Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (2): 391-403.DOI: 10.3969/j.issn.1004-1524.20221397
• Environmental Science • Previous Articles Next Articles
YANG Linpei1,2(), LI Jinwen2, SHEN Genxiang2, ZHU Wenjun2, CHEN Xiaohua2, CHEN Cheng2, LIANG Liquan3
Received:
2022-09-27
Online:
2024-02-25
Published:
2024-03-05
CLC Number:
YANG Linpei, LI Jinwen, SHEN Genxiang, ZHU Wenjun, CHEN Xiaohua, CHEN Cheng, LIANG Liquan. Study on output characteristics of pollutants in rainfall-runoff from upland based on high-frequency data[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 391-403.
Fig.3 Relationship between soil moisture content in early stage and curve number (CN) at different depths (n=29) CN, Curve number; R2, Determination coefficient; AMC10, Antecedent moisture content in 10 cm soil depth; AMC30, Antecedent moisture content in 30 cm soil depth; AMC50, Antecedent moisture content in 50 cm soil depth.
指标 | 最小值 Minimum/(mg·L-1) | 最大值 Maximum/(mg·L-1) | 平均值 Mean/(mg·L-1) | 标准差 Standard deviation/(mg·L-1) | 变异系数 Coefficient of variation/% |
---|---|---|---|---|---|
c(TN) | 1.96 | 79.2 | 18.57 | 20.95 | 112.84 |
c(NH4+-N) | 0.12 | 1.26 | 0.39 | 0.30 | 77.18 |
c(NO3--N) | 0.15 | 66.18 | 13.04 | 18.17 | 139.32 |
c(TP) | 0.12 | 1.01 | 0.49 | 0.28 | 56.98 |
c(DTP) | 0.03 | 0.49 | 0.20 | 0.13 | 62.68 |
Table 1 Event mean concentration (EMC) of various forms of N and P in farmland runoff under rainfall events
指标 | 最小值 Minimum/(mg·L-1) | 最大值 Maximum/(mg·L-1) | 平均值 Mean/(mg·L-1) | 标准差 Standard deviation/(mg·L-1) | 变异系数 Coefficient of variation/% |
---|---|---|---|---|---|
c(TN) | 1.96 | 79.2 | 18.57 | 20.95 | 112.84 |
c(NH4+-N) | 0.12 | 1.26 | 0.39 | 0.30 | 77.18 |
c(NO3--N) | 0.15 | 66.18 | 13.04 | 18.17 | 139.32 |
c(TP) | 0.12 | 1.01 | 0.49 | 0.28 | 56.98 |
c(DTP) | 0.03 | 0.49 | 0.20 | 0.13 | 62.68 |
Fig.9 Comparison of b values in concentratin-discharge (C-Q) regressions for event scales and all data TN, Total nitrogen; NH4+-N, Ammonium nitrogen; NO3--N, Nitrate nitrogen; TP, Total phosphorus; DTP, Dissolved total phosphorus. Purple circles represent b values of individual events; light-blue diamonds represent the average of b values for all events; red bars indicate the b value for all data.
[1] | 王月, 房云清, 纪婧, 等. 不同降雨强度下旱地农田氮磷流失规律[J]. 农业资源与环境学报, 2019, 36(6): 814-821. |
WANG Y, FANG Y Q, JI J, et al. The loss of nitrogen and phosphorus from dryland farmland under different rainfall intensities[J]. Journal of Agricultural Resources and Environment, 2019, 36(6): 814-821. (in Chinese with English abstract) | |
[2] | VARANKA S, HJORT J, LUOTO M. Geomorphological factors predict water quality in boreal rivers[J]. Earth Surface Processes and Landforms, 2015, 40(15): 1989-1999. |
[3] | 李乐, 刘常富. 三峡库区面源污染研究进展[J]. 生态科学, 2020, 39(2): 215-226. |
LI L, LIU C F. A review of non-point source pollution in the Three Gorges Reservoir Area(TGRA)[J]. Ecological Science, 2020, 39(2): 215-226. (in Chinese with English abstract) | |
[4] | LIANG K, JIANG Y F, QI J Y, et al. Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada[J]. Science of the Total Environment, 2020, 729: 138793. |
[5] | 高超, 李阳, 于海明, 等. 典型自然降雨条件下太湖地区水稻田氮磷输出特点[J]. 生态环境学报, 2015, 24(5): 845-852. |
GAO C, LI Y, YU H M, et al. The output characters of nitrogen and phosphorus from typical natural rainfall runoff of paddy fields in Tai Lake region[J]. Ecology and Environmental Sciences, 2015, 24(5): 845-852. (in Chinese with English abstract) | |
[6] | 宁嘉丽, 黄艳荟, 李桂芳, 等. 自然降雨下蔬菜地土壤侵蚀及氮素流失特征[J]. 环境科学, 2023, 44(1): 293-302. |
NING J L, HUANG Y H, LI G F, et al. Characteristics of soil erosion and nitrogen loss in vegetable field under natural rainfall[J]. Environmental Science, 2023, 44(1): 293-302. (in Chinese with English abstract) | |
[7] | 李永山, 贾晓鹏, 马启民, 等. 孔兑沙漠小流域高含沙洪水水沙关系特征及其指示意义: 以毛布拉孔兑苏达尔沟为例[J]. 干旱区资源与环境, 2019, 33(3): 92-97. |
LI Y S, JIA X P, MA Q M, et al. Characteristics of sediment-discharge relationship of hyper-concentrated flood and its implication in the Sudaer River of Maobula Kongdui[J]. Journal of Arid Land Resources and Environment, 2019, 33(3): 92-97. (in Chinese with English abstract) | |
[8] | AICH V, ZIMMERMANN A, ELSENBEER H. Quantification and interpretation of suspended-sediment discharge hysteresis patterns: how much data do we need?[J]. CATENA, 2014, 122: 120-129. |
[9] | ROSE L A, KARWAN D L, GODSEY S E. Concentration-discharge relationships describe solute and sediment mobilization, reaction, and transport at event and longer timescales[J]. Hydrological Processes, 2018, 32(18): 2829-2844. |
[10] | POHLE I, BAGGALEY N, PALAREA-ALBALADEJO J, et al. A framework for assessing concentration-discharge catchment behavior from low-frequency water quality data[J]. Water Resources Research, 2021, 57(9): e2021WR029692. |
[11] | ROSE L A, KARWAN D L. Stormflow concentration-discharge dynamics of suspended sediment and dissolved phosphorus in an agricultural watershed[J]. Hydrological Processes, 2021, 35(12): e14455. |
[12] | 夏绍钦, 张会兰, 郝佳欣, 等. 长江涪江小河坝站水沙关系特性及其驱动因素研究[J]. 长江流域资源与环境, 2021, 30(7): 1603-1613. |
XIA S Q, ZHANG H L, HAO J X, et al. Characteristics of runoff-sediment rating curves and corresponding driving factors at Xiaoheba Station on Fu River, Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2021, 30(7): 1603-1613. (in Chinese with English abstract) | |
[13] | 朱文俊, 李金文, 钱晓雍, 等. 长江下游“玉米-花菜”轮作模式下旱地降雨产流过程及氮磷输出特征研究[J]. 农业环境科学学报, 2021, 40(10): 2167-2178. |
ZHU W J, LI J W, QIAN X Y, et al. Runoff production process and nitrogen and phosphorus output characteristics from farmlands in the lower reaches of the Yangtze River under cauliflower and corn rotation[J]. Journal of Agro-Environment Science, 2021, 40(10): 2167-2178. (in Chinese with English abstract) | |
[14] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[15] | 石扬旭, 张友静, 李鑫川, 等. 流域下垫面特征对多年平均径流系数的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(12): 138-147. |
SHI Y X, ZHANG Y J, LI X C, et al. Influence of underlying surface characteristics of river basin on annual runoff coefficient[J]. Journal of Northwest A & F University (Natural Science Edition), 2017, 45(12): 138-147. (in Chinese with English abstract) | |
[16] | MISHRA S K, TYAGI J V, SINGH V P, et al. SCS-CN-based modeling of sediment yield[J]. Journal of Hydrology, 2006, 324(1/2/3/4): 301-322. |
[17] | 贺宝根, 周乃晟, 高效江, 等. 农田非点源污染研究中的降雨径流关系: SCS法的修正[J]. 环境科学研究, 2001, 14(3): 49-51. |
HE B G, ZHOU N S, GAO X J, et al. Precipitation-runoff relationship in farmland nonpoint source pollution research: amending coeffcient of SCS hydrologic method[J]. Research of Environmental Sciences, 2001, 14(3): 49-51. (in Chinese with English abstract) | |
[18] | AGUILERA R, MELACK J M. Concentration-discharge responses to storm events in coastal California watersheds[J]. Water Resources Research, 2018, 54(1): 407-424. |
[19] | ALI G, WILSON H, ELLIOTT J, et al. Phosphorus export dynamics and hydrobiogeochemical controls across gradients of scale, topography and human impact[J]. Hydrological Processes, 2017, 31(18): 3130-3145. |
[20] | BASU N B, THOMPSON S E, RAO P S C. Hydrologic and biogeochemical functioning of intensively managed catchments: a synthesis of top-down analyses[J]. Water Resources Research, 2011, 47(10): W00J15. |
[21] | MUSOLFF A, FLECKENSTEIN J H, RAO P S C, et al. Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments[J]. Geophysical Research Letters, 2017, 44(9): 4143-4151. |
[22] | 刘继龙, 刘璐, 马孝义, 等. 不同尺度不同土层土壤盐分的空间变异性研究[J]. 应用基础与工程科学学报, 2018, 26(2): 305-312. |
LIU J L, LIU L, MA X Y, et al. Spatial variability of soil salt in different soil layers at different scales[J]. Journal of Basic Science and Engineering, 2018, 26(2): 305-312. (in Chinese with English abstract) | |
[23] | BOULDIN J L, FARRIS J L, MOORE M T, et al. Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes[J]. Environmental Pollution, 2004, 132(3): 403-411. |
[24] | 朱燕琴, 赵志斌, 齐广平, 等. 黄土丘陵区坡面产流产沙的影响因素分析[J]. 干旱区资源与环境, 2020, 34(8): 173-178. |
ZHU Y Q, ZHAO Z B, QI G P, et al. Analysis of factors influencing runoff and sediment yield on slopes of loess hilly and gully region[J]. Journal of Arid Land Resources and Environment, 2020, 34(8): 173-178. (in Chinese with English abstract) | |
[25] | YU D S, SHI X Z, WEINDORF D C. Relationships between permeability and erodibility of cultivated acrisols and cambisols in subtropical China[J]. Pedosphere, 2006, 16(3): 304-311. |
[26] | DREELIN E A, FOWLER L, RONALD CARROLL C. A test of porous pavement effectiveness on clay soils during natural storm events[J]. Water Research, 2006, 40(4): 799-805. |
[27] | HUO J Y, YU X X, LIU C J, et al. Effects of soil and water conservation management and rainfall types on runoff and soil loss for a sloping area in North China[J]. Land Degradation & Development, 2020, 31(15): 2117-2130. |
[28] | 李凯, 曾凡棠, 胡应成, 等. 广州番禺区不同地类的非点源污染排放特征[J]. 环境科学与技术, 2013, 36(6): 26-31. |
LI K, ZENG F T, HU Y C, et al. Characteristics of non-point source pollution discharge under different land use conditions in Panyu district of Guangzhou[J]. Environmental Science & Technology, 2013, 36(6): 26-31. (in Chinese with English abstract) | |
[29] | 王宏, 徐娅玲, 张奇, 等. 沱江流域典型农业小流域氮和磷排放特征[J]. 环境科学, 2020, 41(10): 4547-4554. |
WANG H, XU Y L, ZHANG Q, et al. Emission characteristics of nitrogen and phosphorus in a typical agricultural small watershed in Tuojiang River Basin[J]. Environmental Science, 2020, 41(10): 4547-4554. (in Chinese with English abstract) | |
[30] | YANG C C, LEE K T. Analysis of flow-sediment rating curve hysteresis based on flow and sediment travel time estimations[J]. International Journal of Sediment Research, 2018, 33(2): 171-182. |
[31] | 包鑫, 江燕, 胡羽聪. 潮河流域降雨径流事件污染物输出特征[J]. 环境科学, 2021, 42(7): 3316-3327. |
BAO X, JIANG Y, HU Y C. Characteristics of pollutant dynamics under rainfall-runoff events in the Chaohe River watershed[J]. Environmental Science, 2021, 42(7): 3316-3327. (in Chinese with English abstract) | |
[32] | BENDER M A, DOS SANTOS D R, TIECHER T, et al. Phosphorus dynamics during storm events in a subtropical rural catchment in southern Brazil[J]. Agriculture, Ecosystems & Environment, 2018, 261: 93-102. |
[33] | SMITH H G, DRAGOVICH D. Interpreting sediment delivery processes using suspended sediment-discharge hysteresis patterns from nested upland catchments, south-eastern Australia[J]. Hydrological Processes, 2009, 23(17): 2415-2426. |
[34] | 程红光, 郝芳华, 任希岩, 等. 不同降雨条件下非点源污染氮负荷入河系数研究[J]. 环境科学学报, 2006, 26(3): 392-397. |
CHENG H G, HAO F H, REN X Y, et al. The study of the rate loss of nitrogenous non-point source pollution loads in different precipitation levels[J]. Acta Scientiae Circumstantiae, 2006, 26(3): 392-397. (in Chinese with English abstract) | |
[35] | 钟玲玲. 关于土壤中氮素转化规律的研究[J]. 北方环境, 2002, 27(3): 50-53. |
ZHONG L L. Study on the law of nitrogen transformation in soil[J]. North Environment, 2002, 27(3): 50-53. (in Chinese with English abstract) | |
[36] | 冯绍元, 郑耀泉. 农田氮素的转化与损失及其对水环境的影响[J]. 农业环境保护, 1996, 15(6): 277-280. |
FENG S Y, ZHENG Y Q. Transformations and losses of the agricultural nitrogen and its effects on water quality[J]. Agro-Environmental Protection, 1996, 15(6): 277-280. (in Chinese with English abstract) | |
[37] | 李瑞玲, 张永春, 曾远, 等. 太湖流域丘陵地区暴雨条件下农田氮素随地表径流迁移特征[J]. 农业环境科学学报, 2009, 28(6): 1185-1190. |
LI R L, ZHANG Y C, ZENG Y, et al. Effects of rainstorm on the export of farmland nitrogen with surface runoff in hilly area of Tai Lake basin[J]. Journal of Agro-Environment Science, 2009, 28(6): 1185-1190. (in Chinese with English abstract) | |
[38] | 华玲玲, 李文超, 翟丽梅, 等. 三峡库区古夫河小流域氮磷排放特征[J]. 环境科学, 2017, 38(1): 138-146. |
HUA L L, LI W C, ZHAI L M, et al. Characteristics of nitrogen and phosphorus emissions in the Gufu river small watershed of the three georges reservoir area[J]. Environmental Science, 2017, 38(1): 138-146. (in Chinese with English abstract) | |
[39] | LIU Y, WANG C Y, YU Y, et al. Effect of urban stormwater road runoff of different land use types on an urban river in Shenzhen, China[J]. Water, 2019, 11(12): 2545. |
[40] | 陈玲, 宋林旭, 崔玉洁, 等. 模拟降雨条件下黄棕壤坡耕地磷素流失规律研究[J]. 农业环境科学学报, 2013, 32(1): 49-55. |
CHEN L, SONG L X, CUI Y J, et al. Characteristics of phosphorus loss in sloping arable land of yellow-brown soil under artificial rainfall test[J]. Journal of Agro-Environment Science, 2013, 32(1): 49-55. (in Chinese with English abstract) | |
[41] | BOWES M J, SMITH J T, NEAL C. The value of high-resolution nutrient monitoring: a case study of the River Frome, Dorset, UK[J]. Journal of Hydrology, 2009, 378(1/2): 82-96. |
[42] | BOWES M J, HOUSE W A, HODGKINSON R A, et al. Phosphorus-discharge hysteresis during storm events along a river catchment: the River Swale, UK[J]. Water Research, 2005, 39(5): 751-762. |
[1] | LIU Yihan, MOU Qingshan, CHEN Shanyu, RUAN Guanhai, HU Jin, GUAN Yajing. Establishment of DNA fingerprint for sunflower by SSR-HRM technique [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 678-686. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 282
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 122
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||