浙江农业学报 ›› 2021, Vol. 33 ›› Issue (9): 1770-1778.DOI: 10.3969/j.issn.1004-1524.2021.09.21
孙丽萍1,2(
), 白琳琳2,3, 干雅婷1, 陈雪雲2,3, 王柳2, 张宜明1,*(
), 何开雨2,*(
), 徐霞红2
收稿日期:2020-08-10
出版日期:2021-09-25
发布日期:2021-10-09
作者简介:何开雨,E-mail: hekaiyu@zaas.ac.cn通讯作者:
张宜明,何开雨
基金资助:
SUN Liping1,2(
), BAI Linlin2,3, GAN Yating1, CHEN Xueyun2,3, WANG Liu2, ZHANG Yiming1,*(
), HE Kaiyu2,*(
), XU Xiahong2
Received:2020-08-10
Online:2021-09-25
Published:2021-10-09
Contact:
ZHANG Yiming,HE Kaiyu
摘要:
DNA的结构具有多样性,除经典的双螺旋结构外,近年来的研究发现和组装获得了更为多样的DNA结构类型,如三螺旋结构、发夹结构、i-motif结构、G-四链体等非传统结构。这些特殊结构具有一定的功能,例如,G-四链体可与氯高铁血红素结合形成具有辣根过氧化物酶活性的复合物,也可增强某些染料分子的荧光强度。此外,G-四链体的形成与稳定性可控、可设计,是构建化学生物传感的良好材料。以一些典型的研究工作为例,本文对近年来G-四链体在农产品中农兽药残留及重金属离子快速检测中的应用进行了总结,并对其应用前景进行展望。
中图分类号:
孙丽萍, 白琳琳, 干雅婷, 陈雪雲, 王柳, 张宜明, 何开雨, 徐霞红. 基于DNA G-四链体的农兽药残留与重金属离子快速检测研究进展[J]. 浙江农业学报, 2021, 33(9): 1770-1778.
SUN Liping, BAI Linlin, GAN Yating, CHEN Xueyun, WANG Liu, ZHANG Yiming, HE Kaiyu, XU Xiahong. Research progress of rapid detection of pesticides and veterinary drugs residues and heavy metal ions based on DNA G-quadruplex[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1770-1778.
图1 G-四分体及G-四链体 A,G-四分体结构;B,分子内折叠形成G-四链体(反平行结构);C,双分子折叠形成G-四链体(反平行结构);D,四分子折叠形成G-四链体(平行结构)。
Fig.1 G-tetrad and G-quadruplexes A, G-tetrad structure; B, Monomolecular folded G-quadruplex (Antiparallel structure); C, Bimolecular folded G-quadruplex (Antiparallel structure); D, Tetramolecular folded G-quadruplex (Parallel structure).
图2 染料分子结构式 A,卟啉[33];B,硫磺素T[34];C,噻唑橙[35];D,N-甲基吗啡啉[36]。
Fig.2 Molecular structural formula of dyes A, Protoporphyrin IX[33]; B, Thioflavin T[34]; C, Thiazole Orange[35]; D, N-methylmorpholine[36].
图3 基于G-四链体传感快速检测农产品中兽药残留 A,基于DNA G-四链体和三螺旋结构快速检测四环素[39];B,利用DNA G-四链体构建SERS传感平台快速检测孔雀石绿[40]。
Fig.3 Rapid detection of veterinary drug residues in agricultural products based on G-quadruplex sensors A, Scheme of tetracycline rapid detection based on DNA G-quadruplex and triple helix[39]; B, Scheme of G-quadruplex based SERS sensing platform for the rapid detection of malachite green[40].
图4 基于G-四链体传感快速检测农产品中农药残留 A,利用乙醇胺适配体形成的G-四链体快速检测乙醇胺原理图[42];B,基于DNA 适配体和G-四链体免标记无酶荧光生物传感快速检测水胺硫磷[43];C,基于DNA三螺旋结构分子开关和G-四链体荧光生物传感快速检测啶虫脒[44]。
Fig.4 Rapid detection of pesticide residues in agricultural products based on G-quadruplex sensors A, The rapid detection of ethanolamine based on G-quadruplex formed by ethanolamine aptamer[42]; B, The label-free and enzyme-free fluorescent biosensor for the rapid detection of ICP[43]; C, Fluorescence biosensor for the detection of acetamiprid based on DNA triple helix molecular switch and G-quadruplex[44].
图5 基于G-四链体传感快速检测农产品中重金属离子 A,基于DNA G-四链体的Hg2+免标记传感器[45];B,G-四链体-hemin催化放大电化学信号灵敏检测Pb2+[46];C,基于G-四链体的Ag+快速检测[47]。
Fig.5 Rapid detection of heavy metal ions in agricultural products based on G-quadruplex sensors A, Scheme of the label-free Hg2+ sensor based on G-quadruplex[45]; B, DNA G-quadruplex-hemin amplified signal for the sensitive electrochemical detection of Pb2+[46]; C, DNA G-quadruplex based Ag+ biosensor[47].
| [1] |
MOHAN C, KUMAR Y, MADAN J, et al. Multiresidue analysis of neonicotinoids by solid-phase extraction technique using high-performance liquid chromatography[J]. Environmental Monitoring and Assessment, 2010, 165(1/2/3/4):573-576.
DOI URL |
| [2] |
KUMARAVEL A, MURUGANANTHAN M, MANGALAM R, et al. A novel, biocompatible and electrocatalytic stearic acid/nanosilver modified glassy carbon electrode for the sensing of paraoxon pesticide in food samples and commercial formulations[J]. Food Chemistry, 2020, 323:126814.
DOI URL |
| [3] |
YU C C, HAO D Y, CHU Q, et al. A one adsorbent QuEChERS method coupled with LC-MS/MS for simultaneous determination of 10 organophosphorus pesticide residues in tea[J]. Food Chemistry, 2020, 321:126657.
DOI URL |
| [4] |
ZHANG B H, PAN X P, VENNE L, et al. Development of a method for the determination of 9 currently used cotton pesticides by gas chromatography with electron capture detection[J]. Talanta, 2008, 75(4):1055-1060.
DOI URL |
| [5] | HUSKOVA R, KIRCHNER M, MATISOVA E. Matrix effects and their elimination in gas chromatographic analysis of pesticide residues in food[J]. Chemicke Listy, 2007, 101(12):1020-1027. |
| [6] |
FENG C, XU Q, QIU X L, et al. Comprehensive strategy for analysis of pesticide multi-residues in food by GC-MS/MS and UPLC-Q-Orbitrap[J]. Food Chemistry, 2020, 320(2):126576.
DOI URL |
| [7] | RAZI-ASRAMI M, GHASEMI J B, AMIRI N, et al. Simultaneous spectrophotometric determination of crystal violet and malachite green in water samples using partial least squares regression and central composite design after preconcentration by dispersive solid-phase extraction[J]. Environmental Monitoring & Assessment, 2017, 189(4):196. |
| [8] |
LI N L, LI R H, SONG Y S, et al. Caramelized carbonaceous shell-coated γ-Fe2O3 as a magnetic solid-phase extraction sorbent for LC-MS/MS analysis of triphenylmethane dyes[J]. Microchimica Acta, 2020, 187(7):371.
DOI URL |
| [9] |
SOUZA J P, CERVEIRA C, MICELI T M, et al. Evaluation of sample preparation methods for cereal digestion for subsequent As, Cd, Hg and Pb determination by AAS-based techniques[J]. Food Chemistry, 2020, 321:126715.
DOI URL |
| [10] | 丁冬梅, 张赞, 王记鲁, 等. 自动控温石墨消解仪溶样-原子荧光法测定土壤中重金属[J]. 分析试验室, 2016, 35(9):1108-1110. |
| DING D M, ZHANG Z, WANG J L, et al. Automatic temperature controlled graphite digestion apparatus-AFS for determining heavy metals in soil[J]. Chinese Journal of Analysis Laboratory, 2016, 35(9):1108-1110.(in Chinese with English abstract) | |
| [11] |
VOGL J, HEUMANN K G. Determination of heavy metal complexes with humic substances by HPLC/ICP-MS coupling using on-line isotope dilution technique[J]. Fresenius’ Journal of Analytical Chemistry, 1997, 359(4/5):438-441.
DOI URL |
| [12] | 吴显庸, 袁园园, 刘战民, 等. 鸟嘌呤四链体DNAzyme在微生物、生物小分子和核酸检测中的研究进展[J]. 食品安全质量检测学报, 2020, 11(3):688-693. |
| WU X Y, YUAN Y Y, LIU Z M, et al. Research progress of G-quadruplex DNAzyme in detection of microorganism, biomolecule and nucleic acids[J]. Journal of Food Safety & Quality, 2020, 11(3):688-693.(in Chinese with English abstract) | |
| [13] |
MOHANTY J, BAROOAH N, DHAMODHARAN V, et al. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA[J]. Journal of the American Chemical Society, 2013, 135(1):367-376.
DOI URL |
| [14] |
SEN D, GILBERT W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis[J]. Nature, 1988, 334(6180):364-366.
DOI URL |
| [15] |
BOCHMAN M L, PAESCHKE K, ZAKIAN V A. DNA secondary structures: stability and function of G-quadruplex structures[J]. Nature Reviews. Genetics, 2012, 13(11):770-780.
DOI URL |
| [16] |
IDA J, CHAN S, GLÖKLER J, et al. G-quadruplexes as an alternative recognition element in disease-related target sensing[J]. Molecules, 2019, 24(6):1079.
DOI URL |
| [17] |
LIM K W, AMRANE S, BOUAZIZ S, et al. Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers[J]. Journal of the American Chemical Society, 2009, 131(12):4301-4309.
DOI URL |
| [18] |
PARKINSON G N, LEE M P H, NEIDLE S. Crystal structure of parallel quadruplexes from human telomeric DNA[J]. Nature, 2002, 417(6891):876-880.
DOI URL |
| [19] |
LANE A N. The stability of intramolecular DNA G-quadruplexes compared with other macromolecules[J]. Biochimie, 2012, 94(2):277-286.
DOI URL |
| [20] |
KARSISIOTIS A I, HESSARI N M, NOVELLINO E, et al. Topological characterization of nucleic acid G-quadruplexes by UV absorption and circular dichroism[J]. Angewandte Chemie International Edition, 2011, 50(45):10645-10648.
DOI URL |
| [21] |
ZHENG G H, LU X J, OLSON W K. Web 3DNA: a web server for the analysis, reconstruction, and visualization of three-dimensional nucleic-acid structures[J]. Nucleic Acids Research, 2009, 37(Web Server issue):W240-W246.
DOI URL |
| [22] | 段娜娜, 王娜, 杨薇, 等. 利用对G-四链体环部的构型调节进行传感器的设计[J]. 分析化学, 2014, 42(10):1414-1420. |
|
DUAN N N, WANG N, YANG W, et al. Sensor design based on structure adjustment in loops of G-quadruplex[J]. Chinese Journal of Analytical Chemistry, 2014, 42(10):1414-1420.(in Chinese with English abstract)
DOI URL |
|
| [23] |
LIU F, DING A L, ZHENG J S, et al. A label-free aptasensor for ochratoxin a detection based on the structure switch of aptamer[J]. Sensors, 2018, 18(6):1769.
DOI URL |
| [24] |
CHENG X H, LIU X J, BING T, et al. General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening[J]. Biochemistry, 2009, 48(33):7817-7823.
DOI URL |
| [25] |
TRAVASCIO P, LI Y F, SEN D. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex[J]. Chemistry & Biology, 1998, 5(9):505-517.
DOI URL |
| [26] |
GUO Y H, CHEN J L, CHENG M P, et al. A thermophilic tetramolecular G-quadruplex/hemin DNAzyme[J]. Angewandte Chemie, 2017, 129(52):16863-16867.
DOI URL |
| [27] |
ZHU L, LI C, ZHU Z, et al. In vitro selection of highly efficient G-quadruplex-based DNAzymes[J]. Analytical Chemistry, 2012, 84(19):8383-8390.
DOI URL |
| [28] |
KONG D M, YANG W, WU J, et al. Structure-function study of peroxidase-like G-quadruplex-hemin complexes[J]. The Analyst, 2010, 135(2):321-326.
DOI URL |
| [29] |
NAKAYAMA S, SINTIM H O. Colorimetric split G-quadruplex probes for nucleic acid sensing: improving reconstituted DNAzyme’s catalytic efficiency via probe remodeling[J]. Journal of the American Chemical Society, 2009, 131(29):10320-10333.
DOI URL |
| [30] |
LI W, LI Y, LIU Z L, et al. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity[J]. Nucleic Acids Research, 2016, 44(15):7373-7384.
DOI URL |
| [31] |
HE H Z, CHAN D S H, LEUNG C H, et al. G-quadruplexes for luminescent sensing and logic gates[J]. Nucleic Acids Research, 2013, 41(8):4345-4359.
DOI URL |
| [32] |
BHASIKUTTAN A C, MOHANTY J. Targeting G-quadruplex structures with extrinsic fluorogenic dyes: promising fluorescence sensors[J]. Chemical Communications (Cambridge, England), 2015, 51(36):7581-7597.
DOI URL |
| [33] |
LI T, WANG E K, DONG S J. Parallel G-quadruplex-specific fluorescent probe for monitoring DNA structural changes and label-free detection of potassium Ion[J]. Analytical Chemistry, 2010, 82(18):7576-7580.
DOI URL |
| [34] |
LIU Z L, LI W, NIE Z, et al. Randomly arrayed G-quadruplexes for label-free and real-time assay of enzyme activity[J]. Chemical Communications (Cambridge, England), 2014, 50(52):6875-6878.
DOI URL |
| [35] |
LU Y J, DENG Q, HOU J Q, et al. Molecular engineering of thiazole orange dye: change of fluorescent signaling from universal to specific upon binding with nucleic acids in bioassay[J]. ACS Chemical Biology, 2016, 11(4):1019-1029.
DOI URL |
| [36] |
XU Y Y, ZHOU W J, ZHOU M, et al. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin[J]. Biosensors and Bioelectronics, 2015, 64:306-310.
DOI URL |
| [37] | 张素格, 孙红霞, 唐亚林. DNA G-四链体识别探针研究进展[J]. 化学通报, 2016, 79(5):387-394. |
| ZHANG S G, SUN H X, TANG Y L. Research progress in the probes targeting DNA G-quadruplex[J]. Chemistry, 2016, 79(5):387-394.(in Chinese with English abstract) | |
| [38] |
YU G L, BRADLEY J D, ATTARDI L D, et al. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs[J]. Nature, 1990, 344(6262):126-132.
DOI URL |
| [39] |
CHEN T X, NING F, LIU H S, et al. Label-free fluorescent strategy for sensitive detection of tetracycline based on triple-helix molecular switch and G-quadruplex[J]. Chinese Chemical Letters, 2017, 28(7):1380-1384.
DOI URL |
| [40] | QIU S Y, ZHAO F S, ZENASNI O, et al. Nanoporous gold disks functionalized with stabilized G-quadruplex moieties for sensing small molecules[J]. ACS Applied Materials & Interfaces, 2016, 8(44):29968-29976. |
| [41] |
LUAN Q, XI Y, GAN N, et al. A facile colorimetric aptamer assay for small molecule detection in food based on a magnetic single-stranded DNA binding protein-linked composite probe[J]. Sensors and Actuators B: Chemical, 2017, 239:979-987.
DOI URL |
| [42] |
BAYRAÇ A T, ACAR Y. Label-free G-quadruplex aptamer and Thioflavin-T based turn-off fluorescent detection of ethanolamine[J]. Dyes and Pigments, 2020, 172:107788.
DOI URL |
| [43] |
LI X T, TANG X M, CHEN X J, et al. Label-free and enzyme-free fluorescent isocarbophos aptasensor based on MWCNTs and G-quadruplex[J]. Talanta, 2018, 188:232-237.
DOI URL |
| [44] |
TANG X M, LI X T, MA D L, et al. A label-free triplex-to-G-qadruplex molecular switch for sensitive fluorescent detection of acetamiprid[J]. Talanta, 2018, 189:599-605.
DOI URL |
| [45] | 王香玉. G-四链体探针用于重金属和端粒酶的非标记荧光检测[D]. 长沙:湖南大学, 2014. |
| WANG X Y. G-Quadruplex probes for the label-free fluorescent detection of heavy metals and telomerase[D]. Changsha: Hunan University, 2014. (in Chinese with English abstract) | |
| [46] |
JI R Y, NIU W C, CHEN S, et al. Target-inspired Pb2+-dependent DNAzyme for ultrasensitive electrochemical sensor based on MoS2-AuPt nanocomposites and hemin/G-quadruplex DNAzyme as signal amplifier[J]. Biosensors & Bioelectronics, 2019, 144:111560.
DOI URL |
| [47] |
LU Y J, MA N, LI Y J, et al. Styryl quinolinium/G-quadruplex complex for dual-channel fluorescent sensing of Ag+and cysteine[J]. Sensors and Actuators B: Chemical, 2012, 173:295-299.
DOI URL |
| [48] | 郭亚辉, 许丽君, 申小强, 等. 基于G-四链体的锌离子免标记生物传感器[C]// 中国化学会.中国化学会第29届学术年会摘要集——第04分会:纳米生物传感新方法. 中国化学会: 2014: 293. |
| [1] | 李腾飞, 杨桂玲, 阮美颖, 褚田芬, 秦华, 邓美华. 不同肥药管理对设施番茄生产系统土壤健康与番茄性状的影响[J]. 浙江农业学报, 2025, 37(1): 145-158. |
| [2] | 余红伟, 邓惠丹, 杨华, 肖英平, 丁向英, 吉小凤. 动物源性食品中兽药残留检测技术及兽药残留污染状况分析[J]. 浙江农业学报, 2025, 37(1): 203-216. |
| [3] | 王晓梅, 骆玉琴, 赵学平, 陆兰菲, 方楠, 王祥云, 蒋金花, 何红梅, 张昌朋, 王强. 氟吡菌酰胺在铁皮石斛中的残留与膳食风险[J]. 浙江农业学报, 2024, 36(7): 1666-1676. |
| [4] | 褚田芬, 雷玲, 李勤锋, 吴平, 洪文杰, 郑蔚然. 浙江省西瓜中农药残留风险评估[J]. 浙江农业学报, 2024, 36(5): 1153-1160. |
| [5] | 路子琪, 王静, 张震, 王教瑜, 孙国仓, 林福呈. 基于RNAi的生物农药研究进展[J]. 浙江农业学报, 2024, 36(4): 968-977. |
| [6] | 刘玉红, 金检生, 陈丽萍, 孙彩霞. 黄桃中4种农药残留动态与风险评估[J]. 浙江农业学报, 2024, 36(2): 432-440. |
| [7] | 梁秀美, 张维一, 陈官菊, 夏海涛, 郭秀珠, 何如意, 蒋佳铭, 林定鹏. 温州市杨梅农药残留与重金属污染特征及膳食摄入风险评估[J]. 浙江农业学报, 2024, 36(10): 2347-2357. |
| [8] | 王祥云, 王卢燕, 张昌朋, 李艳杰, 赵学平, 蒋金花. 三唑和甲氧基丙烯酸酯类杀菌剂的复配制剂登记现状分析[J]. 浙江农业学报, 2023, 35(9): 2121-2129. |
| [9] | 李辉, 胡文兰, 张志恒. 农药水解半衰期的pH值敏感性评价[J]. 浙江农业学报, 2023, 35(9): 2130-2148. |
| [10] | 叶会, 陈瑜婷, 骆玉琴, 范续艳, 雷圆, 陆兰菲, 郝培培, 程有普, 张昌朋. 两种剂型吡唑醚菌酯在草莓中的残留及消解动态[J]. 浙江农业学报, 2023, 35(7): 1720-1728. |
| [11] | 孙楠, 闫国超, 何勇, 朱祝军. 葫芦科作物叶片硅含量测定方法的优化[J]. 浙江农业学报, 2023, 35(2): 338-345. |
| [12] | 邵宜添. 信息对称促进农药减量化:理论模型、典型案例与监管策略选择[J]. 浙江农业学报, 2022, 34(6): 1326-1336. |
| [13] | 杨继芬, 杨文, 杜伟, 廖鹏飞, 刘永辉, 白红英, 丁志伟, 董占鹏. 秋季桑园喷水对保幼激素类农药影响家蚕原种繁育的效果[J]. 浙江农业学报, 2022, 34(4): 720-726. |
| [14] | 刘恩玲, 罗小锋, 杜三峡, 闫阿倩, 王祥礼. 老龄化、种植目的与稻农化学农药减量[J]. 浙江农业学报, 2022, 34(12): 2789-2799. |
| [15] | 单长林, 周圆, 任琰, 季文彬, 李孝军. 玉米内州萎蔫病菌荧光重组酶介导等温扩增检测方法的建立[J]. 浙江农业学报, 2021, 33(9): 1676-1685. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||