浙江农业学报 ›› 2023, Vol. 35 ›› Issue (12): 2844-2853.DOI: 10.3969/j.issn.1004-1524.20221774
唐毅1(), 杨清麟1, 王伟2, 袁渊2, 丁诗华1, 孙翰昌3,*(
), 吕浩4
收稿日期:
2022-12-13
出版日期:
2023-12-25
发布日期:
2023-12-27
作者简介:
唐毅(1963—),男,四川安岳人,硕士,高级实验师,主要从事水产动物养殖及其病害防治研究。E-mail: tangyi00098@aliyun.com
通讯作者:
*孙翰昌,E-mail:sunhanchang199@163.com
基金资助:
TANG Yi1(), YANG Qinglin1, WANG Wei2, YUAN Yuan2, DING Shihua1, SUN Hanchang3,*(
), LYU Hao4
Received:
2022-12-13
Online:
2023-12-25
Published:
2023-12-27
摘要:
为明确引起宽体金线蛭(Whitmania pigra)水肿病爆发的原因,并为鱼药研究提供新思路,从患病水蛭的体腔液分离得到优势株CQ1808,通过形态学观察、生理生化特性测定和16S rDNA基因序列分析鉴定CQ1808菌株,采用K-B纸片扩散法对该菌进行药物敏感性试验,通过人工感染和病理组织切片观察病蛭组织的病理学变化。结果表明,CQ1808菌株为革兰氏阴性短杆菌。通过BLAST检索,发现该菌株与弗氏柠檬酸杆菌(Citrobacter freundii)的16S rDNA序列自然聚类。系统发育树表明, CQ1808菌株为弗氏柠檬酸杆菌。药敏试验结果显示,该菌对氨曲南、头孢曲松、头孢哌酮等21种药物高度敏感,对头孢他啶、头孢唑啉、卡那霉素等7种药物中度敏感,对青霉素、头孢呋辛、麦迪霉素等9种药物表现耐药。人工感染结果显示,CQ1808菌株可使水蛭出现与自然病蛭相似症状。组织病理学研究表明,病蛭组织结构整体异常,消化系统尤其是嗉囊受损严重。研究结果证明,引起宽体金线蛭水肿病的病原为弗氏柠檬酸杆菌。
中图分类号:
唐毅, 杨清麟, 王伟, 袁渊, 丁诗华, 孙翰昌, 吕浩. 宽体金线蛭水肿病病原的分离鉴定与病理学研究[J]. 浙江农业学报, 2023, 35(12): 2844-2853.
TANG Yi, YANG Qinglin, WANG Wei, YUAN Yuan, DING Shihua, SUN Hanchang, LYU Hao. Isolation, identification and histopathological study on oedema pathogen from cultured leech (Whitmania pigra)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2844-2853.
图1 患病宽体金线蛭的临床症状 A和B分别为健康宽体金线蛭的外观和体腔;C和D分别为外观水肿(*)、吸盘和腹部的局部红肿(箭头);E为外溢的棕褐色体腔液(箭头)和嗉囊充血(*)。
Fig.1 Clinical symptoms of diseased Whitmania pigra A and B, Surface and body cavity of healthy Whitmania pigra; C and D, Appearance of edema (*), local hyperemia in the suction cup and ventral surface (black arrow); E, Overflowed brown body cavity fluid (arrow), congestion of in the crop (*).
测定项目Test item | CQ1808 | LMG 3246* | 测定项目Test item | CQ1808 | LMG 3246* |
---|---|---|---|---|---|
D-山梨醇D-Sorbitol | + | + | 赖氨酸脱羧酶Lysine decarboxylase | - | - |
鼠李糖Rhamnose | + | + | 硝酸盐还原Nitrate reduction | + | + |
甲基红试验Methyl red test | + | + | 七叶苷Esculoside | - | - |
吲哚Indole | - | - | 蔗糖Sucrose | + | (-) |
葡萄糖产酸Glucose acid | + | + | 明胶液化Gelatin | - | - |
葡萄糖产气Glucose gas | + | + | H2S | + | + |
氰化钾生长KCN growth | - | - | V.P.试验Voges-proskauer test | - | - |
甘露糖Mannose | + | + | O-F试验O-F test | F | F |
枸橼酸盐Citrate | + | + | 肌醇Inositol | - | - |
阿拉伯糖Arabinoso | + | + | 麦芽糖Maltose | + | + |
侧金盏花醇Adonitol | - | - | 尿素Urea | - | - |
木糖Xylose | + | + | 果糖Fructose | + | + |
水杨酸Salicylic acid | - | - | 糊精Dextrin | - | - |
氧化酶Oxidase | - | - | 葡萄糖磷酸盐Glucose phosphate | - | - |
精氨酸脱羧酶Arginine decarboxylase | + | + | 半乳糖Galactose | + | + |
苯丙氨酸脱羧酶Phenylalanine deaminase | - | D-纤维二糖D-Cellobiose | - | - | |
鸟氨酸脱羧酶Ornithine decarboxylase | - | - | 水杨苷Salicin | + | + |
表1 CQ1808菌株的生理生化特性
Table 1 Physiological and biochemical characteristics of CQ1808 strain
测定项目Test item | CQ1808 | LMG 3246* | 测定项目Test item | CQ1808 | LMG 3246* |
---|---|---|---|---|---|
D-山梨醇D-Sorbitol | + | + | 赖氨酸脱羧酶Lysine decarboxylase | - | - |
鼠李糖Rhamnose | + | + | 硝酸盐还原Nitrate reduction | + | + |
甲基红试验Methyl red test | + | + | 七叶苷Esculoside | - | - |
吲哚Indole | - | - | 蔗糖Sucrose | + | (-) |
葡萄糖产酸Glucose acid | + | + | 明胶液化Gelatin | - | - |
葡萄糖产气Glucose gas | + | + | H2S | + | + |
氰化钾生长KCN growth | - | - | V.P.试验Voges-proskauer test | - | - |
甘露糖Mannose | + | + | O-F试验O-F test | F | F |
枸橼酸盐Citrate | + | + | 肌醇Inositol | - | - |
阿拉伯糖Arabinoso | + | + | 麦芽糖Maltose | + | + |
侧金盏花醇Adonitol | - | - | 尿素Urea | - | - |
木糖Xylose | + | + | 果糖Fructose | + | + |
水杨酸Salicylic acid | - | - | 糊精Dextrin | - | - |
氧化酶Oxidase | - | - | 葡萄糖磷酸盐Glucose phosphate | - | - |
精氨酸脱羧酶Arginine decarboxylase | + | + | 半乳糖Galactose | + | + |
苯丙氨酸脱羧酶Phenylalanine deaminase | - | D-纤维二糖D-Cellobiose | - | - | |
鸟氨酸脱羧酶Ornithine decarboxylase | - | - | 水杨苷Salicin | + | + |
图3 CQ1808菌株基于16S rDNA基因序列的系统发育树 使用邻接法和Kimura 2参数模型。Bootstrap值表示1 000次检验置信度的百分比。
Fig.3 The phylogenetic tree of CQ1808 strain based on 16S rDNA sequence Using the neighbor-joining method with the Kimura 2-parameter model. Bootstrap values expressed as a percentage of 1 000 replicates.
药物 Drug | 抑菌圈直径判定标准 The judgment standard of inhibition zone diameter/mm | 药物含量 Drug content/ (μg·disc-1) | 抑菌圈直径 Inhibition zone diameter/mm | 药物敏感性 Drug sensitivity | ||
---|---|---|---|---|---|---|
R | I | S | ||||
青霉素Penicillin | ≤19 | >19~<28 | ≥28 | 10 | 0 | R |
氨苄西林Ampicillin | ≤13 | >13~<17 | ≥17 | 10 | 0 | R |
氨曲南Aztreonam | ≤15 | >15~<22 | ≥22 | 30 | 38.5 | S |
头孢曲松Ceftriaxone | ≤13 | >13~<21 | ≥21 | 30 | 29.3 | S |
头孢他啶Ceftazidime | ≤14 | >14~<18 | ≥18 | 30 | 17.4 | I |
头孢哌酮Cefoperazone | ≤15 | >15~<21 | ≥21 | 75 | 32.5 | S |
头孢噻肟Cefotaxime | ≤14 | >15~<23 | ≥23 | 30 | 35.5 | S |
头孢呋辛Cefuroxime | ≤13 | >13~<19 | ≥19 | 30 | 0 | R |
头孢拉定Cefradine | ≤14 | >14~<18 | ≥18 | 30 | 20.7 | S |
头孢唑啉Cefazolin | ≤14 | >14~<18 | ≥18 | 30 | 16.7 | I |
头孢克洛Cefaclor | ≤14 | >14~<18 | ≥18 | 30 | 28.9 | S |
头孢氨苄Cephalexin | ≤14 | >14~<18 | ≥18 | 30 | 22.3 | S |
卡那霉素Kanamycin | ≤13 | >13~<18 | ≥18 | 30 | 13.5 | I |
丁胺卡那霉Amikacin | ≤14 | >14~<17 | ≥17 | 30 | 15.2 | I |
庆大霉素Gentamycin | ≤12 | >12~<15 | ≥15 | 10 | 15.0 | S |
新霉素Neomycin | ≤12 | >12~<17 | ≥17 | 30 | 13.5 | I |
链霉素Streptomycin | ≤11 | >11~<15 | ≥15 | 10 | 22.2 | S |
大观霉Spectinomycin | ≤14 | >14~<18 | ≥18 | 100 | 15.8 | I |
罗红霉素Erythmmycin | ≤13 | >13~<23 | ≥23 | 15 | 0 | R |
麦迪霉素Midecamycin | ≤13 | >13~<18 | ≥18 | 30 | 0 | R |
克林霉素Clindamycin | ≤14 | >14~<21 | ≥21 | 2 | 0 | R |
氯霉素Chloramphenicol | ≤12 | >12~<18 | ≥18 | 30 | 22.5 | S |
氟苯尼考Florfenicol | ≤12 | >12~<18 | ≥18 | 30 | 21.7 | S |
四环素Tetracycline | ≤14 | >14~<19 | ≥19 | 30 | 20.0 | S |
米诺环素Minocycline | ≤14 | >14~<19 | ≥19 | 30 | 31.9 | S |
多西环素Doxycycline | ≤10 | >10~<14 | ≥14 | 30 | 25.8 | S |
多西环素Deoxycycline | ≤12 | >12~<16 | ≥16 | 30 | 21.5 | S |
复方新诺明Sulfamethoxazole | ≤10 | >10~<16 | ≥16 | 20 | 31.2 | S |
磺胺异恶唑Sulfafurazole | ≤12 | >12~<17 | ≥17 | 300 | 30.3 | S |
氧氟沙星Ofloxacin | ≤12 | >12~<16 | ≥16 | 5 | 22.3 | S |
左氧氟沙星Levofloxacin | ≤13 | >13~<17 | ≥17 | 5 | 15.3 | I |
诺氟沙星Norfloxacin | ≤12 | >12~<17 | ≥17 | 10 | 11.2 | R |
环丙沙星Ciprofloxacin | ≤15 | >15~<21 | ≥21 | 5 | 14.2 | R |
恩诺沙星Enrofloxacin | ≤14 | >15~<18 | ≥18 | 10 | 18.7 | S |
呋喃妥因Nitrofurantoin | ≤14 | >15~<17 | ≥17 | 300 | 23.5 | S |
呋喃唑酮Furazolidone | ≤14 | >15~<17 | ≥17 | 100 | 19.7 | S |
利福平Rifampicin | ≤16 | >15~<20 | ≥20 | 5 | 0 | R |
表2 CQ1808菌株的37种抗生素药物敏感性
Table 2 The antibiotics susceptibility of CQ1808 strain against 37 antimicrobial agents
药物 Drug | 抑菌圈直径判定标准 The judgment standard of inhibition zone diameter/mm | 药物含量 Drug content/ (μg·disc-1) | 抑菌圈直径 Inhibition zone diameter/mm | 药物敏感性 Drug sensitivity | ||
---|---|---|---|---|---|---|
R | I | S | ||||
青霉素Penicillin | ≤19 | >19~<28 | ≥28 | 10 | 0 | R |
氨苄西林Ampicillin | ≤13 | >13~<17 | ≥17 | 10 | 0 | R |
氨曲南Aztreonam | ≤15 | >15~<22 | ≥22 | 30 | 38.5 | S |
头孢曲松Ceftriaxone | ≤13 | >13~<21 | ≥21 | 30 | 29.3 | S |
头孢他啶Ceftazidime | ≤14 | >14~<18 | ≥18 | 30 | 17.4 | I |
头孢哌酮Cefoperazone | ≤15 | >15~<21 | ≥21 | 75 | 32.5 | S |
头孢噻肟Cefotaxime | ≤14 | >15~<23 | ≥23 | 30 | 35.5 | S |
头孢呋辛Cefuroxime | ≤13 | >13~<19 | ≥19 | 30 | 0 | R |
头孢拉定Cefradine | ≤14 | >14~<18 | ≥18 | 30 | 20.7 | S |
头孢唑啉Cefazolin | ≤14 | >14~<18 | ≥18 | 30 | 16.7 | I |
头孢克洛Cefaclor | ≤14 | >14~<18 | ≥18 | 30 | 28.9 | S |
头孢氨苄Cephalexin | ≤14 | >14~<18 | ≥18 | 30 | 22.3 | S |
卡那霉素Kanamycin | ≤13 | >13~<18 | ≥18 | 30 | 13.5 | I |
丁胺卡那霉Amikacin | ≤14 | >14~<17 | ≥17 | 30 | 15.2 | I |
庆大霉素Gentamycin | ≤12 | >12~<15 | ≥15 | 10 | 15.0 | S |
新霉素Neomycin | ≤12 | >12~<17 | ≥17 | 30 | 13.5 | I |
链霉素Streptomycin | ≤11 | >11~<15 | ≥15 | 10 | 22.2 | S |
大观霉Spectinomycin | ≤14 | >14~<18 | ≥18 | 100 | 15.8 | I |
罗红霉素Erythmmycin | ≤13 | >13~<23 | ≥23 | 15 | 0 | R |
麦迪霉素Midecamycin | ≤13 | >13~<18 | ≥18 | 30 | 0 | R |
克林霉素Clindamycin | ≤14 | >14~<21 | ≥21 | 2 | 0 | R |
氯霉素Chloramphenicol | ≤12 | >12~<18 | ≥18 | 30 | 22.5 | S |
氟苯尼考Florfenicol | ≤12 | >12~<18 | ≥18 | 30 | 21.7 | S |
四环素Tetracycline | ≤14 | >14~<19 | ≥19 | 30 | 20.0 | S |
米诺环素Minocycline | ≤14 | >14~<19 | ≥19 | 30 | 31.9 | S |
多西环素Doxycycline | ≤10 | >10~<14 | ≥14 | 30 | 25.8 | S |
多西环素Deoxycycline | ≤12 | >12~<16 | ≥16 | 30 | 21.5 | S |
复方新诺明Sulfamethoxazole | ≤10 | >10~<16 | ≥16 | 20 | 31.2 | S |
磺胺异恶唑Sulfafurazole | ≤12 | >12~<17 | ≥17 | 300 | 30.3 | S |
氧氟沙星Ofloxacin | ≤12 | >12~<16 | ≥16 | 5 | 22.3 | S |
左氧氟沙星Levofloxacin | ≤13 | >13~<17 | ≥17 | 5 | 15.3 | I |
诺氟沙星Norfloxacin | ≤12 | >12~<17 | ≥17 | 10 | 11.2 | R |
环丙沙星Ciprofloxacin | ≤15 | >15~<21 | ≥21 | 5 | 14.2 | R |
恩诺沙星Enrofloxacin | ≤14 | >15~<18 | ≥18 | 10 | 18.7 | S |
呋喃妥因Nitrofurantoin | ≤14 | >15~<17 | ≥17 | 300 | 23.5 | S |
呋喃唑酮Furazolidone | ≤14 | >15~<17 | ≥17 | 100 | 19.7 | S |
利福平Rifampicin | ≤16 | >15~<20 | ≥20 | 5 | 0 | R |
图4 宽体金线蛭人工感染CQ1808菌株后的患病症状 A,外观红肿;B,体腔液外溢、消化道和体腔壁充血。
Fig.4 Symptoms of leeches infected with CQ1808 strain A, Appearance of edema; B, Spillage of fluid from the body cavity, congestion of the digestive tract and body cavity wall.
图5 宽体金线蛭人工感染不同浓度CQ1808菌株后的Kaplan-Meier存活曲线 4个试验组(S5、S6、S7和S8)肌内注射的浓度分别为1.0×105、1.0×106、1.0×107、1.0×108 CFU·mL-1。
Fig.5 Kaplan-Meier plots for survival rate of leeches infected with different doses of CQ1808 stain Four experiment groups (S5, S6, S7 and S8) were intramuscularly injected with the isolate at the dose of 1.0×105, 1.0×106, 1.0×107 and 1.0×108 CFU·mL-1, respectively.
图6 宽体金线蛭感染CQ1808菌株前后的病理变化图谱 A-C和D-F分别为健康宽体金线蛭和患病宽体金线蛭的嗉囊、嗉囊内壁褶皱和体腔壁局部纵肌。D,消化系统整体结构异常,病理变化最显著的为嗉囊(箭头);E,嗉囊内壁单层柱状上皮和肌层形成的褶皱(*),且上皮细胞和外肌层坏死脱落形成碎片并出现增生(箭头);F,病蛭体腔壁局部纵肌周围可见大量短杆菌(白色箭头)和炎性细胞浸润(黑色箭头)。
Fig.6 Pathological changes in Whitmania pigra before and after infection with CQ1808 strain A-C and D-F were the crop, inner crop wall folds and local longitudinal muscles in the body cavity wall of healthy and diseased leeches, respectively. D, Abnormal structure of the overall digestive system, the most distinct pathological changes in the crops (arrow); E, Folds in columnar epithelium and myometrium (*), fragments and proliferate in the crops (arrow); F, A large number of bacteria (white arrow) and inflammatory cell infiltration (black arrow) around localized longitudinal muscles in the body cavity wall of the diseased leeches.
[1] | LIU F, GUO Q S, SHI H Z, et al. Genetic variation in Whitmania pigra, Hirudo nipponica and Poecilobdella manillensis, three endemic and endangered species in China using SSR and TRAP markers[J]. Gene, 2016, 579(2): 172-182. |
[2] | 刘飞, 杨大坚. 中国水蛭人工养殖的现行模式调研[J]. 世界科学技术-中医药现代化, 2014, 16(10): 2170-2173. |
LIU F, YANG D J. Study on artificial breeding model of medical leech in China[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2014, 16(10): 2170-2173. (in Chinese with English abstract) | |
[3] | CHENG B, GOU L, GUO Q, et al. Effects of temperature on growth, feed intake and antithrombin activity of Poecilobdella manillensis[J]. Turkish Journal of Fisheries and Aquatic Sciences, 2016, 16(4): 847-853. |
[4] | SHI H Z, WU B, SHI G W, et al. The effects of astragalus polysaccharides on the growth, heat stress tolerance and related gene expression of the leech Whitmania pigra[J]. Aquaculture Research, 2021, 52(7): 3247-3255. |
[5] | LI P, LIN B, TANG P, et al. Aqueous extract of Whitmania pigra Whitman ameliorates ferric chloride-induced venous thrombosis in rats via antioxidation[J]. Journal of Thrombosis and Thrombolysis, 2021, 52(1): 59-68. |
[6] | 唐毅, 袁渊, 王伟, 等. 宽体金线蛭杀鲑气单胞菌的药物敏感性试验[J]. 科学养鱼, 2020(4): 45-47. |
TANG Y, YUAN Y, WANG W, et al. Drug sensitivity test on killing Aeromonas salmon by Hirudo latifolia[J]. Scientific Fish Farming, 2020(4): 45-47. (in Chinese) | |
[7] | 靳晓敏, 葛慕湘, 张艳英, 等. 不同来源嗜水气单胞菌溶血素基因检测及序列分析[J]. 淡水渔业, 2014, 44(1): 3-7. |
JIN X M, GE M X, ZHANG Y Y, et al. Detection and sequence analysis of hemolysin gene in Aeromonas hydrophila strains[J]. Freshwater Fisheries, 2014, 44(1): 3-7. (in Chinese with English abstract) | |
[8] | 磨美兰, 韦平, 周维官, 等. 水蛭常见病原菌的分离与鉴定[J]. 动物学杂志, 2003, 38(3): 2-7. |
MO M L, WEI P, ZHOU W G, et al. Isolation and identification of common pathogens of leech[J]. Chinese Journal of Zoology, 2003, 38(3): 2-7. (in Chinese) | |
[9] | 张晓君, 房海, 陈翠珍, 等. 宽体金线蛭嗜水气单胞菌感染的病原检验[J]. 微生物学通报, 2006, 33(1): 46-52. |
ZHANG X J, FANG H, CHEN C Z, et al. Examination of A. hydrophila isolated from Whitmania pigra(L.)[J]. Microbiology, 2006, 33(1): 46-52. (in Chinese with English abstract) | |
[10] | PAN L F, YANG Y H, PENG Y N, et al. The novel pathogenic Citrobacter freundii(CFC202) isolated from diseased crucian carp (Carassius auratus) and its ghost vaccine as a new prophylactic strategy against infection[J]. Aquaculture, 2021, 533: 736190. |
[11] | GU Y S, WANG H C, GUO C, et al. Citrobacter freundii: a causative agent for ulcer disease in snakehead fish Ophiocephalus argus(Cantor)[J]. Israeli Journal of Aquaculture-Bamidgeh, 2019, 71: 1613. |
[12] | LIU X D, HE X, AN Z H, et al. Citrobacter freundii infection in red swamp crayfish (Procambarus clarkii) and host immune-related gene expression profiles[J]. Aquaculture, 2020, 515: 734499. |
[13] | THANIGAIVEL S, VIJAYAKUMAR S, GOPINATH S, et al. In vivo and in vitro antimicrobial activity of Azadirachta indica (Lin) against Citrobacter freundii isolated from naturally infected Tilapia (Oreochromis mossambicus)[J]. Aquaculture, 2015, 437: 252-255. |
[14] | 杨移斌, 夏永涛, 赵蕾, 等. 鲟源弗氏柠檬酸杆菌分离鉴定及药敏特性研究[J]. 水生生物学报, 2013, 37(4): 766-771. |
YANG Y B, XIA Y T, ZHAO L, et al. Isolation, identification and drug sensitivity of Citrobacter freundii from sturgeon[J]. Acta Hydrobiologica Sinica, 2013, 37(4): 766-771. (in Chinese) | |
[15] | TÜRE M. Isolation of Citrobacter freundii from Rainbow Trout (Oncorhynchus mykiss) in freshwater cage[J]. Journal of Limnology and Freshwater Fisheries Research, 2018: 85-89. |
[16] | 刘张淮, 吴霆, 王家军, 等. 克氏原螯虾烂尾病病原的分离鉴定及其相关特性分析[J]. 水产科学, 2022, 41(1): 102-109. |
LIU Z H, WU T, WANG J J, et al. Isolation, identification and related characteristics analysis of pathogen isolated from red swamp crayfish Procambarus clarkii with tail-rotted disease[J]. Fisheries Science, 2022, 41(1): 102-109. (in Chinese with English abstract) | |
[17] | 黄晓东, 周慧华, 安健, 等. 中华绒螯蟹致病性弗氏柠檬酸杆菌的分离鉴定及其药敏特性[J]. 南方农业学报, 2019, 50(7): 1613-1619. |
HUANG X D, ZHOU H H, AN J, et al. Isolation, identification and antibiotic susceptibility of pathogenic Citrobacter freundii from Eriocheir sinensis[J]. Journal of Southern Agriculture, 2019, 50(7): 1613-1619. (in Chinese with English abstract) | |
[18] | HOSSAIN S, WIMALASENA S H M P, DE ZOYSA M, et al. Prevalence of Citrobacter spp. from pet turtles and their environment[J]. Journal of Exotic Pet Medicine, 2017, 26(1): 7-12. |
[19] | SCHADICH E. Skin peptide activities against opportunistic bacterial pathogens of the African clawed frog (Xenopus laevis) and three Litoria frogs[J]. Journal of Herpetology, 2009, 43(2): 173-183. |
[20] | DENAYA S, YULIANTI R, PAMBUDI A, et al. Novel microbial consortium formulation as plant growth promoting bacteria (PGPB) agent[J]. IOP Conference Series: Earth and Environmental Science, 2021, 637(1): 012030. |
[21] | 杨清麟. 三角帆蚌高致病力菌株的分离鉴定及其对宿主免疫应答的影响[D]. 重庆: 西南大学, 2021. |
YANG Q L. Isolation and identification of a highly pathogenic strain of Hyriopsis cumingii and its effect on host immune response[D]. Chongqing: Southwest University, 2021. (in Chinese with English abstract) | |
[22] | YANG Q, LI W, DU C, et al. Emerging pathogens caused disease and mortality in freshwater mussels, Hyriopsis cumingii, in China[J]. Aquaculture Research, 2020, 51(12): 5096-5105. |
[23] | 董靖, 刘永涛, 胥宁, 等. 日本医蛭水肿病病原分离鉴定及敏感性试验[J]. 淡水渔业, 2018, 48(6): 46-52. |
DONG J, LIU Y T, XU N, et al. Identification and susceptibility test of pathogenic Aeromonas veronii isolated from leech Hirudo nipponia[J]. Freshwater Fisheries, 2018, 48(6): 46-52. (in Chinese with English abstract) | |
[24] | SUN H Y, CAO X H, JIANG Y F, et al. Outbreak of a novel disease associated with Citrobacter freundii infection in freshwater cultured stingray, Potamotrygon motoro[J]. Aquaculture, 2018, 492: 35-39. |
[25] | WALCZAK N, PUK K, GUZ L. Bacterial flora associated with diseased freshwater ornamental fish[J]. Journal of Veterinary Research, 2017, 61(4): 445-449. |
[26] | BALDISSERA M D, SOUZA C F, JUNIOR G B, et al. Citrobacter freundii impairs the phosphoryl transfer network in the gills of Rhamdia quelen: impairment of bioenergetics homeostasis[J]. Microbial Pathogenesis, 2018, 117: 157-161. |
[27] | CHUNG T, YI S, KIM B, et al. Identification and antibiotic resistance profiling of bacterial isolates from septicaemic soft-shelled turtles (Pelodiscus sinensis)[J]. Veterinarni Medicina, 2017, 62(3): 169-177. |
[28] | 苗珍, 李席席, 高晓建, 等. 中华绒螯蟹病原弗氏柠檬酸杆菌的鉴定及其毒力基因检测[J]. 畜牧与兽医, 2020, 52(10): 85-90. |
MIAO Z, LI X X, GAO X J, et al. Identification and virulence genes detection of pathogenic Citrobacter freundii isolated from Eriocheir sinensis[J]. Animal Husbandry & Veterinary Medicine, 2020, 52(10): 85-90. (in Chinese with English abstract) | |
[29] | 陈立婧, 王熙宇, 臧德法, 等. 宽体金线蛭消化道的组织学观察[J]. 生物学杂志, 2010, 27(6): 25-28. |
CHEN L J, WANG X Y, ZANG D F, et al. Histology of digestive tract in Whitmania pigra[J]. Journal of Biology, 2010, 27(6): 25-28. (in Chinese with English abstract) | |
[30] | 农业农村部渔业渔政管理局. 关于发布《水产养殖用药明白纸2022年1、2号》宣传材料的通知[EB/OL]. (2022-11-15)[2022-12-10]. http://www.yyj.moa.gov.cn/gzdt/202211/t20221115_6415528.htm. |
[31] | LIU L, CHEN D, LIU L, et al. Genetic diversity, multidrug resistance, and virulence of Citrobacter freundii from diarrheal patients and healthy individuals[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 233. |
[32] | YAO Y, FALGENHAUER L, FALGENHAUER J, et al. Carbapenem-resistant Citrobacter spp. as an emerging concern in the hospital-setting: results from a genome-based regional surveillance study[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 744431. |
[33] | ZHU F. A review on the application of herbal medicines in the disease control of aquatic animals[J]. Aquaculture, 2020, 526: 735422. |
[34] | ABARIKE E D, ATUNA R A, AGYEKUM S, et al. Isolation and characterization of Aeromonas jandaei from Nile tilapia in Lake Volta, Ghana, and its response to antibiotics and herbal extracts[J]. Journal of Aquatic Animal Health, 2022, 34(3): 140-148. |
[35] | PAN T, YAN M. The screening of traditional Chinese herbs on nonspecific immune response and protection of pacific white shrimp (Litopenaeus vannamei) from Vibrio harveyi infection[J]. Aquaculture International, 2020, 28(2): 767-776. |
[36] | 李焯新, 蔡小辉, 黄瑜, 等. 中草药与抗生素联用对罗非鱼源无乳链球菌的体外抑菌作用[J]. 广东海洋大学学报, 2016, 36(4): 45-49. |
LI Z X, CAI X H, HUANG Y, et al. Antibacterial effect in vitro on Streptococcus agalactiae isolated from Tilapia with combination of Chinese herbs and antibiotics[J]. Journal of Guangdong Ocean University, 2016, 36(4): 45-49. (in Chinese with English abstract) |
[1] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
[2] | 陈姿亦, 何盛盛, 闫晶男, 吴怡蓉, 张雨婷, 高有领. 宽体金线蛭提取物对HEK293细胞维甲酸诱导基因蛋白样受体(RLRs)通路的影响[J]. 浙江农业学报, 2023, 35(12): 2830-2843. |
[3] | 普梅英, 武自强, 张诗文, 李艳杰, 朱幼娇, 吴坤, 陈龙清, 王超. 华东山茶花腐病病原菌分离鉴定[J]. 浙江农业学报, 2023, 35(1): 121-127. |
[4] | 王志鹏, 赵剑, 黄盼, 崔雪梅, 南黎, 宋厚辉, 鲍国连, 刘燕. 兔源大肠埃希菌噬菌体分离鉴定与生物学特性研究[J]. 浙江农业学报, 2022, 34(8): 1599-1608. |
[5] | 詹佳飞, 徐魁, 张磊, 夏介英, 洪杨, 董涵, 刘洋露, 周静, 袁明铭, 王永金, 鄢良春. 毛蕊花糖苷抑制2型猪链球菌的溶血素蛋白活性而降低其小鼠致病性[J]. 浙江农业学报, 2022, 34(8): 1609-1616. |
[6] | 黄莉萍, 安莉丽, 李芳, 杨成年, 李虹, 吕光俊, 向枭, 孙翰昌, 翟旭亮, 朱成科. 中华鳖弗氏柠檬酸杆菌的鉴定及病理组织观察[J]. 浙江农业学报, 2020, 32(7): 1176-1186. |
[7] | 陈章, 吴华健, 毛天骄, 韩业芹, 孙裴, 魏建忠, 李东风, 李郁. 猪链球菌2型制苗用菌株的筛选[J]. 浙江农业学报, 2020, 32(1): 57-64. |
[8] | 张岩, 亓玉华, 鲁燕华, 杨乾坤, 何雨娟, 李俊敏, 陈剑平. 小麦黄花叶病毒P3蛋白致病功能域的鉴定和分析[J]. 浙江农业学报, 2019, 31(5): 777-783. |
[9] | 吴琼娟, 杨志鹏, 姚焱彬, 陆萍, 魏建忠, 孙裴, 李郁. 猪红斑丹毒丝菌制苗用菌株的筛选[J]. 浙江农业学报, 2018, 30(9): 1467-1475. |
[10] | 袁雪梅, 姚嘉赟, 蔺凌云, 潘晓艺, 徐洋, 尹文林, 沈锦玉. 泥鳅致病性维氏气单胞菌的分离与鉴定[J]. 浙江农业学报, 2018, 30(5): 730-737. |
[11] | 钟锐, 姜尧章, 马晓平, 左之才, 黄小丽, 邓俊良, 沈留红, 余树民. 肉牛源毛孢子菌Trichosporon loubieri的分离鉴定与药敏试验[J]. 浙江农业学报, 2018, 30(1): 26-35. |
[12] | 姚克昌, 刘月月, 游国进, 李淑芸, 夏静, 何肖, 李雯雯, 杜莉静, 韩新锋, 黄勇. 西南部分地区Ⅰ群禽腺病毒的分子流行病学调查及致病性研究[J]. 浙江农业学报, 2017, 29(11): 1809-1818. |
[13] | 陈先锋, 张慧丽, 赵雷. 台湾柠檬上柑橘溃疡病菌的分离鉴定[J]. 浙江农业学报, 2017, 29(1): 101-105. |
[14] | 朱海霞,马永强,程亮,郭青云*. 极细链格孢菌HZ\|1对阔叶杂草的致病性及对作物的安全性评价[J]. 浙江农业学报, 2016, 28(6): 1037-. |
[15] | 尹娜1,林小清2,杨月伟1,徐海圣2,*. 宽体金线蛭抗氧化活性肽的分离纯化及体外活性研究[J]. 浙江农业学报, 2015, 27(3): 348-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 480
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 166
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||