浙江农业学报 ›› 2017, Vol. 29 ›› Issue (12): 1970-1977.DOI: 10.3969/j.issn.1004-1524.2017.12.03

• 动物科学 • 上一篇    下一篇

多元统计分析在地方猪种肉质评价中的应用

徐轶飞1, 田晓静2, 刘丽霞2, 高丹丹2, 陈士恩2, *, 李明生2, 刘根娣2, 刘元林2   

  1. 1.甘肃省食品检验研究院,甘肃 兰州 730030;
    2.西北民族大学 生命科学与工程学院,甘肃 兰州 730030
  • 收稿日期:2016-12-27 出版日期:2017-12-20 发布日期:2018-01-08
  • 通讯作者: 陈士恩,E-mail:chshien@163.com
  • 作者简介:徐轶飞(1976—),男,甘肃兰州人,工程师,研究方向为食品安全。E-mail:492822097@qq.com
  • 基金资助:
    西北民族大学引进人才项目(xbmuyjrc201408); 教育部“长江学者和创新团队发展计划”(IRT13091); 西北民族大学中央高校基本科研业务费专项资金(zyz2012073)

Application of multivariate analysis in evaluation of meat quality for local pig breeds

XU Yifei1, TIAN Xiaojing2, LIU Lixia2, GAO Dandan2, CHEN Shi'en2, *, LI Mingsheng2, LIU Gendi2, LIU Yuanlin2   

  1. 1. Gransu Province Food Inspection Institute, Lanzhou 730030, China;
    2.College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
  • Received:2016-12-27 Online:2017-12-20 Published:2018-01-08

摘要: 通过对合作蕨麻猪、青海八眉猪、烟台黑猪和市售大白猪肉品品质相关理化指标与质构指标的检测和多元统计分析,实现不同猪种肉质差异的综合评价。以质地多面剖析测定获得质构指标,以常规成分含量和色度、嫩度和pH检测获得理化指标,分别以理化指标、质构指标、综合指标进行主成分分析、典则判别分析和聚类分析。结果发现,理化指标有利于区分不同种类肉样,综合指标综合更多相关信息可以提高结果区分度或数据点的聚集性,有利于判别相似度较高的肉样,为快速、客观地评价肉品品质提供新的思路。

关键词: 地方猪种, 肉质, 主成分分析, 典则判别分析, 聚类分析, 逐步判别分析

Abstract: The differences of meat quality among local pig breeds (Bamei, Juema and Yantai black pigs) and Large White were studied by detection of the physichemical indexes and texture parameters. The texture parameters were acquired by TMS-Pro texture analyzer, and the physichemical indexes were detected according to the national standards. The texture parameters, physichemical indexes and the combination of texture parameters and physichemical indexes, were used as input data to perform the principle component analysis, canonical discriminant analysis and cluster analysis, and optimized by stepwise linear discriminant analysis. The results showed that the physichemical indexes were helpful to distinguish meat quality among different pig breeds, and the combination data set integrated more related information to improve the discrimination results. The results provide a new way for the evaluation of meat quality.

Key words: local pig breeds, meat quality, principal component analysis, canonical discriminant analysis, cluster analysis, stepwise linear discriminant analysis

中图分类号: