浙江农业学报 ›› 2021, Vol. 33 ›› Issue (9): 1779-1788.DOI: 10.3969/j.issn.1004-1524.2021.09.22
• 综述 • 上一篇
收稿日期:
2021-02-07
出版日期:
2021-09-25
发布日期:
2021-10-09
通讯作者:
徐子伟
作者简介:
* 徐子伟,E-mail: xzwfyz@sina.com基金资助:
GUO Jia1,2(), MEN Xiaoming2, DENG Bo2, XU Ziwei2,*(
)
Received:
2021-02-07
Online:
2021-09-25
Published:
2021-10-09
Contact:
XU Ziwei
摘要:
硒蛋白是微量元素硒(Se)在动物体内发挥生物学功能的主要形式,其表达调控与动物生长和畜禽肉质密切相关。介绍动物体内Se元素吸收代谢的过程及其主要存在形式,系统总结动物硒蛋白的结构、种类、表达分布、生物学功能、合成过程、影响因素与候选功能基因等,重点分析硒蛋白在活体肌肉中的作用,以及对畜禽肉质调控的影响。通过梳理上述方面的研究进展,以期为新饲料添加剂开发和畜禽肉质调控研究提供科学依据。
中图分类号:
郭嘉, 门小明, 邓波, 徐子伟. 动物硒蛋白功能、表达及其肉质调控机制研究进展[J]. 浙江农业学报, 2021, 33(9): 1779-1788.
GUO Jia, MEN Xiaoming, DENG Bo, XU Ziwei. Advances of function, expression of animal selenoproteins and their regulation mechanism on meat quality[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1779-1788.
功能分类 Functional classification | 名称 Name | 简写 Abbreviation | 生理功能 Physiological function | 分布 Distribution |
---|---|---|---|---|
氧化还原功能 Redox function | 谷胱甘肽过氧化物酶1 Glutathione peroxidase 1 | GPX1 | 减少细胞内H2O2,参与胰岛素信号转导 Reduce intracellular H2O2, participated in insulin signal transduction | 细胞质、线粒体 Cytoplasm, mitochondria |
谷胱甘肽过氧化物酶2 Glutathione peroxidase 2 | GPX2 | 减少胃肠道过氧化物,抑制炎症反应 Reduce gastrointestinal peroxides, inhibit inflammation | 消化道上皮细胞 Digestive tract epithelial cells | |
谷胱甘肽过氧化物酶3 Glutathione peroxidase 3 | GPX3 | 减少血浆过氧化物,抑制血栓形成 Reduce plasma peroxides, inhibit thrombosis | 血浆 Plasma | |
谷胱甘肽过氧化物酶4 Glutathione peroxidase 4 | GPX4 | 减少脂质过氧化物,调节铁死亡和胚胎发育 Reduce lipid peroxides, regulate iron death and embryonic development | 体细胞、生殖细胞 Somatic cells, germ cells | |
谷胱甘肽过氧化物酶6 Glutathione peroxidase 6 | GPX6 | 修复嗅觉系统,调节精子头部获能 Repair the olfactory system, regulate sperm head capacitation | 嗅觉和生殖细胞 Olfaction and germ cells | |
硫氧还蛋白还原酶1 Thioredoxin reductase 1 | TXNRD1 | 还原硫氧还蛋白二硫键,影响胚胎发育 Reduced thioredoxin disulfide bond, influence embryonic development | 细胞质、细胞核 Cytoplasm, nucleus | |
硫氧还蛋白还原酶2 Thioredoxin reductase 2 | TXNRD2 | 还原硫氧还蛋白和谷氧还蛋白,影响胚胎发育 Reduced thioredoxin and glutaredoxin, influence embryonic development | 线粒体 Mitochondria | |
硫氧还蛋白还原酶3 Thioredoxin reductase 3 | TXNRD3 | 二硫键形成,催化GPx和TXN系统特异 反应,促进精子成熟 Form disulfide bond, catalyze the specific reaction of GPx and TXN system, promote sperm mature | 睾丸 Testis | |
硒蛋白K Selenoprotein K | SELENOK | 调节内质网Ca2+流量 Regulate the Ca2+ flow of endoplasmic reticulum | 内质网 Endoplasmic reticulum | |
硒蛋白W Selenoprotein W | SELENOW | 调节细胞周期,抗炎作用,免疫作用 Regulate cell cycle, anti-inflammatory effect, immune effect | 细胞质、细胞核 Cytoplasm, nucleus | |
硒蛋白R Selenoprotein R | MSRB1 | 还原甲硫氨酸亚砜化合物 Reduced methionine sulfoxide compound | 细胞质、细胞核 Cytoplasm, nucleus | |
硒蛋白H Selenoprotein H | SELENOH | 核仁氧化还原酶 Nucleolar oxidoreductase | 细胞核 Nucleus | |
硒蛋白T Selenoprotein T | SELENOT | 参与神经细胞Ca2+调节 Participated in nerve cell Ca2+ regulation | 内质网 Endoplasmic reticulum | |
硒蛋白O Selenoprotein O | SELENOO | 与线粒体氧化还原反应有关 Related to mitochondrial redox reaction | 线粒体 Mitochondria | |
甲状腺激素代谢调节功能 Regulatory function of thyroid hormone metabolism | 1型脱碘酶 Type 1 deiodoinases | DIO1 | 参与甲状腺激素代谢 Participated in thyroid hormone metabolism | 细胞膜 Cell membrane |
2型脱碘酶 Type 2 deiodoinases | DIO2 | 参与甲状腺激素代谢 Participated in thyroid hormone metabolism | 内质网、细胞核 Endoplasmic reticulum, nucleus | |
3型脱碘酶 Type 3 deiodoinases | DIO3 | 参与甲状腺激素分解代谢 Participated in thyroid hormone catabolism | 细胞膜、细胞核 Cell membrane, nucleus | |
硒蛋白转运合成功能 Transport and synthesis function of selenoprotein | 硒磷酸合成酶2 Selenophosphate synthetase 2 | SEPHS2 | 合成硒磷酸 Synthetic selenophosphate | 细胞质 Cytoplasm |
硒蛋白P Selenoprotein P | SELENOP | 转运Se元素,参与胰岛素信号转导 Se transport, participated in insulin signal transduction | 细胞外 Extracellular | |
蛋白质折叠功能 Protein folding function | 硒蛋白F Selenoprotein F | SELENOF | 影响癌症与白内障发生 Influence cancer and cataract occurrence | 内质网 Endoplasmic reticulum |
硒蛋白S Selenoprotein S | SELENOS | 抗炎作用、调节细胞因子产生 Anti-inflammatory effect, regulate cytokine production | 内质网 Endoplasmic reticulum | |
硒蛋白N Selenoprotein N | SELENON | 与肌肉稳定、功能有关 Related to muscle stability and function | 内质网 Endoplasmic reticulum | |
其他功能 Other functions | 硒蛋白M Selenoprotein M | SELENOM | 参与能量代谢调节 Participated in energy metabolism regulation | 内质网、高尔基体 Endoplasmic reticulum, Golgi |
硒蛋白Ⅰ Selenoprotein Ⅰ | SELENOI | 参与磷脂生物合成 Participated in phospholipid biosynthesis | 生物膜 Cell membrane | |
硒蛋白V Selenoprotein V | SELENOV | 抵抗氧化应激、抑制细胞凋亡 Resist oxidative stress and inhibit cytotoxicity | 睾丸 Testis |
表1 动物体内主要硒蛋白的功能分类与表达分布[12-13,21-22]
Table 1 Functional classification and expression distribution of main selenoproteins in animals[12-13,21-22]
功能分类 Functional classification | 名称 Name | 简写 Abbreviation | 生理功能 Physiological function | 分布 Distribution |
---|---|---|---|---|
氧化还原功能 Redox function | 谷胱甘肽过氧化物酶1 Glutathione peroxidase 1 | GPX1 | 减少细胞内H2O2,参与胰岛素信号转导 Reduce intracellular H2O2, participated in insulin signal transduction | 细胞质、线粒体 Cytoplasm, mitochondria |
谷胱甘肽过氧化物酶2 Glutathione peroxidase 2 | GPX2 | 减少胃肠道过氧化物,抑制炎症反应 Reduce gastrointestinal peroxides, inhibit inflammation | 消化道上皮细胞 Digestive tract epithelial cells | |
谷胱甘肽过氧化物酶3 Glutathione peroxidase 3 | GPX3 | 减少血浆过氧化物,抑制血栓形成 Reduce plasma peroxides, inhibit thrombosis | 血浆 Plasma | |
谷胱甘肽过氧化物酶4 Glutathione peroxidase 4 | GPX4 | 减少脂质过氧化物,调节铁死亡和胚胎发育 Reduce lipid peroxides, regulate iron death and embryonic development | 体细胞、生殖细胞 Somatic cells, germ cells | |
谷胱甘肽过氧化物酶6 Glutathione peroxidase 6 | GPX6 | 修复嗅觉系统,调节精子头部获能 Repair the olfactory system, regulate sperm head capacitation | 嗅觉和生殖细胞 Olfaction and germ cells | |
硫氧还蛋白还原酶1 Thioredoxin reductase 1 | TXNRD1 | 还原硫氧还蛋白二硫键,影响胚胎发育 Reduced thioredoxin disulfide bond, influence embryonic development | 细胞质、细胞核 Cytoplasm, nucleus | |
硫氧还蛋白还原酶2 Thioredoxin reductase 2 | TXNRD2 | 还原硫氧还蛋白和谷氧还蛋白,影响胚胎发育 Reduced thioredoxin and glutaredoxin, influence embryonic development | 线粒体 Mitochondria | |
硫氧还蛋白还原酶3 Thioredoxin reductase 3 | TXNRD3 | 二硫键形成,催化GPx和TXN系统特异 反应,促进精子成熟 Form disulfide bond, catalyze the specific reaction of GPx and TXN system, promote sperm mature | 睾丸 Testis | |
硒蛋白K Selenoprotein K | SELENOK | 调节内质网Ca2+流量 Regulate the Ca2+ flow of endoplasmic reticulum | 内质网 Endoplasmic reticulum | |
硒蛋白W Selenoprotein W | SELENOW | 调节细胞周期,抗炎作用,免疫作用 Regulate cell cycle, anti-inflammatory effect, immune effect | 细胞质、细胞核 Cytoplasm, nucleus | |
硒蛋白R Selenoprotein R | MSRB1 | 还原甲硫氨酸亚砜化合物 Reduced methionine sulfoxide compound | 细胞质、细胞核 Cytoplasm, nucleus | |
硒蛋白H Selenoprotein H | SELENOH | 核仁氧化还原酶 Nucleolar oxidoreductase | 细胞核 Nucleus | |
硒蛋白T Selenoprotein T | SELENOT | 参与神经细胞Ca2+调节 Participated in nerve cell Ca2+ regulation | 内质网 Endoplasmic reticulum | |
硒蛋白O Selenoprotein O | SELENOO | 与线粒体氧化还原反应有关 Related to mitochondrial redox reaction | 线粒体 Mitochondria | |
甲状腺激素代谢调节功能 Regulatory function of thyroid hormone metabolism | 1型脱碘酶 Type 1 deiodoinases | DIO1 | 参与甲状腺激素代谢 Participated in thyroid hormone metabolism | 细胞膜 Cell membrane |
2型脱碘酶 Type 2 deiodoinases | DIO2 | 参与甲状腺激素代谢 Participated in thyroid hormone metabolism | 内质网、细胞核 Endoplasmic reticulum, nucleus | |
3型脱碘酶 Type 3 deiodoinases | DIO3 | 参与甲状腺激素分解代谢 Participated in thyroid hormone catabolism | 细胞膜、细胞核 Cell membrane, nucleus | |
硒蛋白转运合成功能 Transport and synthesis function of selenoprotein | 硒磷酸合成酶2 Selenophosphate synthetase 2 | SEPHS2 | 合成硒磷酸 Synthetic selenophosphate | 细胞质 Cytoplasm |
硒蛋白P Selenoprotein P | SELENOP | 转运Se元素,参与胰岛素信号转导 Se transport, participated in insulin signal transduction | 细胞外 Extracellular | |
蛋白质折叠功能 Protein folding function | 硒蛋白F Selenoprotein F | SELENOF | 影响癌症与白内障发生 Influence cancer and cataract occurrence | 内质网 Endoplasmic reticulum |
硒蛋白S Selenoprotein S | SELENOS | 抗炎作用、调节细胞因子产生 Anti-inflammatory effect, regulate cytokine production | 内质网 Endoplasmic reticulum | |
硒蛋白N Selenoprotein N | SELENON | 与肌肉稳定、功能有关 Related to muscle stability and function | 内质网 Endoplasmic reticulum | |
其他功能 Other functions | 硒蛋白M Selenoprotein M | SELENOM | 参与能量代谢调节 Participated in energy metabolism regulation | 内质网、高尔基体 Endoplasmic reticulum, Golgi |
硒蛋白Ⅰ Selenoprotein Ⅰ | SELENOI | 参与磷脂生物合成 Participated in phospholipid biosynthesis | 生物膜 Cell membrane | |
硒蛋白V Selenoprotein V | SELENOV | 抵抗氧化应激、抑制细胞凋亡 Resist oxidative stress and inhibit cytotoxicity | 睾丸 Testis |
图1 Sec合成过程与掺入装置元件 Ser,丝氨酸;SerS,Ser-tRNA合成酶;PSTK,磷酸丝氨酰基-tRNA[Ser]Sec激酶;SPS2,硒磷酸合成酶2;SEPSECS,磷酰基tRNASec硒转移酶;PSer-tRNA[Ser]Sec,磷酸丝氨酰-tRNA[Ser]Sec;SRE,Sec重定义元件;SECIS,Sec插入序列;SBP2,SECIS结合蛋白2;eIF4a3,真核起始因子4a3;eEFSec,Sec特异性延伸因子。
Fig.1 Sec synthesis process and incorporation of device components Ser, Serine; SerS, Ser-tRNA synthetase; PSTK, phosphoseryl-tRNA[Ser]Sec kinase; SPS2, Selenophosphate synthase 2; SEPSECS, Phosphoryl tRNASec selenium transferase; PSer-tRNA[Ser]Sec, Phosphoseryl-tRNA[Ser]Sec; SRE, Sec redefinition element; SECIS, Selenocysteine insertion sequence; SBP2, SECIS binding protein 2; eIF4a3, Eukaryotic initiation factor 4a3; eEFSec, Selenocysteine-specific elongation factor.
[1] |
HARTIKAINEN H. Biogeochemistry of selenium and its impact on food chain quality and human health[J]. Journal of Trace Elements in Medicine and Biology, 2005, 18(4):309-318.
DOI URL |
[2] |
MARIOTTI M, RIDGE P G, ZHANG Y, et al. Composition and evolution of the vertebrate and mammalian selenoproteomes[J]. PLoS One, 2012, 7(3):e33066.
DOI URL |
[3] |
HA H Y, ALFULAIJ N, BERRY M J, et al. From selenium absorption to selenoprotein degradation[J]. Biological Trace Element Research, 2019, 192(1):26-37.
DOI URL |
[4] | MIHARA H, TOBE R, ESAKI N. Mechanism, structure, and biological role of selenocysteine lyase[M]// HATFIELD D, SCHWEIZER U, TSUJI P, et al. Selenium. Switzerland: Springer Cham, 2016: 113-123. |
[5] |
PEDROSA L F C, MOTLEY A K, STEVENSON T D, et al. Fecal selenium excretion is regulated by dietary selenium intake[J]. Biological Trace Element Research, 2012, 149(3):377-381.
DOI URL |
[6] |
BIERLA K, SZPUNAR J, YIANNIKOURIS A, et al. Comprehensive speciation of selenium in selenium-rich yeast[J]. TrAC Trends in Analytical Chemistry, 2012, 41:122-132.
DOI URL |
[7] |
ARNÉR E S J. Selenoproteins: what unique properties can arise with selenocysteine in place of cysteine?[J]. Experimental Cell Research, 2010, 316(8):1296-1303.
DOI URL |
[8] |
MOUSA R, NOTIS DARDASHTI R, METANIS N. Selenium and selenocysteine in protein chemistry[J]. Angewandte Chemie International Edition, 2017, 56(50):15818-15827.
DOI URL |
[9] | LOBANOV A V, HATFIELD D L, GLADYSHEV V N. Eukaryotic selenoproteins and selenoproteomes[J]. Biochimica et Biophysica Acta (BBA): General Subjects, 2009, 1790(11):1424-1428. |
[10] |
ESWORTHY R S, YANG L X, FRANKEL P H, et al. Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice[J]. The Journal of Nutrition, 2005, 135(4):740-745.
DOI URL |
[11] |
JIN R C, MAHONEY C E, COLEMAN ANDERSON L, et al. Glutathione peroxidase-3 deficiency promotes platelet-dependent thrombosis in vivo[J]. Circulation, 2011, 123(18):1963-1973.
DOI URL |
[12] |
LABUNSKYY V M, HATFIELD D L, GLADYSHEV V N. Selenoproteins: molecular pathways and physiological roles[J]. Physiological Reviews, 2014, 94(3):739-777.
DOI URL |
[13] |
PITTS M W, HOFFMANN P R. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis[J]. Cell Calcium, 2018, 70:76-86.
DOI URL |
[14] |
ZHANG L, ZHU J H, ZHANG X, et al. The thioredoxin-like family of selenoproteins: implications in aging and age-related degeneration[J]. Biological Trace Element Research, 2019, 188(1):189-195.
DOI URL |
[15] |
HAN S J, LEE B C, YIM S H, et al. Characterization of mammalian selenoprotein O: a redox-active mitochondrial protein[J]. PLoS One, 2014, 9(4):e95518.
DOI URL |
[16] |
HORIBATA Y, ELPELEG O, ERAN A, et al. EPT1 (selenoprotein I) is critical for the neural development and maintenance of plasmalogen in humans[J]. Journal of Lipid Research, 2018, 59(6):1015-1026.
DOI URL |
[17] |
SIES H. Role of metabolic H2O2 generation: redox signaling and oxidative stress[J]. Journal of Biological Chemistry, 2014, 289(13):8735-8741.
DOI URL |
[18] |
MATHEW O P, RANGANNA K, MILTON S G. Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation[J]. Pharmaceuticals (Basel, Switzerland), 2014, 7(11):1008-1027.
DOI URL |
[19] |
XU X M, CARLSON B A, IRONS R, et al. Selenophosphate synthetase 2 is essential for selenoprotein biosynjournal[J]. The Biochemical Journal, 2007, 404(1):115-120.
DOI URL |
[20] |
SAITO Y. Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess[J]. Journal of Clinical Biochemistry and Nutrition, 2020, 66(1):1-7.
DOI URL |
[21] |
CHEN Y, WANG K, ZHANG D L, et al. GPx6 is involved in the in vitro induced capacitation and acrosome reaction in porcine sperm[J]. Theriogenology, 2020, 156:107-115.
DOI URL |
[22] |
ZHANG X, XIONG W, CHEN L L, et al. Selenoprotein V protects against endoplasmic reticulum stress and oxidative injury induced by pro-oxidants[J]. Free Radical Biology and Medicine, 2020, 160:670-679.
DOI URL |
[23] | 郁军超, 薛连璧. 机体ROS的产生及对生物大分子的毒性作用[J]. 山东医药, 2012, 52(8):94-96. |
YU J C, XUE L B. Production of ROS in body and its toxic effect on biological macromolecules[J]. Shandong Medical Journal, 2012, 52(8):94-96.(in Chinese) | |
[24] | MÉPLAN C, HESKETH J. Functional genomics of selenoproteins and Se-responsive pathways[M]// HATFIELD D, SCHWEIZER U, TSUJI P, et al. Selenium. Switzerland: Springer Cham, 2016: 151-173. |
[25] |
SEYEDALI A, BERRY M J. Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency[J]. RNA, 2014, 20(8):1248-1256.
DOI URL |
[26] | BULTEAU A L, CHAVATTE L. Update on selenoprotein biosynjournal[J]. Antioxidants & Redox Signaling, 2015, 23(10):775-794. |
[27] | HOWARD M T. Probing selenoprotein translation by ribosome profiling[M]// HATFIELD D, SCHWEIZER U, TSUJI P, et al. Selenium. Switzerland: Springer Cham, 2016: 25-37. |
[28] | 王建强, 崔璐莹, 李建基, 等. 硒蛋白的功能及其对动物免疫的作用[J]. 动物营养学报, 2019, 31(9):4008-4015. |
WANG J Q, CUI L Y, LI J J, et al. Functions of selenoprotein and its effects on animal immunity[J]. Chinese Journal of Animal Nutrition, 2019, 31(9):4008-4015.(in Chinese with English abstract) | |
[29] |
LATRÈCHE L, JEAN-JEAN O, DRISCOLL D M, et al. Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine[J]. Nucleic Acids Research, 2009, 37(17):5868-5880.
DOI URL |
[30] | SEEHER S, ATASSI T, MAHDI Y, et al. Secisbp2 is essential for embryonic development and enhances selenoprotein expression[J]. Antioxidants & Redox Signaling, 2014, 21(6):835-849. |
[31] |
MINIARD A C, MIDDLETON L M, BUDIMAN M E, et al. Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression[J]. Nucleic Acids Research, 2010, 38(14):4807-4820.
DOI URL |
[32] |
BUDIMAN M E, BUBENIK J L, MINIARD A C, et al. Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation[J]. Molecular Cell, 2009, 35(4):479-489.
DOI URL |
[33] |
CARLSON B A, XU X M, GLADYSHEV V N, et al. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA[J]. Journal of Biological Chemistry, 2005, 280(7):5542-5548.
DOI URL |
[34] |
HOWARD M T, COPELAND P R. New directions for understanding the codon redefinition required for selenocysteine incorporation[J]. Biological Trace Element Research, 2019, 192(1):18-25.
DOI URL |
[35] |
ZOIDIS E, DEMIRIS N, KOMINAKIS A, et al. Meta-analysis of selenium accumulation and expression of antioxidant enzymes in chicken tissues[J]. Animal, 2014, 8(4):542-554.
DOI URL |
[36] |
ZHANG K, ZHAO Q Y, ZHAN T F, et al. Effect of different selenium sources on growth performance, tissue selenium content, meat quality, and selenoprotein gene expression in finishing pigs[J]. Biological Trace Element Research, 2020, 196(2):463-471.
DOI URL |
[37] | KIPP A P, FROMBACH J, DEUBEL S, et al. Selenoprotein W as biomarker for the efficacy of selenium compounds to act as source for selenoprotein biosynjournal[J]. Methods in Enzymology, 2013, 527:87-112. |
[38] |
BERMINGHAM E N, HESKETH J E, SINCLAIR B R, et al. Selenium-enriched foods are more effective at increasing glutathione peroxidase (GPx) activity compared with selenomethionine: a meta-analysis[J]. Nutrients, 2014, 6(10):4002-4031.
DOI URL |
[39] | ZAHIA T H, YONA L, ANNE-LAURE B, et al. Selective up-regulation of human selenoproteins in response to oxidative stress[J]. Free Radical Biology & Medicine, 2014, 75(Suppl.1):S25. |
[40] |
RAMAN A V, PITTS M W, SEYEDALI A, et al. Selenoprotein W expression and regulation in mouse brain and neurons[J]. Brain and Behavior, 2013, 3(5):562-574.
DOI URL |
[41] | 王晓龙, 许凯, 秦藕菊, 等. SelW基因转录后沉默对小鼠骨骼肌细胞内GSH及GPx影响研究[J]. 畜牧兽医学报, 2009, 40(7):1013-1018. |
WANG X L, XU K, QIN O J, et al. The influence of SelW on GSH and GPx after post-transcriptional gene silencing in mouse skeletal muscle cell[J]. Chinese Journal of Animal and Veterinary Sciences, 2009, 40(7):1013-1018.(in Chinese with English abstract) | |
[42] |
JING C L, DONG X F, WANG Z M, et al. Comparative study of DL-selenomethionine vs sodium selenite and seleno-yeast on antioxidant activity and selenium status in laying hens[J]. Poultry Science, 2015, 94(5):965-975.
DOI URL |
[43] |
WHITE L, ROMAGNÉ F, MÜLLER E, et al. Genetic adaptation to levels of dietary selenium in recent human history[J]. Molecular Biology and Evolution, 2015, 32(6):1507-1518.
DOI URL |
[44] |
MALLONEE D H, CROWDUS C A, BARGER J L, et al. Use of stringent selection parameters for the identification of possible selenium-responsive marker genes in mouse liver and gastrocnemius[J]. Biological Trace Element Research, 2011, 143(2):992-1006.
DOI URL |
[45] |
HUANG J Q, REN F Z, JIANG Y Y, et al. Selenoproteins protect against avian nutritional muscular dystrophy by metabolizing peroxides and regulating redox/apoptotic signaling[J]. Free Radical Biology and Medicine, 2015, 83:129-138.
DOI URL |
[46] |
CASTETS P, LESCURE A, GUICHENEY P, et al. Selenoprotein N in skeletal muscle: from diseases to function[J]. Journal of Molecular Medicine, 2012, 90(10):1095-1107.
DOI URL |
[47] |
ARBOGAST S, BEUVIN M, FRAYSSE B, et al. Oxidative stress inSEPN1-related myopathy: from pathophysiology to treatment[J]. Annals of Neurology, 2009, 65(6):677-686.
DOI URL |
[48] | 樊路杰, 窦鸣乐, 王小宇, 等. 宰后肌肉抗氧化能力与肉品质的关系[J]. 动物营养学报, 2018, 30(5):1676-1680. |
FAN L J, DOU M L, WANG X Y, et al. Relationship between antioxidant capacity of postmortem muscle and meat quality[J]. Chinese Journal of Animal Nutrition, 2018, 30(5):1676-1680.(in Chinese with English abstract) | |
[49] | CALVO L, TOLDRÁ F, RODRÍGUEZ A I, et al. Effect of dietary selenium source (organic vs. mineral) and muscle pH on meat quality characteristics of pigs[J]. Food Science & Nutrition, 2017, 5(1):94-102. |
[50] |
CALVO L, TOLDRÁ F, ARISTOY M C, et al. Effect of dietary organic selenium on muscle proteolytic activity and water-holding capacity in pork[J]. Meat Science, 2016, 121:1-11.
DOI URL |
[51] |
LIU B, XIONG Y L, JIANG J, et al. Cellular antioxidant mechanism of selenium-enriched yeast diets in the protection of meat quality of heat-stressed hens[J]. Food Bioscience, 2021, 39:100798.
DOI URL |
[52] |
CALVO L, SEGURA J, TOLDRÁ F, et al. Meat quality, free fatty acid concentration, and oxidative stability of pork from animals fed diets containing different sources of selenium[J]. Food Science and Technology International, 2017, 23(8):716-728.
DOI URL |
[53] |
LI J G, ZHOU J C, ZHAO H, et al. Enhanced water-holding capacity of meat was associated with increased Sepw1 gene expression in pigs fed selenium-enriched yeast[J]. Meat Science, 2011, 87(2):95-100.
DOI URL |
[54] | 黄家强, 姜云芸, 郭慧媛, 等. 硒蛋白基因W和N与鸡肉品质的相关性研究[J]. 中国食品学报, 2016, 16(11):83-88. |
HUANG J Q, JIANG Y Y, GUO H Y, et al. Association analysis between selenoprotein genes (Selw and Seln) and meat quality traits in chicken[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(11):83-88.(in Chinese with English abstract) | |
[55] |
KO K Y, LEE J H, JANG J K, et al. S-glutathionylation of mouse selenoprotein W prevents oxidative stress-induced cell death by blocking the formation of an intramolecular disulfide bond[J]. Free Radical Biology and Medicine, 2019, 141:362-371.
DOI URL |
[56] |
CHEN W, ZENG Y Q, CUI J X, et al. Effects of phospholipid hydroperoxide glutathione peroxidase mRNA expression on meat quality of M. longissimus dorsi in pigs[J]. European Food Research and Technology, 2011, 232(3):433-440.
DOI URL |
[57] |
YAO H D, ZHAO W C, ZHAO X, et al. Selenium deficiency mainly influences the gene expressions of antioxidative selenoproteins in chicken muscles[J]. Biological Trace Element Research, 2014, 161(3):318-327.
DOI URL |
[58] | INGOLD I, BERNDT C, SCHMITT S, et al. Selenium utilization by GPX4 was an evolutionary requirement to prevent hydroperoxide-induced ferroptosis[J]. Free Radical Biology and Medicine, 2017, 112:24. |
[59] | 郑良焰, 张琴, 刘碧涛, 等. 不同硒浓度日粮对小鼠肝脏和睾丸组织中部分硒蛋白mRNA水平的影响[J]. 中国畜牧兽医, 2013, 40(3):38-42. |
ZHENG L Y, ZHANG Q, LIU B T, et al. Effect of different dietary selenium concentration on mRNA levels of some selenoprotein in mice liver and testis[J]. China Animal Husbandry & Veterinary Medicine, 2013, 40(3):38-42.(in Chinese with English abstract) | |
[60] |
STEINBRENNER H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism[J]. Free Radical Biology and Medicine, 2013, 65:1538-1547.
DOI URL |
[61] |
WANG X, WU H, LONG Z, et al. Differential effect of Se on insulin resistance: regulation of adipogenesis and lipolysis[J]. Molecular and Cellular Biochemistry, 2016, 415(1/2):89-102.
DOI URL |
[62] |
PINTO A, JUNIPER D T, SANIL M, et al. Supranutritional selenium induces alterations in molecular targets related to energy metabolism in skeletal muscle and visceral adipose tissue of pigs[J]. Journal of Inorganic Biochemistry, 2012, 114:47-54.
DOI URL |
[63] |
PUERTO M D, OLIVERO R, TEREVINTO A, et al. Dietary organic and inorganic selenium on liver glycogen and lactate, pHu, color and drip loss of chicken Pectoralis and Gastrocnemius muscles[J]. Open Journal of Animal Sciences, 2016, 6(1):59-67.
DOI URL |
[1] | 方相, 杨钢桥, 黄丹. 农村产业融合的多功能绩效评价与障碍因子分析[J]. 浙江农业学报, 2021, 33(5): 932-943. |
[2] | 杨晓盼, 刘丽莉, 黄正迪, 李媛媛, 郝威铭, 张孟军, 史胜娟. 常温贮藏期间鸡蛋清流变特性和蛋白质成分的变化[J]. 浙江农业学报, 2021, 33(3): 526-533. |
[3] | 李如意, 尹军峰, 邹纯. 红茶菌的国内外研究现状[J]. 浙江农业学报, 2020, 32(12): 2291-2302. |
[4] | 王塑天, 孟繁明, 胡斌, 辛海云, 李宝红, 杜宗亮, 李剑豪. 藏猪在亚热带条件下的生长特性及其杂交利用效果[J]. 浙江农业学报, 2020, 32(11): 1963-1969. |
[5] | 王青霞, 陈喜靖, 喻曼, 沈阿林. 秸秆还田对稻田氮循环微生物及功能基因影响研究进展[J]. 浙江农业学报, 2019, 31(2): 333-342. |
[6] | 杨又兵, 卞军平, 吴燕, 娄然, 李世豪. 猪FTO基因多态性与肉质性状的关联分析[J]. 浙江农业学报, 2019, 31(12): 1971-1978. |
[7] | 卢鑫, 周靖航, 杨朝云, 张梦华, 叶连萌, 李叔臻, 黄锡霞, 马云, 王兴平, 史远刚. 新疆褐牛产奶和繁殖性状候选基因功能注释[J]. 浙江农业学报, 2019, 31(12): 1987-1995. |
[8] | 侯艳华, 张凯, 王磊, 孙静, 王旭荣, 张康, 王学智, 李建喜, 张景艳. 小鼠骨髓源CD103+DC分离培养及LPS对其形态与功能特征的影响[J]. 浙江农业学报, 2018, 30(7): 1122-1131. |
[9] | 王华, 汪王微, 王冬良, 张石虎, 胡新芳, 卢诗雨, 龚雪梅. 杜鹃花叶片转录组测序数据组装及功能注释[J]. 浙江农业学报, 2018, 30(7): 1149-1159. |
[10] | 牛景彦, 刘占才. 汞离子对草鱼抗氧化功能的影响[J]. 浙江农业学报, 2017, 29(9): 1451-1457. |
[11] | 李立科, 罗启慧, 黄超, 陈晓林, 陈苹, 李一帆, 刘文涛, 陈正礼. 大豆异黄酮对雄性大鼠脾脏IL-2、IL-4、TNF-α、INF-γ蛋白表达的影响[J]. 浙江农业学报, 2017, 29(9): 1458-1464. |
[12] | 徐轶飞, 田晓静, 刘丽霞, 高丹丹, 陈士恩, 李明生, 刘根娣, 刘元林. 多元统计分析在地方猪种肉质评价中的应用[J]. 浙江农业学报, 2017, 29(12): 1970-1977. |
[13] | 靳二辉, 周金星, 任曼, 胡倩倩, 金光明, 李升和. 酵母硒和硼联合添加对肉鸡免疫器官组织结构及免疫功能的影响[J]. 浙江农业学报, 2017, 29(11): 1783-1795. |
[14] | 王华,王建福,王欣荣,成述儒*,李晓梅,王志明,樊庆山,富丽霞,李双,周晓霞. 5个绵羊品种CAST基因多态性及其与肉品质的相关性[J]. 浙江农业学报, 2016, 28(8): 1309-. |
[15] | 陈杰1,田知利1,胡江1,*,罗玉柱1,刘秀1,王继卿1,石红梅2,雷俊杰2. 牦牛CAPN1基因intron 1多态性及其与胴体和肉质性状的关联性[J]. 浙江农业学报, 2016, 28(8): 1315-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||