Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (12): 2901-2913.DOI: 10.3969/j.issn.1004-1524.20221841
• Environmental Science • Previous Articles Next Articles
HAO Liuliu1,2(), DAI Lili2, PENG Liang2, CHEN Siyuan2, TAO Ling2, LI Gu2, ZHANG Hui2,*(
)
Received:
2022-12-29
Online:
2023-12-25
Published:
2023-12-27
CLC Number:
HAO Liuliu, DAI Lili, PENG Liang, CHEN Siyuan, TAO Ling, LI Gu, ZHANG Hui. Active organic carbon, microbial community structure and their relationship in rice rhizosphere soil of rice-crayfish co-culture systems[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2901-2913.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221841
处理 Treatment | pH | 全氮 Total nitrogen/ (g·kg-1) | 全磷 Total phosphorus/ (g·kg-1) |
---|---|---|---|
CR | 7.93±0.06 | 2.64±0.25 | 0.97±0.14 |
MR | 7.00±0.39 | 1.73±0.54 | 0.75±0.22 |
Table 1 Physiochemical properties of the surface soil (0-20 cm) before the experiment
处理 Treatment | pH | 全氮 Total nitrogen/ (g·kg-1) | 全磷 Total phosphorus/ (g·kg-1) |
---|---|---|---|
CR | 7.93±0.06 | 2.64±0.25 | 0.97±0.14 |
MR | 7.00±0.39 | 1.73±0.54 | 0.75±0.22 |
Fig.1 Total organic carbon (TOC) and particulate organic carbon (POC) contents in rhizosphere soil under treatments at varied growth stages Bars marked without the same letters indicate significant difference at P<0.05. The same as below.
生育期 Growth stage | 处理 Treatment | OTU数量 OTU quantity | Chao1指数 Chao1 index | ACE指数 ACE index | 香农指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|---|---|
分蘖期 | CR | 2 108±29 | 2 209±28 | 2 180±28 | 9.65±0.14 | 0.997±0.001 |
Tillering stage | MR | 2 124±104 | 2 252±82 | 2 221±86 | 9.89±0.12 | 0.998±0.001 |
抽穗期 | CR | 2 030±51 | 2 173±17 | 2 134±22 | 9.51±0.10 | 0.996±0.001 |
Heading stage | MR | 2 044±153 | 2 193±131 | 2 165±128 | 9.67±0.20 | 0.998±0.001 |
成熟期 | CR | 2 059±8 | 2 202±18 | 2 172±14 | 9.75±0.02 | 0.997±0.001 |
Maturity stage | MR | 1 985±251 | 2 151±196 | 2 109±217 | 9.47±0.51 | 0.997±0.002 |
Table 2 Rhizosphere microbial diversity indexes under treatments at varied growth stages
生育期 Growth stage | 处理 Treatment | OTU数量 OTU quantity | Chao1指数 Chao1 index | ACE指数 ACE index | 香农指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|---|---|
分蘖期 | CR | 2 108±29 | 2 209±28 | 2 180±28 | 9.65±0.14 | 0.997±0.001 |
Tillering stage | MR | 2 124±104 | 2 252±82 | 2 221±86 | 9.89±0.12 | 0.998±0.001 |
抽穗期 | CR | 2 030±51 | 2 173±17 | 2 134±22 | 9.51±0.10 | 0.996±0.001 |
Heading stage | MR | 2 044±153 | 2 193±131 | 2 165±128 | 9.67±0.20 | 0.998±0.001 |
成熟期 | CR | 2 059±8 | 2 202±18 | 2 172±14 | 9.75±0.02 | 0.997±0.001 |
Maturity stage | MR | 1 985±251 | 2 151±196 | 2 109±217 | 9.47±0.51 | 0.997±0.002 |
Fig.6 Principle component analysis (PCA) of microorganisms in rhizosphere soil under treatments at varied growth stages PC1, Principle component 1; PC2, Principle component 2. CR07, CR09, CR10 represent samples collected at tillering stage, heading stage and maturity stage under CR treatment, respectively. MR07, MR09, MR10 represent samples collected at tillering stage, heading stage and maturity stage under MR treatment, respectively.The same as below.
代谢通路 Metabolism pathway | 分蘖期Tillering stage | 抽穗期Heading stage | 成熟期Maturity stage | |||
---|---|---|---|---|---|---|
CR | MR | CR | MR | CR | MR | |
氧化磷酸化Oxidative phosphorylation | 1.47±0.01 | 1.46±0.01 | 1.48±0.02 | 1.48±0.01 | 1.47±0.01 | 1.48±0.02 |
原核生物的碳固定途径 | 1.08±0.01 a | 1.06±0.01 b | 1.08±0.01 | 1.07±0.01 | 1.09±0.01 | 1.06±0.03 |
Carbon fixation pathways in prokaryotes | ||||||
丙酮酸代谢Pyruvate metabolism | 1.03±0.01 a | 1.03±0.01 b | 1.03±0.00 | 1.02±0.01 | 1.04±0.01 | 1.02±0.01 |
氨基糖和核苷酸糖代谢 | 0.94±0.01 | 0.96±0.01 | 0.95±0.01 | 0.95±0.01 | 0.94±0.01 | 0.94±0.01 |
Amino sugar and nucleotide sugar metabolism | ||||||
糖酵解/糖异生Glycolysis/gluconeogenesis | 0.93±0.01 | 0.94±0.01 | 0.94±0.01 | 0.94±0.01 | 0.94±0.01 | 0.93±0.01 |
乙醛酸和二羧酸代谢 | 0.93±0.01 | 0.93±0.01 | 0.93±0.01 | 0.95±0.01 | 0.94±0.01 | 0.95±0.01 |
Glyoxylate and dicarboxylate metabolism | ||||||
半胱氨酸和蛋氨酸代谢 | 0.84±0.01 | 0.84±0.01 | 0.84±0.01 | 0.83±0.01 | 0.83±0.01 | 0.83±0.01 |
Cysteine and methionine metabolism | ||||||
甘氨酸、丝氨酸和苏氨酸代谢 | 0.81±0.01 | 0.81±0.01 | 0.81±0.01 | 0.82±0.01 | 0.81±0.01 | 0.82±0.01 |
Glycine, serine and threonine metabolism | ||||||
柠檬酸盐循环(TCA循环)Citrate cycle (TCA cycle) | 0.79±0.01 | 0.77±0.01 | 0.79±0.01 | 0.78±0.01 | 0.79±0.01 | 0.77±0.02 |
苯丙氨酸、酪氨酸和色氨酸的生物合成 | 0.78±0.01 | 0.76±0.01 | 0.77±0.01 | 0.76±0.01 | 0.78±0.01 | 0.76±0.02 |
Phenylalanine, tyrosine and tryptophan biosynthesis | ||||||
丙氨酸、天冬氨酸和谷氨酸代谢 | 0.75±0.01 | 0.75±0.01 | 0.75±0.01 | 0.75±0.01 | 0.75±0.01 | 0.74±0.01 |
Alanine, aspartate and glutamate metabolism | ||||||
丙酸代谢Propanoate metabolism | 0.69±0.01 | 0.70±0.01 | 0.70±0.01 | 0.71±0.01 | 0.70±0.01 b | 0.71±0.01 a |
丁酸代谢Butanoate metabolism | 0.68±0.01 | 0.68±0.01 | 0.69±0.01 | 0.69±0.01 | 0.69±0.01 | 0.69±0.01 |
甲烷代谢Methane metabolism | 0.67±0.01 a | 0.65±0.01 b | 0.67±0.01 | 0.64±0.01 | 0.66±0.01 | 0.63±0.02 |
卟啉和叶绿素代谢 | 0.64±0.01 | 0.64±0.01 | 0.64±0.01 | 0.62±0.01 | 0.63±0.01 | 0.63±0.01 |
Porphyrin and chlorophyll metabolism | ||||||
一个叶酸碳库One carbon pool by folate | 0.63±0.01 | 0.62±0.01 | 0.63±0.01 | 0.62±0.01 | 0.63±0.01 | 0.62±0.01 |
磷酸戊糖途径Pentose phosphate pathway | 0.59±0.01 b | 0.62±0.01 a | 0.60±0.01 b | 0.61±0.01 a | 0.60±0.01 | 0.61±0.01 |
缬氨酸、亮氨酸和异亮氨酸降解 | 0.56±0.01 | 0.58±0.01 | 0.57±0.01 | 0.61±0.01 | 0.57±0.01 | 0.61±0.02 |
Valine, leucine and isoleucine degradation | ||||||
淀粉和蔗糖代谢Starch and sucrose metabolism | 0.52±0.01 | 0.55±0.01 | 0.53±0.01 | 0.54±0.01 | 0.53±0.01 | 0.55±0.03 |
泛酸和辅酶A生物合成 | 0.56±0.01 a | 0.55±0.01 b | 0.56±0.01 | 0.55±0.01 | 0.57±0.01 | 0.55±0.01 |
Pantothenate and coenzyme A (CoA) biosynthesis |
Table 3 Abundance of KEGG metabolism pathways of rhizosphere microbes under treatments at varied growth stages %
代谢通路 Metabolism pathway | 分蘖期Tillering stage | 抽穗期Heading stage | 成熟期Maturity stage | |||
---|---|---|---|---|---|---|
CR | MR | CR | MR | CR | MR | |
氧化磷酸化Oxidative phosphorylation | 1.47±0.01 | 1.46±0.01 | 1.48±0.02 | 1.48±0.01 | 1.47±0.01 | 1.48±0.02 |
原核生物的碳固定途径 | 1.08±0.01 a | 1.06±0.01 b | 1.08±0.01 | 1.07±0.01 | 1.09±0.01 | 1.06±0.03 |
Carbon fixation pathways in prokaryotes | ||||||
丙酮酸代谢Pyruvate metabolism | 1.03±0.01 a | 1.03±0.01 b | 1.03±0.00 | 1.02±0.01 | 1.04±0.01 | 1.02±0.01 |
氨基糖和核苷酸糖代谢 | 0.94±0.01 | 0.96±0.01 | 0.95±0.01 | 0.95±0.01 | 0.94±0.01 | 0.94±0.01 |
Amino sugar and nucleotide sugar metabolism | ||||||
糖酵解/糖异生Glycolysis/gluconeogenesis | 0.93±0.01 | 0.94±0.01 | 0.94±0.01 | 0.94±0.01 | 0.94±0.01 | 0.93±0.01 |
乙醛酸和二羧酸代谢 | 0.93±0.01 | 0.93±0.01 | 0.93±0.01 | 0.95±0.01 | 0.94±0.01 | 0.95±0.01 |
Glyoxylate and dicarboxylate metabolism | ||||||
半胱氨酸和蛋氨酸代谢 | 0.84±0.01 | 0.84±0.01 | 0.84±0.01 | 0.83±0.01 | 0.83±0.01 | 0.83±0.01 |
Cysteine and methionine metabolism | ||||||
甘氨酸、丝氨酸和苏氨酸代谢 | 0.81±0.01 | 0.81±0.01 | 0.81±0.01 | 0.82±0.01 | 0.81±0.01 | 0.82±0.01 |
Glycine, serine and threonine metabolism | ||||||
柠檬酸盐循环(TCA循环)Citrate cycle (TCA cycle) | 0.79±0.01 | 0.77±0.01 | 0.79±0.01 | 0.78±0.01 | 0.79±0.01 | 0.77±0.02 |
苯丙氨酸、酪氨酸和色氨酸的生物合成 | 0.78±0.01 | 0.76±0.01 | 0.77±0.01 | 0.76±0.01 | 0.78±0.01 | 0.76±0.02 |
Phenylalanine, tyrosine and tryptophan biosynthesis | ||||||
丙氨酸、天冬氨酸和谷氨酸代谢 | 0.75±0.01 | 0.75±0.01 | 0.75±0.01 | 0.75±0.01 | 0.75±0.01 | 0.74±0.01 |
Alanine, aspartate and glutamate metabolism | ||||||
丙酸代谢Propanoate metabolism | 0.69±0.01 | 0.70±0.01 | 0.70±0.01 | 0.71±0.01 | 0.70±0.01 b | 0.71±0.01 a |
丁酸代谢Butanoate metabolism | 0.68±0.01 | 0.68±0.01 | 0.69±0.01 | 0.69±0.01 | 0.69±0.01 | 0.69±0.01 |
甲烷代谢Methane metabolism | 0.67±0.01 a | 0.65±0.01 b | 0.67±0.01 | 0.64±0.01 | 0.66±0.01 | 0.63±0.02 |
卟啉和叶绿素代谢 | 0.64±0.01 | 0.64±0.01 | 0.64±0.01 | 0.62±0.01 | 0.63±0.01 | 0.63±0.01 |
Porphyrin and chlorophyll metabolism | ||||||
一个叶酸碳库One carbon pool by folate | 0.63±0.01 | 0.62±0.01 | 0.63±0.01 | 0.62±0.01 | 0.63±0.01 | 0.62±0.01 |
磷酸戊糖途径Pentose phosphate pathway | 0.59±0.01 b | 0.62±0.01 a | 0.60±0.01 b | 0.61±0.01 a | 0.60±0.01 | 0.61±0.01 |
缬氨酸、亮氨酸和异亮氨酸降解 | 0.56±0.01 | 0.58±0.01 | 0.57±0.01 | 0.61±0.01 | 0.57±0.01 | 0.61±0.02 |
Valine, leucine and isoleucine degradation | ||||||
淀粉和蔗糖代谢Starch and sucrose metabolism | 0.52±0.01 | 0.55±0.01 | 0.53±0.01 | 0.54±0.01 | 0.53±0.01 | 0.55±0.03 |
泛酸和辅酶A生物合成 | 0.56±0.01 a | 0.55±0.01 b | 0.56±0.01 | 0.55±0.01 | 0.57±0.01 | 0.55±0.01 |
Pantothenate and coenzyme A (CoA) biosynthesis |
Fig.7 Correlation and redundancy analysis (RDA) of rhizosphere microbial community (at genus level) and organic carbon components 1, Unclassified_Bacteria;2, Unclassified_Anaerolineaceae;3, Unclassified_Vicinamibacterales;4, Uncultured_soil_bacterium;5, Unclassified_Gemmatimonadaceae;6, Unclassified_Vicinamibacteraceae;7, Unclassified_Steroidobacteraceae;8, Anaeromyxobacter;9, Unclassified_Bacteroidetes_vadinHA17;10, Unclassified_Thermodesulfovibrionia;11, Candidatus_Solibacter;12, Uncultured_prokaryote;13, MND1;14, Unclassified_SC_I_84;15, Uncultured_Chloroflexi_bacterium;16, Unclassified_Subgroup_17;17, Anaerolinea;18, Unclassified_Xanthobacteraceae;19, Haliangium;20, Unclassified_Geobacteraceae。TOC, Total orgaic carbon; POC, Particulate organic carbon; LOC, Labile organic carbon; DOC, Dissoloved organic carbon; MBC, Microbial biomass carbon; TN, Total nitrogen. “*” and “**” represent significant correlation at P<0.05 and P<0.01 level, respectively.
[1] | 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴: 2021[M]. 北京: 中国农业出版社, 2021. |
[2] | 曹凑贵, 江洋, 汪金平, 等. 稻虾共作模式的“双刃性”及可持续发展策略[J]. 中国生态农业学报, 2017, 25(9): 1245-1253. |
CAO C G, JIANG Y, WANG J P, et al. “Dual character” of rice-crayfish culture and strategies for its sustainable development[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1245-1253. (in Chinese with English abstract) | |
[3] | HU N J, LIU C H, CHEN Q, et al. Life cycle environmental impact assessment of rice-crayfish integrated system: a case study[J]. Journal of Cleaner Production, 2021, 280: 124440. |
[4] | HOU J, ZHANG D Y, ZHU J Q. Nutrient accumulation from excessive nutrient surplus caused by shifting from rice monoculture to rice-crayfish rotation[J]. Environmental Pollution, 2021, 271: 116367. |
[5] | FRANZLUEBBERS A J, HANEY R L, HONEYCUTT C W, et al. Climatic influences on active fractions of soil organic matter[J]. Soil Biology and Biochemistry, 2001, 33(7/8): 1103-1111. |
[6] | NELSON P N, DICTOR M C, SOULAS G. Availability of organic carbon in soluble and particle-size fractions from a soil profile[J]. Soil Biology and Biochemistry, 1994, 26(11): 1549-1555. |
[7] | MCDOWELL W H. Dissolved organic matter in soils: future directions and unanswered questions[J]. Geoderma, 2003, 113(3/4): 179-186. |
[8] | 周萍, 张旭辉, 潘根兴. 长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度分布的影响[J]. 植物营养与肥料学报, 2006, 12(6): 765-771. |
ZHOU P, ZHANG X H, PAN G X. Effect of long-term fertilization on content of total and particulate organic carbon and their depth distribution of a paddy soil: an example of huangnitu from the Tai Lake region, China[J]. Plant Nutrition and Fertilizer Science, 2006, 12(6): 765-771. (in Chinese with English abstract) | |
[9] | BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459. |
[10] | 佀国涵, 袁家富, 彭成林, 等. 长期稻虾共作模式提高稻田土壤生物肥力的机理[J]. 植物营养与肥料学报, 2020, 26(12): 2168-2176. |
SI G H, YUAN J F, PENG C L, et al. Mechanism of long-term integrated rice-crayfish farming increasing soil biological fertility of paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2168-2176. (in Chinese with English abstract) | |
[11] | 邹凤亮, 曹凑贵, 马建勇, 等. 基于DNDC模型模拟江汉平原稻田不同种植模式条件下温室气体排放[J]. 中国生态农业学报, 2018, 26(9): 1291-1301. |
ZOU F L, CAO C G, MA J Y, et al. Greenhouse gases emission under different cropping systems in the Jianghan Plain based on DNDC model[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1291-1301. (in Chinese with English abstract) | |
[12] | 陈玲, 万韦韬, 刘兵, 等. 稻虾共作对稻田水体微生物多样性和群落结构的影响[J]. 华中农业大学学报, 2022, 41(1): 141-151. |
CHEN L, WAN W T, LIU B, et al. Effects of rice-crayfish integrated system on microbial diversity and community structure in paddy water[J]. Journal of Huazhong Agricultural University, 2022, 41(1): 141-151. (in Chinese with English abstract) | |
[13] | 符卓旺. 稻田垄作免耕对水稻根际土壤有机碳动态的影响[D]. 重庆: 西南大学, 2013. |
FU Z W. Dynamics of soil organic carbon in rice rhizosphere under ridge-cultivation and no tillage system[D]. Chongqing: Southwest University, 2013. (in Chinese with English abstract) | |
[14] | RILEY D, BARBER S A. Bicarbonate accumulation and pH changes at the soybean (Glycine max (L.) Merr.) root-soil interface[J]. Soil Science Society of America Journal, 1969, 33(6): 905-908. |
[15] | 刘波, 胡桂萍, 郑雪芳, 等. 利用磷脂脂肪酸(PLFAs)生物标记法分析水稻根际土壤微生物多样性[J]. 中国水稻科学, 2010, 24(3): 278-288. |
LIU B, HU G P, ZHENG X F, et al. Analysis on microbial diversity in the rhizosphere of rice by phospholipid fatty acids biomarkers[J]. Chinese Journal of Rice Science, 2010, 24(3): 278-288. (in Chinese with English abstract) | |
[16] | 佀国涵, 彭成林, 徐祥玉, 等. 稻-虾共作模式对涝渍稻田土壤微生物群落多样性及土壤肥力的影响[J]. 土壤, 2016, 48(3): 503-509. |
SI G H, PENG C L, XU X Y, et al. Effects of rice-crayfish integrated mode on soil microbial functional diversity and fertility in waterlogged paddy field[J]. Soils, 2016, 48(3): 503-509. (in Chinese with English abstract) | |
[17] | 邓玉峰, 田善义, 成艳红, 等. 模拟氮沉降下施石灰对休耕红壤优势植物根际土壤微生物群落的影响[J]. 土壤学报, 2019, 56(6): 1449-1458. |
DENG Y F, TIAN S Y, CHENG Y H, et al. Effects of liming on rhizosphere soil microbial communities of dominant plants in fallowed red soil under simulated nitrogen deposition[J]. Acta Pedologica Sinica, 2019, 56(6): 1449-1458. (in Chinese with English abstract) | |
[18] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[19] | WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction: an automated procedure[J]. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169. |
[20] | JIANG P K, XU Q F, XU Z H, et al. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China[J]. Forest Ecology and Management, 2006, 236(1): 30-36. |
[21] | CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777-783. |
[22] | LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155(1): 399-402. |
[23] | 蔡晨, 李谷, 朱建强, 等. 稻虾轮作模式下江汉平原土壤理化性状特征研究[J]. 土壤学报, 2019, 56(1): 217-226. |
CAI C, LI G, ZHU J Q, et al. Effects of rice-crawfish rotation on soil physicochemical properties in Jianghan plain[J]. Acta Pedologica Sinica, 2019, 56(1): 217-226. (in Chinese with English abstract) | |
[24] | 易芙蓉, 杨天娇, 赵宇辰, 等. 稻虾共作对稻田土壤耕作层养分的影响: 基于益阳市南县的实证分析[J]. 作物研究, 2019, 33(5): 424-427. |
YI F R, YANG T J, ZHAO Y C, et al. Effects of rice-shrimp co-cultivation on the nutrients in the topsoil layer of paddy field: based on the empirical analysis of Nan County, Yiyang City[J]. Crop Research, 2019, 33(5): 424-427. (in Chinese with English abstract) | |
[25] | 管勤壮, 成永旭, 李聪, 等. 稻虾共作对土壤有机碳的影响及其与土壤性状的关系[J]. 浙江农业学报, 2019, 31(1): 113-120. |
GUAN Q Z, CHENG Y X, LI C, et al. Changes of soil organic carbon and relationships with soil properties in rice-crayfish coculture system[J]. Acta Agriculturae Zhejiangensis, 2019, 31(1): 113-120. (in Chinese with English abstract) | |
[26] | 朱秀秀, 彭成林, 佀国涵, 等. 稻虾共作模式对稻田土壤细菌群落结构与多样性的影响[J]. 土壤通报, 2021, 52(5): 1121-1128. |
ZHU X X, PENG C L, SI G H, et al. Effect of rice-crayfish integrated system on soil bacterial community structure and diversity in paddy field[J]. Chinese Journal of Soil Science, 2021, 52(5): 1121-1128. (in Chinese with English abstract) | |
[27] | 吕国红, 周莉, 赵先丽, 等. 芦苇湿地土壤有机碳和全氮含量的垂直分布特征[J]. 应用生态学报, 2006, 17(3): 3384-3389. |
LYU G H, ZHOU L, ZHAO X L, et al. Vertical distribution of soil organic carbon and total nitrogen in reed wetland[J]. Chinese Journal of Applied Ecology, 2006, 17(3): 3384-3389. (in Chinese with English abstract) | |
[28] | 佀国涵. 长期稻虾共作模式下稻田土壤肥力变化特征研究[D]. 武汉: 华中农业大学, 2017. |
SI G H. Study on change characteristics of soil fertility in paddy fields under long-term integrated rice-crayfish model[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[29] | 柳敏, 宇万太, 姜子绍, 等. 土壤活性有机碳[J]. 生态学杂志, 2006, 25(11): 1412-1417. |
LIU M, YU W T, JIANG Z S, et al. A research review on soil active organic carbon[J]. Chinese Journal of Ecology, 2006, 25(11): 1412-1417. (in Chinese with English abstract) | |
[30] | HURYN A D, WALLACE J B. Production and litter processing by crayfish in an Appalachian mountain stream[J]. Freshwater Biology, 1987, 18(2): 277-286. |
[31] | 杨玲, 张前兵, 王进, 等. 管理措施对绿洲农田土壤总有机碳及易氧化有机碳季节变化的影响[J]. 石河子大学学报(自然科学版), 2013, 31(5): 549-555. |
YANG L, ZHANG Q B, WANG J, et al. Effect of main technical measures on soil total organic carbon and easily oxidation seasonal dynamics of oasis farmland[J]. Journal of Shihezi University(Natural Science), 2013, 31(5): 549-555. (in Chinese with English abstract) | |
[32] | 李丽娜, 闫淋淋, 曹凑贵, 等. 稻虾共作系统中水稻生长及养分吸收对秸秆还田与投食的响应[J]. 华中农业大学学报, 2020, 39(2): 8-16. |
LI L N, YAN L L, CAO C G, et al. Effects of straw returning and crayfish feeding on rice growth and nutrient uptake in rice-crayfish ecosystem[J]. Journal of Huazhong Agricultural University, 2020, 39(2): 8-16. (in Chinese with English abstract) | |
[33] | 许元钊. 克氏原螯虾养殖对稻田生态系统影响的初步研究[D]. 大连: 大连海洋大学, 2020. |
XU Y Z. A preliminary study on the effects of Procambarus clarkii aquaculture on paddy field ecosystem[D]. Dalian: Dalian Ocean University, 2020. (in Chinese with English abstract) | |
[34] | 沈宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, 18(3): 32-38. |
SHEN H, CAO Z H, HU Z Y. Characteristics and ecological effects of the active organic carbon in soil[J]. Chinese Journal of Ecology, 1999, 18(3): 32-38. (in Chinese with English abstract) | |
[35] | GUGGENBERGER G, KAISER K. Dissolved organic matter in soil: challenging the paradigm of sorptive preservation[J]. Geoderma, 2003, 113(3/4): 293-310. |
[36] | 肖烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异[J]. 生态学报, 2015, 35(23): 7625-7633. |
XIAO Y, HUANG Z G, WU H T, et al. Compositions and contents of active organic carbon in different wetland soils in Sanjiang Plain, Northeast China[J]. Acta Ecologica Sinica, 2015, 35(23): 7625-7633. (in Chinese with English abstract) | |
[37] | KUZYAKOV Y. Review: factors affecting rhizosphere priming effects[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(4): 382-396. |
[38] | 张勇, 胡海波, 王增, 等. 凤阳山4种森林土壤在不同温度培养下活性有机碳的变化[J]. 浙江农林大学学报, 2018, 35(2): 243-251. |
ZHANG Y, HU H B, WANG Z, et al. Varieties of active soil organic carbon of four forest types with varying incubation temperatures in Fengyang Mountain[J]. Journal of Zhejiang A & F University, 2018, 35(2): 243-251. (in Chinese with English abstract) | |
[39] | 陶先法, 李冰, 喻召雄, 等. 稻虾共生模式对水稻结实期根系分泌物及微生物的影响[J]. 水产学报, 2022, 46(11): 2122-2133. |
TAO X F, LI B, YU Z X, et al. Effects of rice-crayfish integrated model on root exudates and microorganisms of rice during grain filling[J]. Journal of Fisheries of China, 2022, 46(11): 2122-2133. (in Chinese with English abstract) | |
[40] | YACHI S, LOREAU M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1463-1468. |
[41] | YAN Y W, JIANG Q Y, WANG J G, et al. Microbial communities and diversities in mudflat sediments analyzed using a modified metatranscriptomic method[J]. Frontiers in Microbiology, 2018, 9: 93. |
[42] | WILLIAMS A S. The dynamic interaction between microbial biodiversity, biogeochemical activity and sedimentary geomorphology in the severn estuary[D]. Cardiff, Wales, UK: Cardiff University, 2015. |
[43] | 薛银刚, 刘菲, 江晓栋, 等. 太湖不同湖区冬季沉积物细菌群落多样性[J]. 中国环境科学, 2018, 38(2): 719-728. |
XUE Y G, LIU F, JIANG X D, et al. The diversity of bacterial communities in the sediment of different lake zones of Lake Taihu in winter[J]. China Environmental Science, 2018, 38(2): 719-728. (in Chinese with English abstract) | |
[44] | YAMADA T, SEKIGUCHI Y. Anaerolineaceae[EB/OL]. (2018-06-14) [2022-12-29]. https://doi.org/10.1002/9781118960608.fbm00301. |
[45] | KRAGELUND C, LEVANTESI C, BORGER A, et al. Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants[J]. FEMS Microbiology Ecology, 2007, 59(3): 671-682. |
[46] | LIAN T X, JIN J, WANG G H, et al. The fate of soybean residue-carbon links to changes of bacterial community composition in Mollisols differing in soil organic carbon[J]. Soil Biology and Biochemistry, 2017, 109: 50-58. |
[47] | 石琪晗, 马玲, 石奥情, 等. 废弃矿区大豆根际土壤细菌群落对施肥方式的响应[J]. 华南农业大学学报, 2020, 41(2): 55-65. |
SHI Q H, MA L, SHI A Q, et al. Responses of soil bacterial communities in soybean rhizosphere of abandoned mining area to fertilization methods[J]. Journal of South China Agricultural University, 2020, 41(2): 55-65. (in Chinese with English abstract) | |
[48] | IKENAGA M, KATAOKA M, YIN X, et al. Characterization and distribution of agar-degrading Steroidobacter agaridevorans sp. nov., isolated from rhizosphere soils[J]. Microbes and Environments, 2021, 36(1): ME20136. |
[49] | 张乃星, 宋金明, 贺志鹏. 海水颗粒有机碳(POC)变化的生物地球化学机制[J]. 生态学报, 2006, 26(7): 2328-2339. |
ZHANG N X, SONG J M, HE Z P. Biogeochemical mechanism of particulate organic carbon(POC) variations in seawaters[J]. Acta Ecologica Sinica, 2006, 26(7): 2328-2339. (in Chinese with English abstract) | |
[50] | WANG Y H, YU Z H, LI Y S, et al. Microbial association with the dynamics of particulate organic carbon in response to the amendment of elevated CO2-derived wheat residue into a Mollisol[J]. Science of the Total Environment, 2017, 607/608: 972-981. |
[51] | UNCLES R J, FRICKERS P E, EASTON A E, et al. Concentrations of suspended particulate organic carbon in the tidal Yorkshire Ouse River and Humber Estuary[J]. Science of the Total Environment, 2000, 251/252: 233-242. |
[52] | POWLSON D S, PROOKES P C, CHRISTENSEN B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J]. Soil Biology and Biochemistry, 1987, 19(2): 159-164. |
[53] | 刘秉儒. 贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征[J]. 生态环境学报, 2010, 19(4): 883-888. |
LIU B R. Changes in soil microbial biomass carbon and nitrogen under typical plant communies along an altitudinal gradient in east side of Helan Mountain[J]. Ecology and Environmental Sciences, 2010, 19(4): 883-888. (in Chinese with English abstract) |
[1] | SHAN Yingjie, REN Bailin, CHEN Yuhang, DING Zhifeng, ZHANG Mingkui. Status of soil phosphorus pools in Zizania latifolia field and their relationships with plantation years and leaching risk [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2645-2654. |
[2] | SONG Panpan, CHANG Huiqing, LI Lankun, WANG Qizhen. Effects of foliar spraying inhibitor on reducing cadmium content of wheat under calcareous soil with slight cadmium pollution [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2655-2663. |
[3] | ZHA Guichao, SUN Xiangyang, LI Suyan, YU Lei, YUE Zongwei, WANG Chenchen, WEI Ningxian, XU Xijie. Characteristics of soil organic carbon and its components in different green space types in Tongzhou District of Beijing, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1699-1708. |
[4] | LIN Zhiwen, ZHANG Peng, WU Tianhao, SHAN Ying, ZOU Ganghua, ZHAO Fengliang, ZHENG Guiping. Effects of straw and straw-derived biochar returning on ammonia volatilization in tropical soil-rice system [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2689-2699. |
[5] | YAO Longren, WANG Xiaojun, ZHUO Chao, LENG Mingzhu, NI Wuzhong. Effects of simulated acid rain on dissolution characteristics and fraction of phosphorus in tea garden soil [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2700-2709. |
[6] | QIU Lefeng, ZHANG Ling, XU Baogen, WU Shaohua, XU Mingxing. Effects of non-grain transition of agricultural planting structure on nitrogen and phosphorus loss from cultivated land [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1995-2003. |
[7] | ZHU Ming, LIU Chen, LIN Yicheng, GUO Bin, LI Hua, FU Qinglin. Effects of conditioning agents on soil fertility, microbial community diversity and rice yield in red soil [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1258-1267. |
[8] | JIANG Tao, WANG Liguo, SUN Fangfang, CHENG Jianbo, HE Tengbing, QIN Song, FAN Chengwu, YIN Wenfang. Effects of solid-digestate biochar application on soil nitrogen leaching and cabbage yield with liquid-digestate irrigation in karst-mountainous region of southwest China [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2104-2115. |
[9] | QIAN Jiawei, LIU Xiaoqing, ZHANG Jingjing, ZHOU Weihong, LI Jianlong. Constructions of hyperspectral remote sensing monitoring models for heavy metal contents in farmland soil in Zhangjiagang City [J]. , 2020, 32(8): 1437-1445. |
[10] | ZHANG Liang, LI Yuting, XU Xiaofeng. Dissolution and release of soil potassium by ectomycorrhizal fungi under Mn2+ stress [J]. , 2020, 32(7): 1215-1222. |
[11] | WU Chengjie, REN Lantian, HAO Bing, SHAO Qingqin, WANG Hong, CHEN Feng, DAI Gaofeng, MEI Shiyuan, ZHANG Congjun. Effect of crop residue compost replacing part of chemical fertilizer and nitrification inhibitor on greenhouse gas emission of winter wheat [J]. , 2020, 32(7): 1233-1240. |
[12] | CHEN Mingru, HU Junguo, CUI Wufeng, YU Ping. Study on calculation method of soil carbon flux based on Maxwell-Stefan diffusion model [J]. , 2020, 32(6): 1029-1038. |
[13] | ZHU Senlin, MEI Zhong, XING Chenghua. Inhibition of phosphorus deficiency on cadmium accumulation in Arabidopsis thaliana [J]. , 2020, 32(5): 804-809. |
[14] | LIU Tao, ZHANG Chipeng, HAO Yaoling, QIU Lijuan, HUANG Chenchen. Effects of sulfate on reduction and transformation of soil iron minerals and arsenic release [J]. , 2020, 32(4): 678-684. |
[15] | JIAN Xing, ZHAI Xiaoyu, WANG Yu, CAI Yangyang. Influence of land use changes on soil total organic carbon and dissolved organic carbon in wetland [J]. , 2020, 32(3): 475-482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||