Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (11): 2655-2663.DOI: 10.3969/j.issn.1004-1524.20221854
• Environmental Science • Previous Articles Next Articles
SONG Panpan(), CHANG Huiqing*(
), LI Lankun, WANG Qizhen
Received:
2022-12-30
Online:
2023-11-25
Published:
2023-12-04
CLC Number:
SONG Panpan, CHANG Huiqing, LI Lankun, WANG Qizhen. Effects of foliar spraying inhibitor on reducing cadmium content of wheat under calcareous soil with slight cadmium pollution[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2655-2663.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221854
处理 Treatment | 蛋白含量 Protein content/% | 灰分含量 Ash content/% | 湿面筋含量 Wet gluten content/% | 淀粉含量 Starch content/% | 沉降值 Settlement value/% | 产量 Yield/ (kg·hm-2) |
---|---|---|---|---|---|---|
CK | 12.36±0.44 a | 66.62±1.09 a | 23.54±0.91 a | 71.65±0.80 a | 17.27±3.04 a | 9 316.65±82.75 a |
ZP1 | 12.60±0.33 a | 66.15±0.95 a | 24.16±0.67 a | 71.42±0.71 a | 17.12±0.74 a | 9 483.45±32.03 a |
ZP2 | 12.94±0.70 a | 66.67±0.95 a | 24.81±1.56 a | 71.36±0.60 a | 18.65±2.95 a | 9 450.00±21.86 a |
ZP3 | 12.80±0.55 a | 65.51±0.73 a | 24.66±0.87 a | 71.60±0.94 a | 18.06±2.48 a | 9 616.65±46.71 a |
Table 1 Quality and yield of wheat under different treatments
处理 Treatment | 蛋白含量 Protein content/% | 灰分含量 Ash content/% | 湿面筋含量 Wet gluten content/% | 淀粉含量 Starch content/% | 沉降值 Settlement value/% | 产量 Yield/ (kg·hm-2) |
---|---|---|---|---|---|---|
CK | 12.36±0.44 a | 66.62±1.09 a | 23.54±0.91 a | 71.65±0.80 a | 17.27±3.04 a | 9 316.65±82.75 a |
ZP1 | 12.60±0.33 a | 66.15±0.95 a | 24.16±0.67 a | 71.42±0.71 a | 17.12±0.74 a | 9 483.45±32.03 a |
ZP2 | 12.94±0.70 a | 66.67±0.95 a | 24.81±1.56 a | 71.36±0.60 a | 18.65±2.95 a | 9 450.00±21.86 a |
ZP3 | 12.80±0.55 a | 65.51±0.73 a | 24.66±0.87 a | 71.60±0.94 a | 18.06±2.48 a | 9 616.65±46.71 a |
Fig.1 Cadmium content in different parts of wheat under different treatments Bars marked without the same letters indicate significant (P<0.05) difference within treatments in the same part of wheat.
处理 Treatment | 根-茎 Root-stem | 茎-叶 Stem-leaf | 颖壳-籽粒 Glume-grain | 叶-颖壳 Leaf-glume | 叶-籽粒 Leaf-grain |
---|---|---|---|---|---|
CK | 0.15 ± 0.01 a | 2.68 ± 0.32 a | 0.87 ± 0.19 a | 0.63±0.04 a | 0.50±0.09 a |
ZP1 | 0.15 ± 0.02 a | 1.31 ± 0.14 b | 0.56 ± 0.15 a | 0.55±0.09 a | 0.39±0.10 a |
ZP2 | 0.18 ± 0.02 a | 1.42 ± 0.14 b | 0.76 ± 0.04 a | 0.60±0.08 a | 0.43±0.10 a |
ZP3 | 0.14 ± 0.01 a | 1.62 ± 0.17 b | 0.80 ± 0.06 a | 0.31±0.02 b | 0.43±0.04 a |
Table 2 Cadmium translocation factor in different parts of wheat under different treatments
处理 Treatment | 根-茎 Root-stem | 茎-叶 Stem-leaf | 颖壳-籽粒 Glume-grain | 叶-颖壳 Leaf-glume | 叶-籽粒 Leaf-grain |
---|---|---|---|---|---|
CK | 0.15 ± 0.01 a | 2.68 ± 0.32 a | 0.87 ± 0.19 a | 0.63±0.04 a | 0.50±0.09 a |
ZP1 | 0.15 ± 0.02 a | 1.31 ± 0.14 b | 0.56 ± 0.15 a | 0.55±0.09 a | 0.39±0.10 a |
ZP2 | 0.18 ± 0.02 a | 1.42 ± 0.14 b | 0.76 ± 0.04 a | 0.60±0.08 a | 0.43±0.10 a |
ZP3 | 0.14 ± 0.01 a | 1.62 ± 0.17 b | 0.80 ± 0.06 a | 0.31±0.02 b | 0.43±0.04 a |
处理Treatment | 根Root | 茎Stem | 叶Leaf | 颖壳Glume | 籽粒Grain |
---|---|---|---|---|---|
CK | 0.91±0.10 b | 0.10±0.02 b | 0.33±0.03 a | 0.11±0.02 a | 0.09±0.01 a |
ZP1 | 0.90±0.09 b | 0.14±0.01 b | 0.17±0.01 c | 0.08±0.01 b | 0.07±0.01 a |
ZP2 | 1.08±0.07 a | 0.19±0.03 a | 0.22±0.01 b | 0.11±0.01 ab | 0.08±0.01 a |
ZP3 | 0.96±0.07 ab | 0.13±0.01 b | 0.18±0.01 c | 0.10±0.01 ab | 0.05±0.01 b |
Table 3 Cadmium bioconcentration factor in different parts of wheat under different treatments
处理Treatment | 根Root | 茎Stem | 叶Leaf | 颖壳Glume | 籽粒Grain |
---|---|---|---|---|---|
CK | 0.91±0.10 b | 0.10±0.02 b | 0.33±0.03 a | 0.11±0.02 a | 0.09±0.01 a |
ZP1 | 0.90±0.09 b | 0.14±0.01 b | 0.17±0.01 c | 0.08±0.01 b | 0.07±0.01 a |
ZP2 | 1.08±0.07 a | 0.19±0.03 a | 0.22±0.01 b | 0.11±0.01 ab | 0.08±0.01 a |
ZP3 | 0.96±0.07 ab | 0.13±0.01 b | 0.18±0.01 c | 0.10±0.01 ab | 0.05±0.01 b |
处理Treatment | Si | Cu | Mn | Zn |
---|---|---|---|---|
CK | 9.792±2.806 a | 2.513±0.267 c | 22.228±3.091 b | 4.967±0.900 b |
ZP1 | 10.980±2.660 a | 8.584±1.103 b | 18.950±0.718 b | 10.275±2.760 a |
ZP2 | 10.269±1.774 a | 8.474±0.709 b | 20.832±2.304 b | 10.716±2.906 a |
ZP3 | 10.589±0.963 a | 12.145±0.697 a | 39.713±4.248 a | 12.749±1.206 a |
Table 4 Silicon, copper, manganese, zinc content in wheat leaves uner different treatments mg·kg-1
处理Treatment | Si | Cu | Mn | Zn |
---|---|---|---|---|
CK | 9.792±2.806 a | 2.513±0.267 c | 22.228±3.091 b | 4.967±0.900 b |
ZP1 | 10.980±2.660 a | 8.584±1.103 b | 18.950±0.718 b | 10.275±2.760 a |
ZP2 | 10.269±1.774 a | 8.474±0.709 b | 20.832±2.304 b | 10.716±2.906 a |
ZP3 | 10.589±0.963 a | 12.145±0.697 a | 39.713±4.248 a | 12.749±1.206 a |
[1] | 吴婧, 董欣敏, 郑燕芳, 等. 镉致癌的分子机制研究进展[J]. 生态毒理学报, 2015, 10(6): 54-61. |
WU J, DONG X M, ZHENG Y F, et al. Recent research progress in molecular mechanisms of cadmium induced carcinogenesis[J]. Asian Journal of Ecotoxicology, 2015, 10(6): 54-61. (in Chinese with English abstract) | |
[2] | LUO L, MA Y B, ZHANG S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530. |
[3] | SCHLEGEL H, GODBOLD D L, HÜTTERMANN A. Whole plant aspects of heavy metal induced changes in CO2, uptake and water relations of spruce (Picea abies) seedlings[J]. Physiologia Plantarum, 1987, 69(2): 265-270. |
[4] | 罗秋红, 吴俊, 柏斌, 等. 水稻镉吸收与转运机理的研究进展[J]. 土壤, 2021, 53(6): 1142-1151. |
LUO Q H, WU J, BAI B, et al. Research progresses on mechanism of cadmium absorption and transport in rice[J]. Soils, 2021, 53(6): 1142-1151. (in Chinese with English abstract) | |
[5] | YAN Y, SUN Q Q, YANG J J, et al. Source attributions of cadmium contamination in rice grains by cadmium isotope composition analysis: a field study[J]. Ecotoxicology and Environmental Safety, 2021, 210: 111865. |
[6] | KHANAM R, KUMAR A, NAYAK A K, et al. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: bioavailability and potential risk to human health[J]. Science of the Total Environment, 2020, 699: 134330. |
[7] | 王怡雯, 芮玉奎, 李中阳, 等. 冬小麦吸收重金属特征及与影响因素的定量关系[J]. 环境科学, 2020, 41(3): 1482-1490. |
WANG Y W, RUI Y K, LI Z Y, et al. Characteristics of heavy metal absorption by winter wheat and its quantitative relationship with influencing factors[J]. Environmental Science, 2020, 41(3): 1482-1490. (in Chinese with English abstract) | |
[8] | 肖冰, 薛培英, 韦亮, 等. 基于田块尺度的农田土壤和小麦籽粒镉砷铅污染特征及健康风险评价[J]. 环境科学, 2020, 41(6): 2869-2877. |
XIAO B, XUE P Y, WEI L, et al. Characteristics of Cd, As, and Pb in soil and wheat grains and health risk assessment of grain-Cd/As/Pb on the field scale[J]. Environmental Science, 2020, 41(6): 2869-2877. (in Chinese with English abstract) | |
[9] | 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692. (in Chinese with English abstract) | |
[10] | 王玉军, 刘存, 周东美, 等. 客观地看待我国耕地土壤环境质量的现状: 关于《全国土壤污染状况调查公报》中有关问题的讨论和建议[J]. 农业环境科学学报, 2014, 33(8): 1465-1473. |
WANG Y J, LIU C, ZHOU D M, et al. A critical view on the status quo of the farmland soil environmental quality in China: discussion and suggestion of relevant issues on Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2014, 33(8): 1465-1473. (in Chinese with English abstract) | |
[11] | 林智, 李伯欣, 周自强, 等. 不同阻控剂对珠三角稻田镉污染修复的效果探究[J]. 南方农业, 2020, 14(8): 136-140. |
LIN Z, LI B X, ZHOU Z Q, et al. Effect of different inhibitors on remediation of cadmium pollution in rice fields in Pearl River Delta[J]. South China Agriculture, 2020, 14(8): 136-140. (in Chinese) | |
[12] | 徐建明, 孟俊, 刘杏梅, 等. 我国农田土壤重金属污染防治与粮食安全保障[J]. 中国科学院院刊, 2018, 33(2): 153-159. |
XU J M, MENG J, LIU X M, et al. Control of heavy metal pollution in farmland of China in terms of food security[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 153-159. (in Chinese with English abstract) | |
[13] | 李丹, 李俊华, 何婷, 等. 不同改良剂对石灰性镉污染土壤的镉形态和小白菜镉吸收的影响[J]. 农业环境科学学报, 2015, 34(9): 1679-1685. |
LI D, LI J H, HE T, et al. Effects of different amendments on soil Cd forms and Cd uptake by Chinese cabbage in Cd-contaminated calcareous soils[J]. Journal of Agro-Environment Science, 2015, 34(9): 1679-1685. (in Chinese with English abstract) | |
[14] | 邢维芹, 张红毅, SCHECKEL K G, 等. 铅冶炼污染区小麦籽粒镉含量及低积累品种筛选[J]. 农业环境科学学报, 2015, 34(10): 2039-2040. |
XING W Q, ZHANG H Y, SCHECKEL K G, et al. Grain Cd concentrations of 100 wheat (Triticum aestivum Linn)varieties and strains grown on lead-smelting contaminated soils and screening for low Cd varieties[J]. Journal of Agro-Environment Science, 2015, 34(10): 2039-2040. (in Chinese) | |
[15] | CHEN R, ZHANG C B, ZHAO Y L, et al. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants[J]. Environmental Science and Pollution Research, 2018, 25(3): 2361-2368. |
[16] | 王艳丽, 王京, 刘国顺, 等. 磷胁迫对烤烟高亲和磷转运蛋白基因表达及磷素吸收利用的影响[J]. 西北植物学报, 2015, 35(7): 1403-1408. |
WANG Y L, WANG J, LIU G S, et al. Expression of high-affinity phosphate transporter genes, phosphorus absorption and utilization in flue-cured tobacco under deficient phosphorus stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(7): 1403-1408. (in Chinese with English abstract) | |
[17] | 杨志敏, 郑绍健, 胡霭堂. 不同磷水平下植物体内镉的积累、化学形态及生理特性[J]. 应用与环境生物学报, 2000, 6(2): 121-126. |
YANG Z M, ZHENG S J, HU A T. Accumulation, chemical forms and physiological characterization of cadmium in plants affected by phosphorus[J]. Chinese Journal of Applied and Environmental Biology, 2000, 6(2): 121-126. (in English) | |
[18] | TIAN S K, LU L L, ZHANG J, et al. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress[J]. Chemosphere, 2011, 84(1): 63-69. |
[19] | HAN Y, LING Q, DONG F Q, et al. Iron and copper micronutrients influences cadmium accumulation in rice grains by altering its transport and allocation[J]. Science of the Total Environment, 2021, 777: 146118. |
[20] | 唐守寅, 胡露, 熊琪, 等. 掺杂硒·硫的硅基叶面阻控剂对水稻富集镉的影响[J]. 安徽农业科学, 2021, 49(17): 61-64. |
TANG S Y, HU L, XIONG Q, et al. Effects of selenium and sulfur doped silica-based leaf surface inhibitor on cadmium enrichment in rice[J]. Journal of Anhui Agricultural Sciences, 2021, 49(17): 61-64. (in Chinese with English abstract) | |
[21] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[22] | 陈喆, 铁柏清, 雷鸣, 等. 施硅方式对稻米镉阻隔潜力研究[J]. 环境科学, 2014, 35(7): 2762-2770. |
CHEN Z, TIE B Q, LEI M, et al. Phytoexclusion potential studies of Si fertilization modes on rice cadmium[J]. Environmental Science, 2014, 35(7): 2762-2770. (in Chinese with English abstract) | |
[23] | 杨惟薇, 刘敏, 曹美珠, 等. 不同玉米品种对重金属铅镉的富集和转运能力[J]. 生态与农村环境学报, 2014, 30(6): 774-779. |
YANG W W, LIU M, CAO M Z, et al. Accumulation and transfer of lead (Pb) and cadmium (Cd) on different species of maize[J]. Journal of Ecology and Rural Environment, 2014, 30(6): 774-779. (in Chinese with English abstract) | |
[24] | 陈京都, 何理, 林忠成, 等. 不同生育期类型水稻对镉积累的研究[J]. 生态与农村环境学报, 2013, 29(3): 390-393. |
CHEN J D, HE L, LIN Z C, et al. Cd accumulation in japonica rice relative to growth type[J]. Journal of Ecology and Rural Environment, 2013, 29(3): 390-393. (in Chinese with English abstract) | |
[25] | 龙思斯, 杨益新, 宋正国, 等. 三种类型阻控剂对不同品种水稻富集镉的影响[J]. 农业资源与环境学报, 2016, 33(5): 459-465. |
LONG S S, YANG Y X, SONG Z G, et al. Effects of three inhibitors on the accumulation of cadmium in rice (Oryza sativa L.)[J]. Journal of Agricultural Resources and Environment, 2016, 33(5): 459-465. (in Chinese with English abstract) | |
[26] | 董如茵, 徐应明, 王林, 等. 土施和喷施锌肥对镉低积累油菜吸收镉的影响[J]. 环境科学学报, 2015, 35(8): 2589-2596. |
DONG R Y, XU Y M, WANG L, et al. Effects of soil application and foliar spray of zinc fertilizer on cadmium uptake in a pakchoi cultivar with low cadmium accumulation[J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2589-2596. (in Chinese with English abstract) | |
[27] | QASWAR M, HUSSAIN S, RENGEL Z. Zinc fertilisation increases grain zinc and reduces grain lead and cadmium concentrations more in zinc-biofortified than standard wheat cultivar[J]. Science of the Total Environment, 2017, 605/606: 454-460. |
[28] | 文志琦, 赵艳玲, 崔冠男, 等. 水稻营养器官镉积累特性对稻米镉含量的影响[J]. 植物生理学报, 2015, 51(8): 1280-1286. |
WEN Z Q, ZHAO Y L, CUI G N, et al. Effects of cadmium accumulation characteristics in vegetative organs on cadmium content in grains of rice[J]. Plant Physiology Journal, 2015, 51(8): 1280-1286. (in Chinese with English abstract) | |
[29] | 赵步洪, 张洪熙, 奚岭林, 等. 杂交水稻不同器官镉浓度与累积量[J]. 中国水稻科学, 2006, 20(3): 306-312. |
ZHAO B H, ZHANG H X, XI L L, et al. Concentrations and accumulation of cadmium in different organs of hybrid rice[J]. Chinese Journal of Rice Science, 2006, 20(3): 306-312. (in Chinese with English abstract) | |
[30] | URAGUCHI S, MORI S, KURAMATA M, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 2009, 60(9): 2677-2688. |
[31] | FUJIMAKI S, SUZUI N, ISHIOKA N S, et al. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4): 1796-1806. |
[32] | TANAKA K, FUJIMAKI S, FUJIWARA T, et al. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.)[J]. Soil Science and Plant Nutrition, 2007, 53(1): 72-77. |
[33] | 陈喆, 铁柏清, 刘孝利, 等. 改良-农艺综合措施对水稻吸收积累镉的影响[J]. 农业环境科学学报, 2013, 32(7): 1302-1308. |
CHEN Z, TIE B Q, LIU X L, et al. Impacts of optimized agronomic regulation management on cadmium absorption and accumulation by late rice[J]. Journal of Agro-Environment Science, 2013, 32(7): 1302-1308. (in Chinese with English abstract) | |
[34] | 程钊, 江俊杰, 李丹, 等. 鄱阳湖及周边经济区土壤镉的含量与分布[J]. 地球与环境, 2015, 43(4): 464-468. |
CHENG Z, JIANG J J, LI D, et al. Content and distribution of cadmium in soils of Poyang Lake and its surrounding economic zones[J]. Earth and Environment, 2015, 43(4): 464-468. (in Chinese with English abstract) | |
[35] | 艾金华, 廖晓勇, 王凌青, 等. 镉胁迫下小麦镉低累积品种筛选[J]. 南昌大学学报(理科版), 2019, 43(2): 175-181. |
AI J H, LIAO X Y, WANG L Q, et al. The selection of low cadmium accumulation wheat varieties under cadmium stress[J]. Journal of Nanchang University (Natural Science), 2019, 43(2): 175-181. (in Chinese with English abstract) | |
[36] | WANG C, JI J F, YANG Z F, et al. Effects of soil properties on the transfer of cadmium from soil to wheat in the Yangtze River Delta region, China: a typical industry-agriculture transition area[J]. Biological Trace Element Research, 2012, 148(2): 264-274. |
[37] | 邵金秋, 刘楚琛, 阎秀兰, 等. 河北省典型污灌区农田镉污染特征及环境风险评价[J]. 环境科学学报, 2019, 39(3): 917-927. |
SHAO J Q, LIU C C, YAN X L, et al. Cadmium distribution characteristics and environmental risk assessment in typical sewage irrigation area of Hebei Province[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 917-927. (in Chinese with English abstract) | |
[38] | LV G H, WANG H, XU C, et al. Effectiveness of simultaneous foliar application of Zn and Mn or P to reduce Cd concentration in rice grains: a field study[J]. Environmental Science and Pollution Research, 2019, 26(9): 9305-9313. |
[39] | 于焕云, 崔江虎, 乔江涛, 等. 稻田镉砷污染阻控原理与技术应用[J]. 农业环境科学学报, 2018, 37(7): 1418-1426. |
YU H Y, CUI J H, QIAO J T, et al. Principle and technique of arsenic and cadmium pollution control in paddy field[J]. Journal of Agro-Environment Science, 2018, 37(7): 1418-1426. (in Chinese with English abstract) | |
[40] | TAKAHASHI R, ISHIMARU Y, SHIMO H, et al. From laboratory to field: OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields[J]. PLoS One, 2014, 9(6): e98816. |
[41] | NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469. |
[42] | 吕光辉, 许超, 王辉, 等. 叶面喷施不同浓度锌对水稻锌镉积累的影响[J]. 农业环境科学学报, 2018, 37(7): 1521-1528. |
LÜ G H, XU C, WANG H, et al. Effect of foliar spraying zinc on the accumulation of zinc and cadmium in rice[J]. Journal of Agro-Environment Science, 2018, 37(7): 1521-1528. (in Chinese with English abstract) | |
[43] | 胡坤, 喻华, 冯文强, 等. 中微量元素和有益元素对水稻生长和吸收镉的影响[J]. 生态学报, 2011, 31(8): 2341-2348. |
HU K, YU H, FENG W Q, et al. Effects of secondary, micro- and beneficial elements on rice growth and cadmium uptake[J]. Acta Ecologica Sinica, 2011, 31(8): 2341-2348. (in Chinese with English abstract) | |
[44] | 汪鹏, 王静, 陈宏坪, 等. 我国稻田系统镉污染风险与阻控[J]. 农业环境科学学报, 2018, 37(7): 1409-1417. |
WANG P, WANG J, CHEN H P, et al. Cadmium risk and mitigation in paddy systems in China[J]. Journal of Agro-Environment Science, 2018, 37(7): 1409-1417. (in Chinese with English abstract) | |
[45] | 虞银江, 廖海兵, 陈文荣, 等. 水稻吸收、运输锌及其籽粒富集锌的机制[J]. 中国水稻科学, 2012, 26(3): 365-372. |
YU Y J, LIAO H B, CHEN W R, et al. Mechanism of Zn uptake, translocation in rice plant and Zn-enrichment in rice grain[J]. Chinese Journal of Rice Science, 2012, 26(3): 365-372. (in Chinese with English abstract) | |
[46] | 陈世宝, 朱永官, 杨俊诚. 土壤-植物系统中磷对重金属生物有效性的影响机制[J]. 环境污染治理技术与设备, 2003(8): 1-7. |
CHEN S B, ZHU Y G, YANG J C. Mechanism of the effect of phosphorus on bioavailability of heavy metals in soil-plant systems[J]. Techniques and Equipment for Environmental Pollution Control, 2003(8): 1-7. (in Chinese with English abstract) | |
[47] | CUI J H, LIU T X, LI F B, et al. Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects[J]. Environmental Pollution, 2017, 228: 363-369. |
[1] | LOU Yuangen, LI Chuang, LI Jingjing, XING Guozhen, LU Yanan, ZHENG Wenming. Identification and analysis of HP gene family in wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2023-2032. |
[2] | WANG Jie, LU Ruohui, ZHU Weifeng, CHEN Yupei, SHAN Yingjie. Potential of straw returning as substitute for chemical fertilizer of main grain crops in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1853-1863. |
[3] | WANG Di, YANG Hanmei, LI Yangqian, JIA Mengting, ZOU Liang, YANG Fan. Multidimensional evaluation of “variety, quality, efficiency and application” of Tartary buckwheat and research progress of high-value utilization of active ingredients [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1960-1974. |
[4] | LI Xiaoxia, LI Dan, LI Wanxing, JIN Kunpeng, LIU Yongzhong, HAN Wenqing, HUANG Xuefang, LIU Xin, TIAN Gang, CAO Jinjun. Effects of different rotation patterns on physiological characteristics, yield and quality of foxtail millet during grain filling stage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1499-1510. |
[5] | YU Guihong, SONG Guicheng, ZHANG Peng, WANG Huadun, FAN Xiangyun. Comprehensive evaluation of waterlogging tolerance of 18 wheat varieties at jointing stage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1235-1242. |
[6] | YANG Kai, CHEN Kai, LI Hongmei, ZHAO Zhongjuan, HU Jindong, LI Jishun, YANG Hetong. Biocontrol efficacy and action mechanism of Trichoderma harzianum LTR-2 and Arthrobacter ureafaciens DnL1-1 against crown rot of wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1385-1395. |
[7] | CHEN Qianqian, TAO Wenyang, ZHENG Meiyu, MA Zijia, WANG Lu, LU Shengmin. Optimization of ethanol extraction and purification process of loquat flowers based on in vitro tyrosinase inhibitory activity and preliminary identification of active components [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1144-1153. |
[8] | MA Yihu, ZENG Xiaoyuan, HE Xianbiao, ZHOU Naidi, CHEN Jian. Response of grain yield and quality of high quality rice to climate factors at different sowing dates in southeastern Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 736-751. |
[9] | REN Kaiming, WANG Ben, YANG Wenjun, FAN Yonghui, ZHANG Wenjing, MA Shangyu, HUANG Zhenglai. Effects of nitrogen on physiological growth, quality and yield of weak gluten wheat after rice stubble [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 769-779. |
[10] | LU Shuai, LUO Xiaogang, LIU Quanwei, ZHANG Yi, MENG Yanghao, LI Jie, ZHANG Jinglai. Effect of organic-inorganic compound fertilizer on wheat growth, nutrients and heavy metal content of soil and wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 922-930. |
[11] | BAI Weiwei, ZHAO Xueni, LUO Bin, ZHAO Wei, HUANG Shuo, ZHANG Han. Study of YOLOv5-based germination detection method for wheat seeds [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 445-454. |
[12] | LIN Xiaobing, ZHANG Hongyan, ZHANG Qiumei, ZHOU Lijun, XU Desheng, GUO Naijia, QIU Xiangfeng, HUANG Haiping. Screening of rice varieties with low cadmium accumulation based on multiple indicators [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2507-2515. |
[13] | WANG Jianbing, WANG Jintao, YAN Kexin, GUO Xiaolan, WANG Dun, DAI Hongwen. Cadmium and lead accumulation characteristics of watercress under cadmium-lead combined pollution [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2664-2672. |
[14] | GENG Bingjie, YE Miaomiao, CHEN Yan, WANG Mengchang, MA Shangyu, HUANG Zhenglai, ZHANG Wenjing, FAN Yonghui. Effects of exogenous 6-BA and KH2PO4 on antioxidant enzymes and anaerobic respiratory enzymes activities in wheat roots under waterlogging at post-flowering stage [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2275-2285. |
[15] | FAN Liying, FAN Tingting, TONG Zongjun, LIANG Liyun, ZHAO Zhiyong, CHEN Hui, ZHOU Changyan, ZHAO Xiaoyan. Effects on accumulation of cadmium and antioxidant system of different Morchella spp. under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2321-2331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||