 54-59. |
CHENG L, HE P P, WEI P Y, et al. Genetic structure of three populations of rice flower carp (Cyprinus carpio) in Guangxi Zhuang autonomous region based on mitochondrial D-loop region and Cytb gene[J]. Acta Hydrobiologica Sinica, 2021, 45(1): 54-59. (in Chinese with English abstract) | |
[9] | 郑文娟, 杜一超, 林洁, 等. 基于线粒体DNAD-loop区部分序列分析舟山海域带鱼种群遗传结构[J]. 水生生物学报, 2015, 39(2): 408-413. |
ZHENG W J, DU Y C, LIN J, et al. Genetic diversity analysis of Trichiurus lepturus in Zhoushan based on mitochondrial DNA D-loop region partial sequences[J]. Acta Hydrobiologica Sinica, 2015, 39(2): 408-413. (in Chinese) | |
[10] | 何震晗, 肖珊, 王韶韶, 等. 黄鳍棘鲷线粒体D-loop序列的遗传结构[J]. 水产学报, 2021, 45(3): 345-356. |
HE Z H, XIAO S, WANG S S, et al. Genetic structure of D-loop sequence in Acanthopagrus latus[J]. Journal of Fisheries of China, 2021, 45(3): 345-356. (in Chinese with English abstract) | |
[11] | 陈浩, 杨银盆, 张慧, 等. 三个地理种群的董氏须鳅遗传多样性及种群历史动态[J]. 水生生物学报, 2019, 43(5): 931-938. |
CHEN H, YANG Y P, ZHANG H, et al. Genetic diversity and population demographic history of three populations of Barbatula toni(Cypriniformes, Nemacheilinae) from North China[J]. Acta Hydrobiologica Sinica, 2019, 43(5): 931-938. (in Chinese with English abstract) | |
[12] | 吴仁协, 柳淑芳, 庄志猛, 等. 基于线粒体Cytb基因的黄海、东海小黄鱼(Larimichthys polyactis)群体遗传结构[J]. 自然科学进展, 2009, 19(9): 924-930. |
WU R X, LIU S F, ZHUANG Z M, et al. Genetic structure of Larimichthys polyactis population from the Yellow Sea and East China Sea based on mitochondrial Cytb gene[J]. Progress in Natural Science, 2009, 19(9): 924-930. (in Chinese) | |
[13] | 彭博, 章群, 赵爽, 等. 中国近海小黄鱼遗传变异的细胞色素b序列分析[J]. 广东农业科学, 2010, 37(2): 131-135. |
PENG B, ZHANG Q, ZHAO S, et al. Genetic diversity analysis of Larimichthys polyactis in coastal waters of China based on Cytochrome b gene[J]. Guangdong Agricultural Sciences, 2010, 37(2): 131-135. (in Chinese with English abstract) | |
[14] | 郑文娟, 来育洪, 尤昕煜, 等. 舟山小黄鱼线粒体DNA D-loop区序列变异的遗传多样性分析[J]. 动物学研究, 2012, 33(3): 329-336. |
ZHENG W J, LAI Y H, YOU X Y, et al. Genetic diversity of Pseudosciaena polyactis in Zhoushan based on mitochondrial DNA D-loop region sequences[J]. Zoological Research, 2012, 33(3): 329-336. (in Chinese with English abstract)
DOI URL |
|
[15] | 黄昊. 小黄鱼五个地理群体形态变异和遗传多样性研究[D]. 南京: 南京农业大学, 2011. |
HUANG H. Morphological variation and genetic diversity of five populations of small yellow croaker (Larimichthys polyactis)[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese with English abstract) | |
[16] | SAMBROOK H. Molecular cloning: a laboratory manual.[M]. New York: Cold Spring Harbor, 1989. |
[17] |
JEON Y S, LEE K, PARK S C, et al. EzEditor: a versatile sequence alignment editor for both rRNA-and protein-coding genes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2): 689-691.
DOI URL |
[18] |
THOMPSON J D, GIBSON T J, PLEWNIAK F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24): 4876-4882.
PMID |
[19] |
TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
DOI PMID |
[20] |
ROZAS J, SÁNCHEZ-DELBARRIO J C, MESSEGUER X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 2003, 19(18): 2496-2497.
PMID |
[21] |
EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567.
DOI PMID |
[22] | BROWN W M. The mitochondrial genome of animals[M]// MACLNTYRE R J. Molecular evolutionary genetics. Boston, MA: Springer US, 1985: 95-130. |
[23] | 杜景豪, 王伟峰, 陈秀荔, 等. 基于Cytb和D-loop的日本囊对虾遗传多样性分析[J]. 水产科学, 2020, 39(4): 524-531. |
DU J H, WANG W F, CHEN X L, et al. Analysis of genetic diversity of kuruma prawn Marsupenaeus japonicus based on mitochondrial Cytb and D-loop sequences[J]. Fisheries Science, 2020, 39(4): 524-531. (in Chinese with English abstract) | |
[24] | 张艳萍, 王太, 杜岩岩, 等. 秦岭细鳞鲑人工繁育群体与野生群体遗传变异分析[J]. 水生生物学报, 2014, 38(5): 828-833. |
ZHANG Y P, WANG T, DU Y Y, et al. Analysis of the genetic diversity of cultured and wild Brachymystax lenok tsinlingensis populations based on mtDNA D-loop and Cyt b[J]. Acta Hydrobiologica Sinica, 2014, 38(5): 828-833. (in Chinese with English abstract) | |
[25] |
GRANT W, BOWEN B. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426.
DOI URL |
[26] |
LEE W J, CONROY J, HOWELL W H, et al. Structure and evolution of teleost mitochondrial control regions[J]. Journal of Molecular Evolution, 1995, 41(1): 54-66.
PMID |
[27] |
BALLOUX F, LUGON-MOULIN N. The estimation of population differentiation with microsatellite markers[J]. Molecular Ecology, 2002, 11(2): 155-165.
PMID |
[28] |
GRANT W, BOWEN B. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426.
DOI URL |
[29] | 刘伟, 代应贵, 袁振兴, 等. 基于线粒体DNA D-loop的都柳江鲇形目两种经济鱼类种群遗传多样性研究[J]. 水产科学, 2016, 35(4): 386-392. |
LIU W, DAI Y G, YUAN Z X, et al. Genetic diversity of 2 economically important fishes in Siluriformes from Duliu river based on mtDNA D-loop sequences[J]. Fisheries Science, 2016, 35(4): 386-392. (in Chinese with English abstract) |
[1] | LIU Yihan, MOU Qingshan, CHEN Shanyu, RUAN Guanhai, HU Jin, GUAN Yajing. Establishment of DNA fingerprint for sunflower by SSR-HRM technique [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 678-686. |
[2] | PEI Yun, XU Xiuhong, LU Jinbiao, CHEN Amin, ZHANG Wanping. Genetic diversity analysis of 151 cherry tomato resources in Guizhou Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 310-316. |
[3] | WANG Zhiqi, SUN Jian, LIANG Junchao, ZHAO Yunyan, YAN Tingxian, YAN Xiaowen, WEI Wenliang, LE Meiwang. Study on genetic diversity of sesame germplasm in Jiangxi Province based on molecular markers [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1565-1580. |
[4] | MA Jie, QU Wen, CHEN Chunyan, WANG Lei, MA Jun, LIU Zhenshan, MA Wei, ZHOU Ping, HE Yuankuan, SUN Bo. Development of SSR markers based on transcriptome sequencing and genetic diversity analysis of Nainaiqingcai leaf mustard [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1640-1649. |
[5] | LIU Shili, BIAN Yuling, JIA Yongyi, CHI Meili, LI Fei, ZHENG Jianbo, CHENG Shun, GU Zhimin. Genetics analysis based on mitochondrial COⅠ sequences in five cultured populations of red-claw crayfish (Cherax quadricarinatus) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1385-1392. |
[6] | ZHANG Jingzhen, WANG Lianjun, LEI Jian, CHAI Shasha, YANG Xinsun, ZHANG Wenying. Genetic diversity analysis and construction of DNA fingerprint of yam (Dioscorea oppositeac Thunb.) germplasm by cpSSR marker [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1222-1233. |
[7] | AN Hongwei, SONG Qinfei, NIU Suzhen. Study on genetic diversity,population structure and genetic differentiation of tea germplasm in Guizhou [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1234-1243. |
[8] | HONG Xia, ZHAO Yongbin, QU Weidong, CHEN Yinlong, QIU Liping, WANG Jiaoyang. Comparative analysis on genetic diversity of Colocasia esculenta germplasm in Zhejiang Province based on phenotype and simple sequence repeats markers [J]. , 2020, 32(9): 1544-1554. |
[9] | YAN Fulin, WANG Bo, WEN Di, XU Wenfen, SUN Qingwen, WEI Shenghua. Genetic diversity analysis of Sabia parviflora based on chloroplast gene psbA-trnH sequence [J]. , 2020, 32(5): 810-815. |
[10] | GUO Qinwei, ZHANG Ting, LIU Huiqin, ZHANG Xinhui, LI Chaosen, XIANG Xiaomin, ZHAO Dongfeng, WAN Hongjian. Evaluation of genetic diversity in Luffa germplasm resources in China based on ISSR molecular marker [J]. , 2020, 32(4): 616-623. |
[11] | ZHAO Xingkai, SHI Haichun, YU Xuejie, YANG Shu, ZHAO Changyun, XIA Wei, KE Yongpei. Breeding potential analyses of 13 new inbred lines in maize [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2119-2127. |
[12] | HU Qianwen, XU Yanhao, WANG Rong, ZHANG Wenying, HUA Wei, LYU Chao. Association analysis of four spike traits in barley [J]. , 2020, 32(11): 1941-1953. |
[13] | YIN Xiaoxiao, LI Yanfang, GU Jiang, LIAO Yan, XIE Yue, YANG Guangyou, GU Xiaobin. Genetic diversity analysis of Psoroptes ovis var. cuniculi by full-length of mitochondrial ATP6 gene in China [J]. , 2019, 31(8): 1231-1238. |
[14] | TANG Shoujie, BI Xiang, ZHANG Feiming, ZHANG Youliang. Genetic diversity analysis and RAPD identification of three successive generations of meio-gynogenetic population in Megalobrama amblycephala [J]. , 2019, 31(8): 1257-1271. |
[15] | YUE Gaohong, PAN Binrong, LIU Yongan, MEI Xixue, XU Likui, ZHANG Zongchen, ZHOU Zhihui. Genetic diversity analysis of sweet maize inbred lines in Southern Zhejiang by SSR markers [J]. , 2019, 31(7): 1029-1036. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||