浙江农业学报 ›› 2021, Vol. 33 ›› Issue (9): 1779-1788.DOI: 10.3969/j.issn.1004-1524.2021.09.22
• 综述 • 上一篇
收稿日期:2021-02-07
出版日期:2021-09-25
发布日期:2021-10-09
作者简介:* 徐子伟,E-mail: xzwfyz@sina.com通讯作者:
徐子伟
基金资助:
GUO Jia1,2(
), MEN Xiaoming2, DENG Bo2, XU Ziwei2,*(
)
Received:2021-02-07
Online:2021-09-25
Published:2021-10-09
Contact:
XU Ziwei
摘要:
硒蛋白是微量元素硒(Se)在动物体内发挥生物学功能的主要形式,其表达调控与动物生长和畜禽肉质密切相关。介绍动物体内Se元素吸收代谢的过程及其主要存在形式,系统总结动物硒蛋白的结构、种类、表达分布、生物学功能、合成过程、影响因素与候选功能基因等,重点分析硒蛋白在活体肌肉中的作用,以及对畜禽肉质调控的影响。通过梳理上述方面的研究进展,以期为新饲料添加剂开发和畜禽肉质调控研究提供科学依据。
中图分类号:
郭嘉, 门小明, 邓波, 徐子伟. 动物硒蛋白功能、表达及其肉质调控机制研究进展[J]. 浙江农业学报, 2021, 33(9): 1779-1788.
GUO Jia, MEN Xiaoming, DENG Bo, XU Ziwei. Advances of function, expression of animal selenoproteins and their regulation mechanism on meat quality[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1779-1788.
| 功能分类 Functional classification | 名称 Name | 简写 Abbreviation | 生理功能 Physiological function | 分布 Distribution |
|---|---|---|---|---|
| 氧化还原功能 Redox function | 谷胱甘肽过氧化物酶1 Glutathione peroxidase 1 | GPX1 | 减少细胞内H2O2,参与胰岛素信号转导 Reduce intracellular H2O2, participated in insulin signal transduction | 细胞质、线粒体 Cytoplasm, mitochondria |
| 谷胱甘肽过氧化物酶2 Glutathione peroxidase 2 | GPX2 | 减少胃肠道过氧化物,抑制炎症反应 Reduce gastrointestinal peroxides, inhibit inflammation | 消化道上皮细胞 Digestive tract epithelial cells | |
| 谷胱甘肽过氧化物酶3 Glutathione peroxidase 3 | GPX3 | 减少血浆过氧化物,抑制血栓形成 Reduce plasma peroxides, inhibit thrombosis | 血浆 Plasma | |
| 谷胱甘肽过氧化物酶4 Glutathione peroxidase 4 | GPX4 | 减少脂质过氧化物,调节铁死亡和胚胎发育 Reduce lipid peroxides, regulate iron death and embryonic development | 体细胞、生殖细胞 Somatic cells, germ cells | |
| 谷胱甘肽过氧化物酶6 Glutathione peroxidase 6 | GPX6 | 修复嗅觉系统,调节精子头部获能 Repair the olfactory system, regulate sperm head capacitation | 嗅觉和生殖细胞 Olfaction and germ cells | |
| 硫氧还蛋白还原酶1 Thioredoxin reductase 1 | TXNRD1 | 还原硫氧还蛋白二硫键,影响胚胎发育 Reduced thioredoxin disulfide bond, influence embryonic development | 细胞质、细胞核 Cytoplasm, nucleus | |
| 硫氧还蛋白还原酶2 Thioredoxin reductase 2 | TXNRD2 | 还原硫氧还蛋白和谷氧还蛋白,影响胚胎发育 Reduced thioredoxin and glutaredoxin, influence embryonic development | 线粒体 Mitochondria | |
| 硫氧还蛋白还原酶3 Thioredoxin reductase 3 | TXNRD3 | 二硫键形成,催化GPx和TXN系统特异 反应,促进精子成熟 Form disulfide bond, catalyze the specific reaction of GPx and TXN system, promote sperm mature | 睾丸 Testis | |
| 硒蛋白K Selenoprotein K | SELENOK | 调节内质网Ca2+流量 Regulate the Ca2+ flow of endoplasmic reticulum | 内质网 Endoplasmic reticulum | |
| 硒蛋白W Selenoprotein W | SELENOW | 调节细胞周期,抗炎作用,免疫作用 Regulate cell cycle, anti-inflammatory effect, immune effect | 细胞质、细胞核 Cytoplasm, nucleus | |
| 硒蛋白R Selenoprotein R | MSRB1 | 还原甲硫氨酸亚砜化合物 Reduced methionine sulfoxide compound | 细胞质、细胞核 Cytoplasm, nucleus | |
| 硒蛋白H Selenoprotein H | SELENOH | 核仁氧化还原酶 Nucleolar oxidoreductase | 细胞核 Nucleus | |
| 硒蛋白T Selenoprotein T | SELENOT | 参与神经细胞Ca2+调节 Participated in nerve cell Ca2+ regulation | 内质网 Endoplasmic reticulum | |
| 硒蛋白O Selenoprotein O | SELENOO | 与线粒体氧化还原反应有关 Related to mitochondrial redox reaction | 线粒体 Mitochondria | |
| 甲状腺激素代谢调节功能 Regulatory function of thyroid hormone metabolism | 1型脱碘酶 Type 1 deiodoinases | DIO1 | 参与甲状腺激素代谢 Participated in thyroid hormone metabolism | 细胞膜 Cell membrane |
| 2型脱碘酶 Type 2 deiodoinases | DIO2 | 参与甲状腺激素代谢 Participated in thyroid hormone metabolism | 内质网、细胞核 Endoplasmic reticulum, nucleus | |
| 3型脱碘酶 Type 3 deiodoinases | DIO3 | 参与甲状腺激素分解代谢 Participated in thyroid hormone catabolism | 细胞膜、细胞核 Cell membrane, nucleus | |
| 硒蛋白转运合成功能 Transport and synthesis function of selenoprotein | 硒磷酸合成酶2 Selenophosphate synthetase 2 | SEPHS2 | 合成硒磷酸 Synthetic selenophosphate | 细胞质 Cytoplasm |
| 硒蛋白P Selenoprotein P | SELENOP | 转运Se元素,参与胰岛素信号转导 Se transport, participated in insulin signal transduction | 细胞外 Extracellular | |
| 蛋白质折叠功能 Protein folding function | 硒蛋白F Selenoprotein F | SELENOF | 影响癌症与白内障发生 Influence cancer and cataract occurrence | 内质网 Endoplasmic reticulum |
| 硒蛋白S Selenoprotein S | SELENOS | 抗炎作用、调节细胞因子产生 Anti-inflammatory effect, regulate cytokine production | 内质网 Endoplasmic reticulum | |
| 硒蛋白N Selenoprotein N | SELENON | 与肌肉稳定、功能有关 Related to muscle stability and function | 内质网 Endoplasmic reticulum | |
| 其他功能 Other functions | 硒蛋白M Selenoprotein M | SELENOM | 参与能量代谢调节 Participated in energy metabolism regulation | 内质网、高尔基体 Endoplasmic reticulum, Golgi |
| 硒蛋白Ⅰ Selenoprotein Ⅰ | SELENOI | 参与磷脂生物合成 Participated in phospholipid biosynthesis | 生物膜 Cell membrane | |
| 硒蛋白V Selenoprotein V | SELENOV | 抵抗氧化应激、抑制细胞凋亡 Resist oxidative stress and inhibit cytotoxicity | 睾丸 Testis |
表1 动物体内主要硒蛋白的功能分类与表达分布[12-13,21-22]
Table 1 Functional classification and expression distribution of main selenoproteins in animals[12-13,21-22]
| 功能分类 Functional classification | 名称 Name | 简写 Abbreviation | 生理功能 Physiological function | 分布 Distribution |
|---|---|---|---|---|
| 氧化还原功能 Redox function | 谷胱甘肽过氧化物酶1 Glutathione peroxidase 1 | GPX1 | 减少细胞内H2O2,参与胰岛素信号转导 Reduce intracellular H2O2, participated in insulin signal transduction | 细胞质、线粒体 Cytoplasm, mitochondria |
| 谷胱甘肽过氧化物酶2 Glutathione peroxidase 2 | GPX2 | 减少胃肠道过氧化物,抑制炎症反应 Reduce gastrointestinal peroxides, inhibit inflammation | 消化道上皮细胞 Digestive tract epithelial cells | |
| 谷胱甘肽过氧化物酶3 Glutathione peroxidase 3 | GPX3 | 减少血浆过氧化物,抑制血栓形成 Reduce plasma peroxides, inhibit thrombosis | 血浆 Plasma | |
| 谷胱甘肽过氧化物酶4 Glutathione peroxidase 4 | GPX4 | 减少脂质过氧化物,调节铁死亡和胚胎发育 Reduce lipid peroxides, regulate iron death and embryonic development | 体细胞、生殖细胞 Somatic cells, germ cells | |
| 谷胱甘肽过氧化物酶6 Glutathione peroxidase 6 | GPX6 | 修复嗅觉系统,调节精子头部获能 Repair the olfactory system, regulate sperm head capacitation | 嗅觉和生殖细胞 Olfaction and germ cells | |
| 硫氧还蛋白还原酶1 Thioredoxin reductase 1 | TXNRD1 | 还原硫氧还蛋白二硫键,影响胚胎发育 Reduced thioredoxin disulfide bond, influence embryonic development | 细胞质、细胞核 Cytoplasm, nucleus | |
| 硫氧还蛋白还原酶2 Thioredoxin reductase 2 | TXNRD2 | 还原硫氧还蛋白和谷氧还蛋白,影响胚胎发育 Reduced thioredoxin and glutaredoxin, influence embryonic development | 线粒体 Mitochondria | |
| 硫氧还蛋白还原酶3 Thioredoxin reductase 3 | TXNRD3 | 二硫键形成,催化GPx和TXN系统特异 反应,促进精子成熟 Form disulfide bond, catalyze the specific reaction of GPx and TXN system, promote sperm mature | 睾丸 Testis | |
| 硒蛋白K Selenoprotein K | SELENOK | 调节内质网Ca2+流量 Regulate the Ca2+ flow of endoplasmic reticulum | 内质网 Endoplasmic reticulum | |
| 硒蛋白W Selenoprotein W | SELENOW | 调节细胞周期,抗炎作用,免疫作用 Regulate cell cycle, anti-inflammatory effect, immune effect | 细胞质、细胞核 Cytoplasm, nucleus | |
| 硒蛋白R Selenoprotein R | MSRB1 | 还原甲硫氨酸亚砜化合物 Reduced methionine sulfoxide compound | 细胞质、细胞核 Cytoplasm, nucleus | |
| 硒蛋白H Selenoprotein H | SELENOH | 核仁氧化还原酶 Nucleolar oxidoreductase | 细胞核 Nucleus | |
| 硒蛋白T Selenoprotein T | SELENOT | 参与神经细胞Ca2+调节 Participated in nerve cell Ca2+ regulation | 内质网 Endoplasmic reticulum | |
| 硒蛋白O Selenoprotein O | SELENOO | 与线粒体氧化还原反应有关 Related to mitochondrial redox reaction | 线粒体 Mitochondria | |
| 甲状腺激素代谢调节功能 Regulatory function of thyroid hormone metabolism | 1型脱碘酶 Type 1 deiodoinases | DIO1 | 参与甲状腺激素代谢 Participated in thyroid hormone metabolism | 细胞膜 Cell membrane |
| 2型脱碘酶 Type 2 deiodoinases | DIO2 | 参与甲状腺激素代谢 Participated in thyroid hormone metabolism | 内质网、细胞核 Endoplasmic reticulum, nucleus | |
| 3型脱碘酶 Type 3 deiodoinases | DIO3 | 参与甲状腺激素分解代谢 Participated in thyroid hormone catabolism | 细胞膜、细胞核 Cell membrane, nucleus | |
| 硒蛋白转运合成功能 Transport and synthesis function of selenoprotein | 硒磷酸合成酶2 Selenophosphate synthetase 2 | SEPHS2 | 合成硒磷酸 Synthetic selenophosphate | 细胞质 Cytoplasm |
| 硒蛋白P Selenoprotein P | SELENOP | 转运Se元素,参与胰岛素信号转导 Se transport, participated in insulin signal transduction | 细胞外 Extracellular | |
| 蛋白质折叠功能 Protein folding function | 硒蛋白F Selenoprotein F | SELENOF | 影响癌症与白内障发生 Influence cancer and cataract occurrence | 内质网 Endoplasmic reticulum |
| 硒蛋白S Selenoprotein S | SELENOS | 抗炎作用、调节细胞因子产生 Anti-inflammatory effect, regulate cytokine production | 内质网 Endoplasmic reticulum | |
| 硒蛋白N Selenoprotein N | SELENON | 与肌肉稳定、功能有关 Related to muscle stability and function | 内质网 Endoplasmic reticulum | |
| 其他功能 Other functions | 硒蛋白M Selenoprotein M | SELENOM | 参与能量代谢调节 Participated in energy metabolism regulation | 内质网、高尔基体 Endoplasmic reticulum, Golgi |
| 硒蛋白Ⅰ Selenoprotein Ⅰ | SELENOI | 参与磷脂生物合成 Participated in phospholipid biosynthesis | 生物膜 Cell membrane | |
| 硒蛋白V Selenoprotein V | SELENOV | 抵抗氧化应激、抑制细胞凋亡 Resist oxidative stress and inhibit cytotoxicity | 睾丸 Testis |
图1 Sec合成过程与掺入装置元件 Ser,丝氨酸;SerS,Ser-tRNA合成酶;PSTK,磷酸丝氨酰基-tRNA[Ser]Sec激酶;SPS2,硒磷酸合成酶2;SEPSECS,磷酰基tRNASec硒转移酶;PSer-tRNA[Ser]Sec,磷酸丝氨酰-tRNA[Ser]Sec;SRE,Sec重定义元件;SECIS,Sec插入序列;SBP2,SECIS结合蛋白2;eIF4a3,真核起始因子4a3;eEFSec,Sec特异性延伸因子。
Fig.1 Sec synthesis process and incorporation of device components Ser, Serine; SerS, Ser-tRNA synthetase; PSTK, phosphoseryl-tRNA[Ser]Sec kinase; SPS2, Selenophosphate synthase 2; SEPSECS, Phosphoryl tRNASec selenium transferase; PSer-tRNA[Ser]Sec, Phosphoseryl-tRNA[Ser]Sec; SRE, Sec redefinition element; SECIS, Selenocysteine insertion sequence; SBP2, SECIS binding protein 2; eIF4a3, Eukaryotic initiation factor 4a3; eEFSec, Selenocysteine-specific elongation factor.
| [1] |
HARTIKAINEN H. Biogeochemistry of selenium and its impact on food chain quality and human health[J]. Journal of Trace Elements in Medicine and Biology, 2005, 18(4):309-318.
DOI URL |
| [2] |
MARIOTTI M, RIDGE P G, ZHANG Y, et al. Composition and evolution of the vertebrate and mammalian selenoproteomes[J]. PLoS One, 2012, 7(3):e33066.
DOI URL |
| [3] |
HA H Y, ALFULAIJ N, BERRY M J, et al. From selenium absorption to selenoprotein degradation[J]. Biological Trace Element Research, 2019, 192(1):26-37.
DOI URL |
| [4] | MIHARA H, TOBE R, ESAKI N. Mechanism, structure, and biological role of selenocysteine lyase[M]// HATFIELD D, SCHWEIZER U, TSUJI P, et al. Selenium. Switzerland: Springer Cham, 2016: 113-123. |
| [5] |
PEDROSA L F C, MOTLEY A K, STEVENSON T D, et al. Fecal selenium excretion is regulated by dietary selenium intake[J]. Biological Trace Element Research, 2012, 149(3):377-381.
DOI URL |
| [6] |
BIERLA K, SZPUNAR J, YIANNIKOURIS A, et al. Comprehensive speciation of selenium in selenium-rich yeast[J]. TrAC Trends in Analytical Chemistry, 2012, 41:122-132.
DOI URL |
| [7] |
ARNÉR E S J. Selenoproteins: what unique properties can arise with selenocysteine in place of cysteine?[J]. Experimental Cell Research, 2010, 316(8):1296-1303.
DOI URL |
| [8] |
MOUSA R, NOTIS DARDASHTI R, METANIS N. Selenium and selenocysteine in protein chemistry[J]. Angewandte Chemie International Edition, 2017, 56(50):15818-15827.
DOI URL |
| [9] | LOBANOV A V, HATFIELD D L, GLADYSHEV V N. Eukaryotic selenoproteins and selenoproteomes[J]. Biochimica et Biophysica Acta (BBA): General Subjects, 2009, 1790(11):1424-1428. |
| [10] |
ESWORTHY R S, YANG L X, FRANKEL P H, et al. Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice[J]. The Journal of Nutrition, 2005, 135(4):740-745.
DOI URL |
| [11] |
JIN R C, MAHONEY C E, COLEMAN ANDERSON L, et al. Glutathione peroxidase-3 deficiency promotes platelet-dependent thrombosis in vivo[J]. Circulation, 2011, 123(18):1963-1973.
DOI URL |
| [12] |
LABUNSKYY V M, HATFIELD D L, GLADYSHEV V N. Selenoproteins: molecular pathways and physiological roles[J]. Physiological Reviews, 2014, 94(3):739-777.
DOI URL |
| [13] |
PITTS M W, HOFFMANN P R. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis[J]. Cell Calcium, 2018, 70:76-86.
DOI URL |
| [14] |
ZHANG L, ZHU J H, ZHANG X, et al. The thioredoxin-like family of selenoproteins: implications in aging and age-related degeneration[J]. Biological Trace Element Research, 2019, 188(1):189-195.
DOI URL |
| [15] |
HAN S J, LEE B C, YIM S H, et al. Characterization of mammalian selenoprotein O: a redox-active mitochondrial protein[J]. PLoS One, 2014, 9(4):e95518.
DOI URL |
| [16] |
HORIBATA Y, ELPELEG O, ERAN A, et al. EPT1 (selenoprotein I) is critical for the neural development and maintenance of plasmalogen in humans[J]. Journal of Lipid Research, 2018, 59(6):1015-1026.
DOI URL |
| [17] |
SIES H. Role of metabolic H2O2 generation: redox signaling and oxidative stress[J]. Journal of Biological Chemistry, 2014, 289(13):8735-8741.
DOI URL |
| [18] |
MATHEW O P, RANGANNA K, MILTON S G. Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation[J]. Pharmaceuticals (Basel, Switzerland), 2014, 7(11):1008-1027.
DOI URL |
| [19] |
XU X M, CARLSON B A, IRONS R, et al. Selenophosphate synthetase 2 is essential for selenoprotein biosynjournal[J]. The Biochemical Journal, 2007, 404(1):115-120.
DOI URL |
| [20] |
SAITO Y. Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess[J]. Journal of Clinical Biochemistry and Nutrition, 2020, 66(1):1-7.
DOI URL |
| [21] |
CHEN Y, WANG K, ZHANG D L, et al. GPx6 is involved in the in vitro induced capacitation and acrosome reaction in porcine sperm[J]. Theriogenology, 2020, 156:107-115.
DOI URL |
| [22] |
ZHANG X, XIONG W, CHEN L L, et al. Selenoprotein V protects against endoplasmic reticulum stress and oxidative injury induced by pro-oxidants[J]. Free Radical Biology and Medicine, 2020, 160:670-679.
DOI URL |
| [23] | 郁军超, 薛连璧. 机体ROS的产生及对生物大分子的毒性作用[J]. 山东医药, 2012, 52(8):94-96. |
| YU J C, XUE L B. Production of ROS in body and its toxic effect on biological macromolecules[J]. Shandong Medical Journal, 2012, 52(8):94-96.(in Chinese) | |
| [24] | MÉPLAN C, HESKETH J. Functional genomics of selenoproteins and Se-responsive pathways[M]// HATFIELD D, SCHWEIZER U, TSUJI P, et al. Selenium. Switzerland: Springer Cham, 2016: 151-173. |
| [25] |
SEYEDALI A, BERRY M J. Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency[J]. RNA, 2014, 20(8):1248-1256.
DOI URL |
| [26] | BULTEAU A L, CHAVATTE L. Update on selenoprotein biosynjournal[J]. Antioxidants & Redox Signaling, 2015, 23(10):775-794. |
| [27] | HOWARD M T. Probing selenoprotein translation by ribosome profiling[M]// HATFIELD D, SCHWEIZER U, TSUJI P, et al. Selenium. Switzerland: Springer Cham, 2016: 25-37. |
| [28] | 王建强, 崔璐莹, 李建基, 等. 硒蛋白的功能及其对动物免疫的作用[J]. 动物营养学报, 2019, 31(9):4008-4015. |
| WANG J Q, CUI L Y, LI J J, et al. Functions of selenoprotein and its effects on animal immunity[J]. Chinese Journal of Animal Nutrition, 2019, 31(9):4008-4015.(in Chinese with English abstract) | |
| [29] |
LATRÈCHE L, JEAN-JEAN O, DRISCOLL D M, et al. Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine[J]. Nucleic Acids Research, 2009, 37(17):5868-5880.
DOI URL |
| [30] | SEEHER S, ATASSI T, MAHDI Y, et al. Secisbp2 is essential for embryonic development and enhances selenoprotein expression[J]. Antioxidants & Redox Signaling, 2014, 21(6):835-849. |
| [31] |
MINIARD A C, MIDDLETON L M, BUDIMAN M E, et al. Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression[J]. Nucleic Acids Research, 2010, 38(14):4807-4820.
DOI URL |
| [32] |
BUDIMAN M E, BUBENIK J L, MINIARD A C, et al. Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation[J]. Molecular Cell, 2009, 35(4):479-489.
DOI URL |
| [33] |
CARLSON B A, XU X M, GLADYSHEV V N, et al. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA[J]. Journal of Biological Chemistry, 2005, 280(7):5542-5548.
DOI URL |
| [34] |
HOWARD M T, COPELAND P R. New directions for understanding the codon redefinition required for selenocysteine incorporation[J]. Biological Trace Element Research, 2019, 192(1):18-25.
DOI URL |
| [35] |
ZOIDIS E, DEMIRIS N, KOMINAKIS A, et al. Meta-analysis of selenium accumulation and expression of antioxidant enzymes in chicken tissues[J]. Animal, 2014, 8(4):542-554.
DOI URL |
| [36] |
ZHANG K, ZHAO Q Y, ZHAN T F, et al. Effect of different selenium sources on growth performance, tissue selenium content, meat quality, and selenoprotein gene expression in finishing pigs[J]. Biological Trace Element Research, 2020, 196(2):463-471.
DOI URL |
| [37] | KIPP A P, FROMBACH J, DEUBEL S, et al. Selenoprotein W as biomarker for the efficacy of selenium compounds to act as source for selenoprotein biosynjournal[J]. Methods in Enzymology, 2013, 527:87-112. |
| [38] |
BERMINGHAM E N, HESKETH J E, SINCLAIR B R, et al. Selenium-enriched foods are more effective at increasing glutathione peroxidase (GPx) activity compared with selenomethionine: a meta-analysis[J]. Nutrients, 2014, 6(10):4002-4031.
DOI URL |
| [39] | ZAHIA T H, YONA L, ANNE-LAURE B, et al. Selective up-regulation of human selenoproteins in response to oxidative stress[J]. Free Radical Biology & Medicine, 2014, 75(Suppl.1):S25. |
| [40] |
RAMAN A V, PITTS M W, SEYEDALI A, et al. Selenoprotein W expression and regulation in mouse brain and neurons[J]. Brain and Behavior, 2013, 3(5):562-574.
DOI URL |
| [41] | 王晓龙, 许凯, 秦藕菊, 等. SelW基因转录后沉默对小鼠骨骼肌细胞内GSH及GPx影响研究[J]. 畜牧兽医学报, 2009, 40(7):1013-1018. |
| WANG X L, XU K, QIN O J, et al. The influence of SelW on GSH and GPx after post-transcriptional gene silencing in mouse skeletal muscle cell[J]. Chinese Journal of Animal and Veterinary Sciences, 2009, 40(7):1013-1018.(in Chinese with English abstract) | |
| [42] |
JING C L, DONG X F, WANG Z M, et al. Comparative study of DL-selenomethionine vs sodium selenite and seleno-yeast on antioxidant activity and selenium status in laying hens[J]. Poultry Science, 2015, 94(5):965-975.
DOI URL |
| [43] |
WHITE L, ROMAGNÉ F, MÜLLER E, et al. Genetic adaptation to levels of dietary selenium in recent human history[J]. Molecular Biology and Evolution, 2015, 32(6):1507-1518.
DOI URL |
| [44] |
MALLONEE D H, CROWDUS C A, BARGER J L, et al. Use of stringent selection parameters for the identification of possible selenium-responsive marker genes in mouse liver and gastrocnemius[J]. Biological Trace Element Research, 2011, 143(2):992-1006.
DOI URL |
| [45] |
HUANG J Q, REN F Z, JIANG Y Y, et al. Selenoproteins protect against avian nutritional muscular dystrophy by metabolizing peroxides and regulating redox/apoptotic signaling[J]. Free Radical Biology and Medicine, 2015, 83:129-138.
DOI URL |
| [46] |
CASTETS P, LESCURE A, GUICHENEY P, et al. Selenoprotein N in skeletal muscle: from diseases to function[J]. Journal of Molecular Medicine, 2012, 90(10):1095-1107.
DOI URL |
| [47] |
ARBOGAST S, BEUVIN M, FRAYSSE B, et al. Oxidative stress inSEPN1-related myopathy: from pathophysiology to treatment[J]. Annals of Neurology, 2009, 65(6):677-686.
DOI URL |
| [48] | 樊路杰, 窦鸣乐, 王小宇, 等. 宰后肌肉抗氧化能力与肉品质的关系[J]. 动物营养学报, 2018, 30(5):1676-1680. |
| FAN L J, DOU M L, WANG X Y, et al. Relationship between antioxidant capacity of postmortem muscle and meat quality[J]. Chinese Journal of Animal Nutrition, 2018, 30(5):1676-1680.(in Chinese with English abstract) | |
| [49] | CALVO L, TOLDRÁ F, RODRÍGUEZ A I, et al. Effect of dietary selenium source (organic vs. mineral) and muscle pH on meat quality characteristics of pigs[J]. Food Science & Nutrition, 2017, 5(1):94-102. |
| [50] |
CALVO L, TOLDRÁ F, ARISTOY M C, et al. Effect of dietary organic selenium on muscle proteolytic activity and water-holding capacity in pork[J]. Meat Science, 2016, 121:1-11.
DOI URL |
| [51] |
LIU B, XIONG Y L, JIANG J, et al. Cellular antioxidant mechanism of selenium-enriched yeast diets in the protection of meat quality of heat-stressed hens[J]. Food Bioscience, 2021, 39:100798.
DOI URL |
| [52] |
CALVO L, SEGURA J, TOLDRÁ F, et al. Meat quality, free fatty acid concentration, and oxidative stability of pork from animals fed diets containing different sources of selenium[J]. Food Science and Technology International, 2017, 23(8):716-728.
DOI URL |
| [53] |
LI J G, ZHOU J C, ZHAO H, et al. Enhanced water-holding capacity of meat was associated with increased Sepw1 gene expression in pigs fed selenium-enriched yeast[J]. Meat Science, 2011, 87(2):95-100.
DOI URL |
| [54] | 黄家强, 姜云芸, 郭慧媛, 等. 硒蛋白基因W和N与鸡肉品质的相关性研究[J]. 中国食品学报, 2016, 16(11):83-88. |
| HUANG J Q, JIANG Y Y, GUO H Y, et al. Association analysis between selenoprotein genes (Selw and Seln) and meat quality traits in chicken[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(11):83-88.(in Chinese with English abstract) | |
| [55] |
KO K Y, LEE J H, JANG J K, et al. S-glutathionylation of mouse selenoprotein W prevents oxidative stress-induced cell death by blocking the formation of an intramolecular disulfide bond[J]. Free Radical Biology and Medicine, 2019, 141:362-371.
DOI URL |
| [56] |
CHEN W, ZENG Y Q, CUI J X, et al. Effects of phospholipid hydroperoxide glutathione peroxidase mRNA expression on meat quality of M. longissimus dorsi in pigs[J]. European Food Research and Technology, 2011, 232(3):433-440.
DOI URL |
| [57] |
YAO H D, ZHAO W C, ZHAO X, et al. Selenium deficiency mainly influences the gene expressions of antioxidative selenoproteins in chicken muscles[J]. Biological Trace Element Research, 2014, 161(3):318-327.
DOI URL |
| [58] | INGOLD I, BERNDT C, SCHMITT S, et al. Selenium utilization by GPX4 was an evolutionary requirement to prevent hydroperoxide-induced ferroptosis[J]. Free Radical Biology and Medicine, 2017, 112:24. |
| [59] | 郑良焰, 张琴, 刘碧涛, 等. 不同硒浓度日粮对小鼠肝脏和睾丸组织中部分硒蛋白mRNA水平的影响[J]. 中国畜牧兽医, 2013, 40(3):38-42. |
| ZHENG L Y, ZHANG Q, LIU B T, et al. Effect of different dietary selenium concentration on mRNA levels of some selenoprotein in mice liver and testis[J]. China Animal Husbandry & Veterinary Medicine, 2013, 40(3):38-42.(in Chinese with English abstract) | |
| [60] |
STEINBRENNER H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism[J]. Free Radical Biology and Medicine, 2013, 65:1538-1547.
DOI URL |
| [61] |
WANG X, WU H, LONG Z, et al. Differential effect of Se on insulin resistance: regulation of adipogenesis and lipolysis[J]. Molecular and Cellular Biochemistry, 2016, 415(1/2):89-102.
DOI URL |
| [62] |
PINTO A, JUNIPER D T, SANIL M, et al. Supranutritional selenium induces alterations in molecular targets related to energy metabolism in skeletal muscle and visceral adipose tissue of pigs[J]. Journal of Inorganic Biochemistry, 2012, 114:47-54.
DOI URL |
| [63] |
PUERTO M D, OLIVERO R, TEREVINTO A, et al. Dietary organic and inorganic selenium on liver glycogen and lactate, pHu, color and drip loss of chicken Pectoralis and Gastrocnemius muscles[J]. Open Journal of Animal Sciences, 2016, 6(1):59-67.
DOI URL |
| [1] | 谭海霞, 彭红丽, 王连龙, 魏建梅. 马铃薯健康株与疮痂病株根区土壤微生物群落多样性差异分析[J]. 浙江农业学报, 2025, 37(8): 1743-1754. |
| [2] | 费俊男, 王彬彬, 门小明, 徐子伟. 不同屠宰体重对绿嘉黑猪胴体性状和肉质风味的影响[J]. 浙江农业学报, 2025, 37(3): 559-567. |
| [3] | 王彬彬, 齐珂珂, 门小明, 徐子伟. 基因组选择技术在猪肉质育种中的应用与展望[J]. 浙江农业学报, 2025, 37(3): 726-735. |
| [4] | 刘洵, 夏其乐, 李彦坡, 王阳光, 陆胜民. 瓯柑果渣可溶性和不溶性膳食纤维的提取工艺优化及其理化和功能特性的差异[J]. 浙江农业学报, 2025, 37(1): 189-202. |
| [5] | 俞沁佩, 孙鹂, 张淑文, 俞浙萍, 郑锡良, 戚行江. 园艺作物果实β-半乳糖苷酶研究进展[J]. 浙江农业学报, 2024, 36(9): 2184-2192. |
| [6] | 齐学礼, 李莹, 段俊枝. 耐盐基因在小麦耐盐基因工程中的应用[J]. 浙江农业学报, 2024, 36(6): 1447-1457. |
| [7] | 张翰生, 昌秦湘, 康建忠, 梁宗锁. 核桃的营养价值及其开发利用研究进展[J]. 浙江农业学报, 2024, 36(4): 905-919. |
| [8] | 高憬, 陆玲鸿, 古咸彬, 范飞, 宋根华, 张慧琴. 猕猴桃AcWRKY94基因的克隆及其在盐胁迫下的功能分析[J]. 浙江农业学报, 2024, 36(11): 2501-2509. |
| [9] | 皮艺萌, 鲁艳辉, 吕仲贤, 许益鹏, 徐红星. 农田杂草在害虫防治中的作用[J]. 浙江农业学报, 2024, 36(10): 2426-2436. |
| [10] | 乔红雍, 袁涛, 赵信勇, 杨会岩. 不同株龄鲁菏红细根内生微生物群落变化特征[J]. 浙江农业学报, 2024, 36(1): 115-126. |
| [11] | 张艺, 王丰, 蔡刘体, 汪汉成, 熊晶, 陈兴江. 感赤星病与健康烟叶在腈菌唑应用后的叶际微生态[J]. 浙江农业学报, 2024, 36(1): 156-167. |
| [12] | 李必元, 岳智臣, 赵彦婷, 雷娟利, 胡齐赞, 陶鹏. 大白菜番茄红素β-环化酶基因BrLCYB的鉴定与功能分析[J]. 浙江农业学报, 2023, 35(9): 2090-2096. |
| [13] | 聂玮, 孟科, 荣轩, 强浩, 郭晨浩, 陶毛孩, 冯登侦. 绵羊GRM1基因多态性及其与肉质性状的相关性[J]. 浙江农业学报, 2023, 35(4): 799-808. |
| [14] | 王博, 陈秋霖, 万晶晶. 新发展阶段乡村发展的时空逻辑与突破方向[J]. 浙江农业学报, 2023, 35(2): 468-476. |
| [15] | 郝柳柳, 代梨梨, 彭亮, 陈思媛, 陶玲, 李谷, 张辉. 稻虾种养系统水稻根际土壤活性有机碳、微生物群落结构及其相互关系[J]. 浙江农业学报, 2023, 35(12): 2901-2913. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||