Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (9): 1933-1942.DOI: 10.3969/j.issn.1004-1524.20240836
• Plant Protection • Previous Articles Next Articles
LIU Rui1(
), WANG Lijuan2,*(
), WANG Qiuhao1, LIN Xudong1, GUO Qihang1, XU Duolin1, LI Wenyan1
Received:2024-09-13
Online:2025-09-25
Published:2025-10-15
Contact:
WANG Lijuan
CLC Number:
LIU Rui, WANG Lijuan, WANG Qiuhao, LIN Xudong, GUO Qihang, XU Duolin, LI Wenyan. Detection of pest and disease in tea based on improved YOLOv8s[J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1933-1942.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240836
Fig.2 Structure diagram of model before improvement Detect, Detection head; Concat, Stitching operation of feature map; Upsample, Upsampling operation; C2f, Feature extraction module; Conv, Convolution operation; SPPF, Spatial pyramid pooling-fast layer.
Fig.4 Structure of FasterNet h,Height of the input feature map;w,Width of the input feature map;c1-c4,Number of channels output in stages 1 to 4;l1-l4,Number of blocks stacked in stages 1 to 4.
Fig.6 Structure diagram of model after improvement Backbone,Backbone network;Neck,Feature fusion layer;Head,Output detection head;Concat,Stitching operation of feature map; Upsample, Upsampling operation;C2f,Feature extraction module;Conv,Convolution operation;SPPF,Spatial pyramid pooling-fast layer.
| 模型 Model | mAP/% | Params/M | FLOPS/109 | 检测时间 Detection time/ms | 模型大小 Model size/MB |
|---|---|---|---|---|---|
| YOLOv8s | 94.4 | 11.13 | 28.4 | 4.6 | 22.5 |
| YOLOv8s-CBAM | 96.2 | 11.39 | 28.7 | 4.5 | 23.1 |
| YOLOv8s-FasterNet | 96.5 | 6.08 | 16.1 | 2.9 | 12.4 |
| YOLOv8s-WIoU | 95.4 | 11.13 | 28.4 | 4.5 | 22.5 |
| YOLOv8s-CBAM-FasterNet | 96.8 | 6.10 | 16.2 | 3.0 | 12.4 |
| YOLOv8s-FasterNet-WIoU | 96.5 | 6.08 | 16.1 | 3.0 | 12.4 |
| YOLOv8s-CBAM-WIoU | 96.8 | 11.39 | 28.7 | 4.5 | 23.1 |
| YOLOv8s-CFW | 98.2 | 6.10 | 16.2 | 3.0 | 12.4 |
Table 1 Comparison of ablation experiment results
| 模型 Model | mAP/% | Params/M | FLOPS/109 | 检测时间 Detection time/ms | 模型大小 Model size/MB |
|---|---|---|---|---|---|
| YOLOv8s | 94.4 | 11.13 | 28.4 | 4.6 | 22.5 |
| YOLOv8s-CBAM | 96.2 | 11.39 | 28.7 | 4.5 | 23.1 |
| YOLOv8s-FasterNet | 96.5 | 6.08 | 16.1 | 2.9 | 12.4 |
| YOLOv8s-WIoU | 95.4 | 11.13 | 28.4 | 4.5 | 22.5 |
| YOLOv8s-CBAM-FasterNet | 96.8 | 6.10 | 16.2 | 3.0 | 12.4 |
| YOLOv8s-FasterNet-WIoU | 96.5 | 6.08 | 16.1 | 3.0 | 12.4 |
| YOLOv8s-CBAM-WIoU | 96.8 | 11.39 | 28.7 | 4.5 | 23.1 |
| YOLOv8s-CFW | 98.2 | 6.10 | 16.2 | 3.0 | 12.4 |
| 模型 Model | 平均精度Average precision | 平均精度 均值 mAP | |||||
|---|---|---|---|---|---|---|---|
| 藻斑病 Algal spot | 茶轮斑病 Brown blight | 云纹叶枯病 Gray blight | 健康叶片 Healthy leaf | 茶角盲蝽病 Helopeltis | 红斑病 Red spot | ||
| YOLOv8s | 95.5 | 93.7 | 95.8 | 95.1 | 95.2 | 91.4 | 94.5 |
| YOLOv8s-CFW | 99.1 | 97.4 | 99.5 | 98.9 | 98.9 | 95.4 | 98.2 |
Table 2 Comparison of detection precision of pests and diseases in tea before and after improving the model %
| 模型 Model | 平均精度Average precision | 平均精度 均值 mAP | |||||
|---|---|---|---|---|---|---|---|
| 藻斑病 Algal spot | 茶轮斑病 Brown blight | 云纹叶枯病 Gray blight | 健康叶片 Healthy leaf | 茶角盲蝽病 Helopeltis | 红斑病 Red spot | ||
| YOLOv8s | 95.5 | 93.7 | 95.8 | 95.1 | 95.2 | 91.4 | 94.5 |
| YOLOv8s-CFW | 99.1 | 97.4 | 99.5 | 98.9 | 98.9 | 95.4 | 98.2 |
| 模型 Model | mAP/% | Params/106 | FLOPS/109 | 检测时间 Detection time/ms | 模型大小 Model size/MB |
|---|---|---|---|---|---|
| YOLOV3-tiny | 94.0 | 8.68 | 12.9 | 2.7 | 17.4 |
| YOLOv5s | 94.2 | 7.03 | 15.8 | 5.9 | 14.5 |
| YOLOv7 | 92.9 | 36.51 | 103.2 | 12.5 | 74.8 |
| YOLOv8s | 94.5 | 11.13 | 28.4 | 4.6 | 22.5 |
| YOLOv9s | 93.7 | 9.60 | 38.7 | 4.7 | 20.3 |
| YOLOv8s-CFW | 98.2 | 6.10 | 16.2 | 3.0 | 12.4 |
Table 3 Parameters of different models
| 模型 Model | mAP/% | Params/106 | FLOPS/109 | 检测时间 Detection time/ms | 模型大小 Model size/MB |
|---|---|---|---|---|---|
| YOLOV3-tiny | 94.0 | 8.68 | 12.9 | 2.7 | 17.4 |
| YOLOv5s | 94.2 | 7.03 | 15.8 | 5.9 | 14.5 |
| YOLOv7 | 92.9 | 36.51 | 103.2 | 12.5 | 74.8 |
| YOLOv8s | 94.5 | 11.13 | 28.4 | 4.6 | 22.5 |
| YOLOv9s | 93.7 | 9.60 | 38.7 | 4.7 | 20.3 |
| YOLOv8s-CFW | 98.2 | 6.10 | 16.2 | 3.0 | 12.4 |
| [1] | 陈禹, 吴雪梅, 张珍, 等. 基于改进YOLOv5s的自然环境下茶叶病害识别方法[J]. 农业工程学报, 2023, 39(24): 185-194. |
| CHEN Y, WU X M, ZHANG Z, et al. Method for identifying tea diseases in natural environment using improved YOLOv5s[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(24): 185-194. (in Chinese with English abstract) | |
| [2] | 叶荣, 马自飞, 高泉, 等. 基于改进YOLOv5s-ECA-ASFF算法的茶叶病害目标检测[J]. 中国农机化学报, 2024, 45(1): 244-251. |
| YE R, MA Z F, GAO Q, et al. Target detection of tea disease based on improved YOLOv5s-ECA-ASFF algorithm[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 244-251. (in Chinese with English abstract) | |
| [3] | 杨佳昊, 左昊轩, 黄祺成, 等. 基于YOLO v5s的作物叶片病害检测模型轻量化方法[J]. 农业机械学报, 2023, 54(S1): 222-229. |
| YANG J H, ZUO H X, HUANG Q C, et al. Lightweight method for crop leaf disease detection model based on YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(S1): 222-229. (in Chinese with English abstract) | |
| [4] | 时雷, 杨程凯, 雷镜楷, 等. 基于改进YOLO v8s的小麦小穗赤霉病检测研究[J]. 农业机械学报, 2024, 55(7): 280-289. |
| SHI L, YANG C K, LEI J K, et al. Wheat spikelet detection of Fusarium head blight based on improved YOLO v8s[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(7): 280-289. (in Chinese with English abstract) | |
| [5] | 李小祥, 张洁, 秦柯贝, 等. 基于改进YOLOv8的轻量级复杂环境苹果叶片病害检测方法[J]. 南京农业大学学报, 2025, 48(3): 734-743. |
| LI X X, ZHANG J, QIN K B, et al. A lightweight method for apple leaf disease detection in complex environments based on improved YOLOv8[J]. Journal of Nanjing Agricultural University, 2025, 48(3): 734-743. (in Chinese with English abstract) | |
| [6] | 廖娟, 刘凯旋, 杨玉青, 等. 基于RDN-YOLO的自然环境下水稻病害识别模型研究[J]. 农业机械学报, 2024, 55(8): 233-242. |
| LIAO J, LIU K X, YANG Y Q, et al. Rice disease recognition in natural environment based on RDN-YOLO[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(8): 233-242. (in Chinese with English abstract) | |
| [7] | 赵兴, 岳喜申, 邬欢欢. 基于改进YOLO v5的苹果叶部病害检测[J]. 江苏农业科学, 2024, 52(8): 183-192. |
| ZHAO X, YUE X S, WU H H. Detection of apple leaf disease based on improved YOLOv5[J]. Jiangsu Agricultural Sciences, 2024, 52(8): 183-192. (in Chinese with English abstract) | |
| [8] | 左昊轩, 黄祺成, 杨佳昊, 等. 基于改进YOLO v5s的作物黄化曲叶病检测方法[J]. 农业机械学报, 2023, 54(S1): 230-238. |
| ZUO H X, HUANG Q C, YANG J H, et al. Improved YOLO v5s-based detection method for crop yellow leaf curl virus disease[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(S1): 230-238. (in Chinese with English abstract) | |
| [9] | 晁晓菲, 池敬柯, 张继伟, 等. 基于PSA-YOLO网络的苹果叶片病斑检测[J]. 农业机械学报, 2022, 53(8): 329-336. |
| CHAO X F, CHI J K, ZHANG J W, et al. Apple leaf lesion detection based on PSA-YOLO network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 329-336. (in Chinese with English abstract) | |
| [10] | 韩鑫, 徐衍向, 封润泽, 等. 基于红外热成像和改进YOLO v5的作物病害早期识别[J]. 农业机械学报, 2023, 54(12): 300-307. |
| HAN X, XU Y X, FENG R Z, et al. Early identification of crop diseases based on infrared thermography and improved YOLOv5[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(12): 300-307. (in Chinese with English abstract) | |
| [11] | 张林鍹, 巴音塔娜, 曾庆松. 基于StyleGAN2-ADA和改进YOLO v7的葡萄病害检测方法[J]. 农业机械学报, 2024, 55(1):241-252. |
| ZHANG L X, BA Y, ZENG Q S. Grape disease detection algorithm based on StyleGAN2-ADA and improved YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(1):241-252. (in Chinese with English abstract) | |
| [12] | 孙道宗, 刘欢, 刘锦源, 等. 基于改进YOLOv4模型的茶叶病害识别[J]. 西北农林科技大学学报(自然科学版), 2023, 51(9): 145-154. |
| SUN D Z, LIU H, LIU J Y, et al. Recognition of tea diseases based on improved YOLOv4 model[J]. Journal of Northwest A & F University(Natural Science Edition), 2023, 51(9): 145-154. (in Chinese with English abstract) | |
| [13] | 范阳旭. 基于不可分小波和改进YOLOv8的交通标志检测算法[J]. 图像与信号处理, 2024, 13(2): 179-189. |
| FAN Y X. Traffic sign detection algorithm based on non-separable wavelets and improved YOLOv8[J]. Journal of Image and Signal Processing, 2024, 13(2): 179-189. (in Chinese with English abstract) | |
| [14] | 王美华, 吴振鑫, 周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报, 2021, 52(4): 239-247. |
| WANG M H, WU Z X, ZHOU Z G. Fine-grained identification research of crop pests and diseases based on improved CBAM via attention[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 239-247. (in Chinese with English abstract) | |
| [15] | CHEN J Q, MA A Q, HUANG L X, et al. Efficient and lightweight grape and picking point synchronous detection model based on key point detection[J]. Computers and Electronics in Agriculture, 2024, 217: 108612. |
| [16] | FU Y Y, RAN T, XIAO W D, et al. GD-YOLO: an improved convolutional neural network architecture for real-time detection of smoking and phone use behaviors[J]. Digital Signal Processing, 2024, 151: 104554. |
| [17] | 张学立, 贾新春, 王美刚, 等. 安全帽与反光衣的轻量化检测: 改进YOLOv5s的算法[J]. 计算机工程与应用, 2024, 60(1): 104-109. |
| ZHANG X L, JIA X C, WANG M G, et al. Lightweight detection of helmets and reflective clothings: improved YOLOv5s algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 104-109. (in Chinese with English abstract) |
| [1] | YANG Chun, LIANG Sihui, WANG Anran, CHEN Juan, LI Yan, LIN Kaiqin, MI Xiaozeng, QIAO Dahe, CHEN Zhengwu, GUO Yan. Characteristic metabolite content and cold resistance of 54 tea germplasms [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1860-1871. |
| [2] | LI Huaxin, YANG Xuankang, CHEN Ying, WU Xiaoting, LIU Silian, YANG Zhong, ZHOU Chenggang, GAO Dandan. Optimization of the preparation process and separation purification of antioxidant peptides from oat bran protein [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1958-1968. |
| [3] | DENG Yulian, TAN Lin, NIU Li, LU Qiancheng, ZHOU Linghong, LI Guihua, HU Qiulong. Screening and identification of an antagonistic fungus strain against root rot disease in tea plants and its biological characteristics [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1469-1480. |
| [4] | ZHU Lyuhan, FANG Kun, WU Xiaoli, YAO Qing, XIE Shuli, ZHENG Lei, AO Yue, CHEN Lihong, ZHAO Ke, WEI Jun, ZHANG Jin. Effect of microwave-assisted superheated steam heating on physicochemical property and sensory quality of pork batters [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 679-688. |
| [5] | LIU Yuexuan, CHEN Yanling, ZHANG Peiqiang, YAN Peng. Research progress on soil acidification and its regulation in tea plantations [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 245-254. |
| [6] | LI Hui, TAN Xiaoqin, TANG Qian, YANG Yang, CHEN Wei. Effects of flower thinning on yield and quality components of Zi Yan tea plants [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1602-1615. |
| [7] | ZHU Mingmin, ZHANG Guoping, TAN Jianjun, SUN Lingjiao, ZHU Li, JIAO Jie. A lightweight tea buds terminal detection model based on YOLOv5s [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1413-1424. |
| [8] | FU Tong, ZHENG Hang, XUE Xianglei, YE Yunxiang, YU Guohong, GE Qing. Experimental study on morphological and mechanical properties of tea tree shoot tips [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1425-1435. |
| [9] | WANG Hongcheng, BAI Zihao, XU Haihao, XU Kai, HUANG Along, WANG Ze’en, WAN Fei, ZHANG Linan, WU Liqun. Portable famous tea fresh leaves picking machine based on lifting-picking action [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1161-1172. |
| [10] | LI Dahua, KONG Shu, LI Dong, YU Xiao. Lightweight detection model of citrus leaf disease based on improved SSD [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 662-670. |
| [11] | FAN Weipei, YU Xiaoming, SHEN Fenglong, WANG Liang, WANG Xing. A lightweight bumblebee image classification model based on improved GhostNet V2 [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2832-2845. |
| [12] | YU Guohong, ZHENG Hang, YE Yunxiang, XUE Xianglei, FU Tong. Design and experiment on portable self-propelled tea picker [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2233-2239. |
| [13] | XU Yue, WU Xiaomeng, WANG Guoqing, ZOU Yunding, BI Shoudon. Analysis of relationship between number of Ricanidae in tea plantations and biochemical substances in tea leaves [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1834-1843. |
| [14] | ZHANG Ning, TAO Ronghao, LIU Peishi, HU Hanxiu, GAO Linlin, GUO Long, ZHU Zunyou, MA Youhua. Effects of organic fertilizer coupled with chemical fertilizer on growth and quality of tea and soil fertility [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1844-1852. |
| [15] | BAI Dingchen, ZHAO Zhifei, GONG Xue, LIU Yuan, NIU Suzhen, CHEN Zhengwu. Genome-wide association analysis of stomatal characters of cultivated local tea plants in Guizhou, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1550-1563. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||