浙江农业学报 ›› 2022, Vol. 34 ›› Issue (5): 1049-1060.DOI: 10.3969/j.issn.1004-1524.2022.05.20
李玉婷1(), 李莎1, 曹杰1, 李骄杨1, 张亮1,*(
), 许晓风1,2
收稿日期:
2021-06-04
出版日期:
2022-05-25
发布日期:
2022-06-06
通讯作者:
张亮
作者简介:
* 张亮,E-mail: liangzai0061@126.com基金资助:
LI Yuting1(), LI Sha1, CAO Jie1, LI Jiaoyang1, ZHANG Liang1,*(
), XU Xiaofeng1,2
Received:
2021-06-04
Online:
2022-05-25
Published:
2022-06-06
Contact:
ZHANG Liang
摘要:
土壤中的微塑料污染及其毒理学效应已逐渐引起广泛关注,但微塑料对外生菌根真菌的毒性研究仍不多见。为此,以彩色豆马勃(Pisolithus tinctorius,Pt)和松乳菇(Lactarius delicious,Ld)作为供试菌株,选用粒径80 nm和4 μm的单分散聚苯乙烯塑料微球(PS-MPs)作为试验材料,采用固体平板法和液体培养法研究不同粒径不同质量浓度(10~300 mg·L-1)的PS-MPs对外生菌根真菌生长情况、丙二醛(MDA)含量、可溶性蛋白含量、抗氧化酶活性、组织电导率等指标的影响。结果显示,高浓度(200~300 mg·L-1)的PS-MPs显著(P<0.05)抑制2株真菌的生长,且粒径4 μm的PS-MPs较粒径80 nm的对两株真菌的生物量表现出更强的抑制作用。随PS-MPs质量浓度的升高,Pt和Ld的超氧化物歧化酶活性始终显著(P<0.05)高于对照,且表现出先升高后降低的趋势。当暴露于2种粒径的PS-MPs之中时,Pt和Ld的过氧化氢酶活性均在300 mg·L-1处理下最低,且显著(P<0.05)低于对照;而过氧化物酶活性在各处理下均显著(P<0.05)高于对照。与对照相比,PS-MPs处理下,Pt和Ld的MDA含量显著(P<0.05)升高(除10 mg·L-1 4 μm PS-MPs处理下的Pt和200 mg·L-1 4 μm PS-MPs处理下的Ld外),可溶性蛋白含量显著(P<0.05)降低(除10、20 mg·L-1 80 nm PS-MPs处理下的Pt和10 mg·L-1 80 nm PS-MPs处理下的Ld外),菌丝组织电导率显著(P<0.05)升高。据此推测,PS-MPs对外生菌根真菌的影响机制可能涉及氧化应激反应,且不同菌株对不同粒径PS-MPs的响应不同。研究结果可为揭示微塑料对土壤外生菌根真菌的急性毒性提供依据。
中图分类号:
李玉婷, 李莎, 曹杰, 李骄杨, 张亮, 许晓风. 微塑料对外生菌根真菌生长和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(5): 1049-1060.
LI Yuting, LI Sha, CAO Jie, LI Jiaoyang, ZHANG Liang, XU Xiaofeng. Effects of microplastics on growth and antioxidant system of ectomycorrhizal fungi[J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1049-1060.
图1 聚苯乙烯塑料微球(PS-MPs)的形貌与粒径分布 A,80 nm PS-MPs的透射电子显微镜图;B,4 μm PS-MPs的扫描电子显微镜图;C,80 nm PS-MPs的粒径分布;D,4 μm PS-MPs的粒径分布。
Fig.1 Morphology and particle size distribution of polystyrene microspheres (PS-MPs) A,Transmission electron microscopy image of 80 nm PS-MPs; B,Scanning electron microscopy image of 4 μm PS-MPs; C,Particle size distribution of 80 nm PS-MPs; D, Particle size distribution of 4 μm PS-MPs.
图2 聚苯乙烯塑料微球(PS-MPs)对外生菌根真菌彩色豆马勃(Pisolithus tinctorius)(A)和松乳菇(Lactarius delicious)(B)生长情况的影响
Fig.2 Effect of polystyrene microspheres (PS-MPs) on growth of ectomycorrhizal fungi Pisolithus tinctorius (A) and Lactarius delicious (B)
图3 聚苯乙烯塑料微球(PS-MPs)对外生菌根真菌彩色豆马勃(Pisolithus tinctorius)(A)和松乳菇(Lactarius delicious)(B)生物量的影响 柱上无相同字母的表示处理间差异显著(P<0.05),下同。
Fig.3 Effect of polystyrene microspheres (PS-MPs) on biomass of ectomycorrhizal fungi Pisolithus tinctorius (A) and Lactarius delicious (B) Bars marked without the same letters indicated significant difference at P<0.05. The same as below.
菌株 Strain | PS-MPs质量浓度 PS-MPs concentration/(mg·L-1) | 4 μm PS-MPs | 80nm PS-MPs | |||||
---|---|---|---|---|---|---|---|---|
SOD/ (U·g-1) | CAT/ (U·g-1) | POD/ (U·g-1) | SOD/ (U·g-1) | CAT/ (U·g-1) | POD/ (U·g-1) | |||
Pt | 0 | 14.23 i | 118.65 a | 39.15 d | 14.23 i | 118.65 b | 39.15 h | |
10 | 35.32 h | 96.69 b | 39.67 d | 40.82 h | 50.80 i | 116.20 e | ||
20 | 45.21 f | 79.90 c | 62.59 c | 39.63 h | 81.25 f | 142.15 c | ||
50 | 76.34 b | 41.48 g | 90.67 a | 58.54 f | 94.35 e | 278.18 a | ||
100 | 67.86 c | 37.67 g | 91.81 a | 87.42 c | 48.21 i | 132.82 cd | ||
200 | 62.12 d | 55.81 e | 11.22 f | 70.17 d | 36.77 j | 101.43 f | ||
300 | 45.21 f | 9.19 j | 10.60 f | 44.25 gh | 20.02 k | 122.68 de | ||
Ld | 0 | 17.56 i | 59.26 e | 22.45 e | 17.56 i | 59.26 h | 22.45 i | |
10 | 68.52 c | 49.62 f | 19.01 e | 117.26 b | 98.34 d | 186.99 b | ||
20 | 84.22 ab | 68.03 d | 41.93 d | 120.43 ab | 109.64 c | 130.68 d | ||
50 | 89.32 a | 54.68 e | 39.24 d | 126.67 a | 129.65 a | 136.24 c | ||
100 | 69.82 c | 46.71 f | 82.76 b | 91.46 c | 127.04 a | 138.22 c | ||
200 | 53.47 e | 15.38 h | 44.29 d | 62.18 e | 75.38 g | 126.90 d | ||
300 | 40.36 g | 5.36 i | 13.30 f | 48.91 g | 14.01 k | 67.55 g |
表1 微塑料对外生菌根真菌SOD、CAT和POD活性的影响
Table 1 Effects of microplastics on SOD, CAT and POD activities of extomycorrhizal fangi
菌株 Strain | PS-MPs质量浓度 PS-MPs concentration/(mg·L-1) | 4 μm PS-MPs | 80nm PS-MPs | |||||
---|---|---|---|---|---|---|---|---|
SOD/ (U·g-1) | CAT/ (U·g-1) | POD/ (U·g-1) | SOD/ (U·g-1) | CAT/ (U·g-1) | POD/ (U·g-1) | |||
Pt | 0 | 14.23 i | 118.65 a | 39.15 d | 14.23 i | 118.65 b | 39.15 h | |
10 | 35.32 h | 96.69 b | 39.67 d | 40.82 h | 50.80 i | 116.20 e | ||
20 | 45.21 f | 79.90 c | 62.59 c | 39.63 h | 81.25 f | 142.15 c | ||
50 | 76.34 b | 41.48 g | 90.67 a | 58.54 f | 94.35 e | 278.18 a | ||
100 | 67.86 c | 37.67 g | 91.81 a | 87.42 c | 48.21 i | 132.82 cd | ||
200 | 62.12 d | 55.81 e | 11.22 f | 70.17 d | 36.77 j | 101.43 f | ||
300 | 45.21 f | 9.19 j | 10.60 f | 44.25 gh | 20.02 k | 122.68 de | ||
Ld | 0 | 17.56 i | 59.26 e | 22.45 e | 17.56 i | 59.26 h | 22.45 i | |
10 | 68.52 c | 49.62 f | 19.01 e | 117.26 b | 98.34 d | 186.99 b | ||
20 | 84.22 ab | 68.03 d | 41.93 d | 120.43 ab | 109.64 c | 130.68 d | ||
50 | 89.32 a | 54.68 e | 39.24 d | 126.67 a | 129.65 a | 136.24 c | ||
100 | 69.82 c | 46.71 f | 82.76 b | 91.46 c | 127.04 a | 138.22 c | ||
200 | 53.47 e | 15.38 h | 44.29 d | 62.18 e | 75.38 g | 126.90 d | ||
300 | 40.36 g | 5.36 i | 13.30 f | 48.91 g | 14.01 k | 67.55 g |
图4 聚苯乙烯塑料微球(PS-MPs)对外生菌根真菌彩色豆马勃(Pisolithus tinctorius)(A)和松乳菇(Lactarius delicious)(B)丙二醛(MDA)含量的影响
Fig.4 Effect of polystyrene microspheres (PS-MPs) on malondialdehyde (MDA) content of ectomycorrhizal fungi Pisolithus tinctorius (A) and Lactarius delicious (B)
图5 聚苯乙烯塑料微球(PS-MPs)对外生菌根真菌彩色豆马勃(Pisolithus tinctorius)(A)和松乳菇(Lactarius delicious)(B)可溶性蛋白含量的影响
Fig.5 Effect of polystyrene microspheres (PS-MPs) on soluble protein content of ectomycorrhizal fungi Pisolithus tinctorius (A) and Lactarius delicious (B)
图6 聚苯乙烯塑料微球(PS-MPs)对外生菌根真菌彩色豆马勃(Pisolithus tinctorius)(A)和松乳菇(Lactarius delicious)(B)菌丝电导率的影响
Fig.6 Effect of polystyrene microspheres (PS-MPs) on electrical conductivity of mycelium tissue of ectomycorrhizal fungi Pisolithus tinctorius (A) and Lactarius delicious (B)
[1] | 骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10): 1021-1030. |
LUO Y M, ZHOU Q, ZHANG H B, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1021-1030. (in Chinese with English abstract) | |
[2] |
WRIGHT S L, KELLY F J. Plastic and human health: a micro issue?[J]. Environmental Science & Technology, 2017, 51(12): 6634-6647.
DOI URL |
[3] |
ZHAO J M, RAN W, TENG J, et al. Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea, China[J]. Science of the Total Environment, 2018, 640/641: 637-645.
DOI URL |
[4] |
HUERTA LWANGA E, MENDOZA VEGA J, KU QUEJ V, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 2017, 7: 14071.
DOI URL |
[5] |
SETÄLÄ O, FLEMING-LEHTINEN V, LEHTINIEMI M. Ingestion and transfer of microplastics in the planktonic food web[J]. Environmental Pollution, 2014, 185: 77-83.
DOI URL |
[6] |
JEMEC A, HORVAT P, KUNEJ U, et al. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna[J]. Environmental Pollution, 2016, 219: 201-209.
DOI URL |
[7] |
LI J N, YANG D Q, LI L, et al. Microplastics in commercial bivalves from China[J]. Environmental Pollution, 2015, 207: 190-195.
DOI URL |
[8] | 邵宗泽, 董纯明, 郭文斌, 等. 海洋微塑料污染与塑料降解微生物研究进展[J]. 应用海洋学学报, 2019, 38(4): 490-501. |
SHAO Z Z, DONG C M, GUO W B, et al. Marine microplastic distribution and plastic-degrading microorganisms: a review[J]. Journal of Applied Oceanography, 2019, 38(4): 490-501. (in Chinese with English abstract) | |
[9] | 周倩, 田崇国, 骆永明. 滨海城市大气环境中发现多种微塑料及其沉降通量差异[J]. 科学通报, 2017, 62(33): 3902-3909. |
ZHOU Q, TIAN C G, LUO Y M. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere[J]. Chinese Science Bulletin, 2017, 62(33): 3902-3909. (in Chinese with English abstract) | |
[10] | 周倩, 章海波, 周阳, 等. 滨海河口潮滩中微塑料的表面风化和成分变化[J]. 科学通报, 2018, 63(2): 214-224. |
ZHOU Q, ZHANG H B, ZHOU Y, et al. Surface weathering and changes in components of microplastics from estuarine beaches[J]. Chinese Science Bulletin, 2018, 63(2): 214-224. (in Chinese with English abstract) | |
[11] |
DESFORGES J P W, GALBRAITH M, ROSS P S. Ingestion of microplastics by zooplankton in the northeast Pacific Ocean[J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 320-330.
DOI URL |
[12] |
VAN CAUWENBERGHE L, CLAESSENS M, VANDEGEHUCHTE M B, et al. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats[J]. Environmental Pollution, 2015, 199: 10-17.
DOI URL |
[13] |
ABBASI S, SOLTANI N, KESHAVARZI B, et al. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf[J]. Chemosphere, 2018, 205: 80-87.
DOI URL |
[14] |
XU B L, LIU F, CRYDER Z, et al. Microplastics in the soil environment: occurrence, risks, interactions and fate: a review[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(21): 2175-2222.
DOI URL |
[15] |
ALLEN S, ALLEN D, PHOENIX V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nature Geoscience, 2019, 12(5): 339-344.
DOI URL |
[16] |
ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12-20.
DOI URL |
[17] |
RILLIG M C, ZIERSCH L, HEMPEL S. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7: 1362.
DOI URL |
[18] |
KIYAMA Y, MIYAHARA K, OHSHIMA Y. Active uptake of artificial particles in the nematode Caenorhabditis elegans[J]. The Journal of Experimental Biology, 2012, 215(Pt 7): 1178-1183.
DOI URL |
[19] |
ZHU D, CHEN Q L, AN X L, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition[J]. Soil Biology and Biochemistry, 2018, 116: 302-310.
DOI URL |
[20] |
KETTNER M T, ROJAS-JIMENEZ K, OBERBECKMANN S, et al. Microplastics alter composition of fungal communities in aquatic ecosystems[J]. Environmental Microbiology, 2017, 19(11): 4447-4459.
DOI URL |
[21] | 刘蓥蓥, 张旗, 崔文智, 等. 聚乙烯微塑料对绿豆发芽的毒性研究[J]. 环境与发展, 2019, 31(5): 123-125. |
LIU Y Y, ZHANG Q, CUI W Z, et al. Toxicity of polyethylene microplastics to seed germination of mung bean[J]. Environment and Development, 2019, 31(5): 123-125. (in Chinese with English abstract) | |
[22] |
GIORGETTI L, SPANÒ C, MUCCIFORA S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 2020, 149: 170-177.
DOI URL |
[23] |
JIANG X F, CHEN H, LIAO Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, 250: 831-838.
DOI URL |
[24] | 连加攀, 沈玫玫, 刘维涛. 微塑料对小麦种子发芽及幼苗生长的影响[J]. 农业环境科学学报, 2019, 38(4): 737-745. |
LIAN J P, SHEN M M, LIU W T. Effects of microplastics on wheat seed germination and seedling growth[J]. Journal of Agro-Environment Science, 2019, 38(4): 737-745. (in Chinese with English abstract) | |
[25] |
KALSOTRA T, KHULLAR S, AGNIHOTRI R, et al. Metal induction of two metallothionein genes in the ectomycorrhizal fungus Suillus himalayensis and their role in metal tolerance[J]. Microbiology(Reading, England), 2018, 164(6): 868-876.
DOI URL |
[26] |
THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838.
DOI URL |
[27] |
LI L, LUO Y, LI R, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929-937.
DOI URL |
[28] | 李瑞杰, 李连祯, 张云超, 等. 禾本科作物小麦能吸收和积累聚苯乙烯塑料微球[J]. 科学通报, 2020, 65(20): 2120-2127. |
LI R J, LI L Z, ZHANG Y C, et al. Uptake and accumulation of microplastics in a cereal plant wheat[J]. Chinese Science Bulletin, 2020, 65(20): 2120-2127. (in Chinese with English abstract) | |
[29] | 樊怀福, 郭世荣, 焦彦生, 等. 外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响[J]. 生态学报, 2007, 27(2): 546-553. |
FAN H F, GUO S R, JIAO Y S, et al. The effects of exogenous nitric oxide on growth, active oxygen metabolism and photosynthetic characteristics in cucumber seedlings under NaCl stress[J]. Acta Ecologica Sinica, 2007, 27(2): 546-553. (in Chinese with English abstract) | |
[30] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
[31] | 李忠光, 李江鸿, 杜朝昆, 等. 在单一提取系统中同时测定五种植物抗氧化酶[J]. 云南师范大学学报(自然科学版), 2002, 22(6): 44-48. |
LI Z G, LI J H, DU C K, et al. Simultaneous measurement of five antioxidant enzyme activities using a single extraction system[J]. Journal of Yunnan Normal University(Natural Sciences Edition), 2002, 22(6): 44-48. (in Chinese with English abstract) | |
[32] | 朱涵毅, 陈益军, 劳佳丽, 等. 外源NO对镉胁迫下水稻幼苗抗氧化系统和微量元素积累的影响[J]. 生态学报, 2013, 33(2): 603-609. |
ZHU H Y, CHEN Y J, LAO J L, et al. The effect of exogenous nitric oxide on activities of antioxidant enzymes and microelements accumulation of two rice genotypes seedlings under cadmium stress[J]. Acta Ecologica Sinica, 2013, 33(2): 603-609. (in Chinese with English abstract)
DOI URL |
|
[33] |
SAIRAM R K, KUMUTHA D, EZHILMATHI K, et al. Physiology and biochemistry of waterlogging tolerance in plants[J]. Biologia Plantarum, 2008, 52(3): 401-412.
DOI URL |
[34] | 陈银萍, 王晓梅, 杨宗娟, 等. NO对低温胁迫下玉米种子萌发及幼苗生理特性的影响[J]. 农业环境科学学报, 2012, 31(2): 270-277. |
CHEN Y P, WANG X M, YANG Z J, et al. Effects of nitric oxide on seed germination and physiological reaction of maize seedlings under low temperature stress[J]. Journal of Agro-Environment Science, 2012, 31(2): 270-277. (in Chinese with English abstract) | |
[35] |
COFFIN S, DUDLEY S, TAYLOR A, et al. Comparisons of analytical chemistry and biological activities of extracts from North Pacific gyre plastics with UV-treated and untreated plastics using in vitro and in vivo models[J]. Environment International, 2018, 121: 942-954.
DOI URL |
[36] |
NADAL M A, ALOMAR C, DEUDERO S. High levels of microplastic ingestion by the semipelagic fish bogue Boops boops(L.) around the Balearic Islands[J]. Environmental Pollution, 2016, 214: 517-523.
DOI URL |
[37] |
DEAMIRANDAD, DE CARVALHO-SOUZA G F. Are we eating plastic-ingesting fish?[J]. Marine Pollution Bulletin, 2016, 103(1/2): 109-114.
DOI URL |
[38] |
WRIGHT S L, THOMPSON R C, GALLOWAY T S. The physical impacts of microplastics on marine organisms: a review[J]. Environmental Pollution, 2013, 178: 483-492.
DOI URL |
[39] |
BARBOZA L G A, VETHAAK A D, LAVORANTE B R B O, et al. Marine microplastic debris: an emerging issue for food security, food safety and human health[J]. Marine Pollution Bulletin, 2018, 133: 336-348.
DOI URL |
[40] | 徐荣乐, 海热提. 塑料地膜对小麦种子萌发及幼苗抗氧化酶系统的影响[J]. 生态环境学报, 2010, 19(11): 2702-2707. |
XU R L, HAI R T. Effects of plastic film on seed germination and the activities of antioxidant enzyme of wheat (Triticum aestivum L.) seedlings[J]. Ecology and Environmental Sciences, 2010, 19(11): 2702-2707. (in Chinese with English abstract) | |
[41] | 李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9): 928-934. |
LI L Z, ZHOU Q, YIN N, et al. Uptake and accumulation of microplastics in an edible plant[J]. Chinese Science Bulletin, 2019, 64(9): 928-934. (in Chinese with English abstract) | |
[42] |
SUN X D, YUAN X Z, JIA Y, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana[J]. Nature Nanotechnology, 2020, 15(9): 755-760.
DOI URL |
[43] | 吴佳妮, 杨天志, 连加攀, 等. 聚苯乙烯纳米塑料(PSNPs)对大豆(Glycine max)种子发芽和幼苗生长的影响[J]. 环境科学学报, 2020, 40(12): 4581-4589. |
WU J N, YANG T Z, LIAN J P, et al. Effects of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of soybean (Glycine max)[J]. Acta Scientiae Circumstantiae, 2020, 40(12): 4581-4589. (in Chinese with English abstract) | |
[44] |
WECKX J E J, CLIJSTERS H M M. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper[J]. Physiologia Plantarum, 1996, 96(3): 506-512.
DOI URL |
[45] | 高嘉蔚, 赵莎莎, 李富云, 等. 微塑料对大型溞摄食和抗氧化防御系统的影响[J]. 环境科学研究, 2021, 34(5): 1205-1212. |
GAO J W, ZHAO S S, LI F Y, et al. Effects of microplastics on feeding behavior and antioxidant system of Daphnia magna[J]. Research of Environmental Sciences, 2021, 34(5): 1205-1212. (in Chinese with English abstract) | |
[46] | 黄献培, 向垒, 郭静婕, 等. 聚苯乙烯微球对菜心种子及幼苗的毒性效应[J]. 农业环境科学学报, 2021, 40(5): 926-933. |
HUANG X P, XIANG L, GUO J J, et al. Toxicity of polystyrene microplastics on seeds and seedlings of Brassica campestris L[J]. Journal of Agro-Environment Science, 2021, 40(5): 926-933. (in Chinese with English abstract) | |
[47] | 安菁, 刘欢语, 郑艳, 等. 土壤微塑料残留对大豆幼苗生长及生理生化特征的影响[J]. 四川农业大学学报, 2021, 39(1): 41-46. |
AN J, LIU H Y, ZHENG Y, et al. Effects of soil microplastics residue on soybean seedlings growth and the physiological and biochemical characteristics[J]. Journal of Sichuan Agricultural University, 2021, 39(1): 41-46. (in Chinese with English abstract) | |
[48] | 张晨, 简敏菲, 陈宇蒙, 等. 聚苯乙烯微塑料对黑藻生长及生理生化特征的影响[J]. 应用生态学报, 2021, 32(1): 317-325. |
ZHANG C, JIAN M F, CHEN Y M, et al. Effects of polystyrene microplastics (PS-MPs) on the growth, physiology, and biochemical characteristics of Hydrilla verticillata[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 317-325. (in Chinese with English abstract) | |
[49] | 廖苑辰, 娜孜依古丽·加合甫别克, 李梅, 等. 微塑料对小麦生长及生理生化特性的影响[J]. 环境科学, 2019, 40(10): 4661-4667. |
LIAO Y C, JAHITBEK N, LI M, et al. Effects of microplastics on the growth, physiology, and biochemical characteristics of wheat (Triticum aestivum)[J]. Environmental Science, 2019, 40(10): 4661-4667. (in Chinese with English abstract) | |
[50] | 陈银萍, 蘧苗苗, 苏向楠, 等. 外源一氧化氮对镉胁迫下紫花苜蓿幼苗活性氧代谢和镉积累的影响[J]. 农业环境科学学报, 2015, 34(12): 2261-2271. |
CHEN Y P, QU M M, SU X N, et al. Effect of exogenous nitric oxide on active oxygen metabolism and cadmium accumulation in alfalfa seedlings under cadmium stress[J]. Journal of Agro-Environment Science, 2015, 34(12): 2261-2271. (in Chinese with English abstract) |
[1] | 郑钢, 顾翠花, 王杰, 林琳. 干旱胁迫对黄薇光合特性和若干生理生化指标的影响[J]. 浙江农业学报, 2021, 33(9): 1650-1659. |
[2] | 王贤, 刘放, 魏小红, 朱晓林, 王宝强. 不同种质番茄材料抗番茄黄化曲叶病毒病特性研究[J]. 浙江农业学报, 2021, 33(11): 2085-2097. |
[3] | 石婧, 刘东洋, 张凤华. 棉花幼苗对盐胁迫的生理响应与耐盐机理[J]. 浙江农业学报, 2020, 32(7): 1141-1148. |
[4] | 张亮, 李玉婷, 许晓风. 锰离子胁迫下外生菌根真菌对土壤钾释放的影响[J]. 浙江农业学报, 2020, 32(7): 1215-1222. |
[5] | 刘新宇, 陈鹏, 张光辉, 赵俊杰, 李博浩, 张南, 孙韦珂, 许娟娟, 叶行涛, 魏金鹏, 于高波. 外源脯氨酸对番茄体内残留百菌清降解的调控作用[J]. 浙江农业学报, 2020, 32(3): 437-446. |
[6] | 边建文, 崔岩, 杨宋琪, 罗光宏, 孟宪刚. 衣藻和固氮鱼腥藻对盐胁迫下小麦幼苗生长的影响[J]. 浙江农业学报, 2020, 32(10): 1748-1756. |
[7] | 孙德智, 杨恒山, 张庆国, 范富, 苏雅乐其其格, 彭靖, 韩晓日. 外源一氧化氮供体硝普钠对番茄幼苗盐胁迫伤害的缓解作用[J]. 浙江农业学报, 2019, 31(8): 1286-1294. |
[8] | 方芳, 何序晨, 张志豪, 张勤, 关亚静, 胡晋, 胡伟民. 玉米自交系苗期对高温胁迫的响应机制及其抗逆性[J]. 浙江农业学报, 2019, 31(7): 1045-1056. |
[9] | 李莉, 田士林, 姜俊, 宋丽. 一氧化氮对弱光胁迫下苗期及坐果初期辣椒生长和抗性相关指标的影响[J]. 浙江农业学报, 2019, 31(12): 2036-2042. |
[10] | 李洋, 刘凯, 魏吉鹏, 张兰, 李鑫, 韩文炎, 李青云. 不同浓度EGCG对NaCl胁迫下黄瓜种子萌发及其抗性的影响[J]. 浙江农业学报, 2018, 30(7): 1160-1167. |
[11] | 林义成, 傅庆林, 郭彬, 刘琛, 丁能飞. 盐胁迫对红叶石楠花青素含量及抗氧化系统的影响[J]. 浙江农业学报, 2018, 30(6): 970-977. |
[12] | 姜武, 吴志刚, 陈松林, 陶正明. 镉胁迫对铁皮石斛叶片抗氧化酶活性的影响及动力学分析[J]. 浙江农业学报, 2017, 29(9): 1421-1429. |
[13] | 冯芳芳, 魏清江, 苏受婷, 宁少君, 廖小娜, 辜青青. 干旱胁迫对2种柑橘幼苗生长形态、渗透调节物质含量和抗氧化酶活性的影响[J]. 浙江农业学报, 2017, 29(9): 1515-1523. |
[14] | 侯维, 马旭辉, 张皓月, 陈其阳, 张勇. 夏季遮荫对月季叶片PSⅡ活性和抗氧化系统的影响[J]. 浙江农业学报, 2016, 28(9): 1530-1537. |
[15] | 梅映学,魏玮,张诗婉,张韫璐,王金缘,王茜,苏昕,马莲菊*. 干旱锻炼对盐胁迫下水稻幼苗根系抗氧化酶活性的影响[J]. 浙江农业学报, 2016, 28(8): 1304-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 741
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 519
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||