浙江农业学报 ›› 2023, Vol. 35 ›› Issue (4): 789-798.DOI: 10.3969/j.issn.1004-1524.2023.04.06
收稿日期:
2022-05-12
出版日期:
2023-04-25
发布日期:
2023-05-05
通讯作者:
*袁德义,E-mail: yuan-deyi@163.com
作者简介:
徐金铭(1996—),女,安徽马鞍山人,硕士研究生,主要从事经济林研究。E-mail:xujinming0504@163.com
基金资助:
XU Jinming(), CHANG Yihong, GONG Han, GONG Wenfang, YUAN Deyi(
)
Received:
2022-05-12
Online:
2023-04-25
Published:
2023-05-05
摘要:
以普通油茶花粉为材料,研究不同浓度的植物生长调节剂、矿质元素、一氧化氮(NO)和活性氧(ROS))对花粉萌发和花粉管生长的影响,并采用正交试验优化普通油茶花粉的萌发条件。结果表明:0.5~5.0 mg·L-1赤霉酸(GA3)、0.5 mg·L-1 萘乙酸(NAA)显著促进花粉萌发和花粉管生长,最大花粉萌发率分别为59.07%,71.29%,而高浓度的NAA、GA3(50 mg·L-1)却极显著抑制花粉萌发和花粉管生长。10~50 mg·L-1 MgSO4处理的萌发率为56.88%~65.83%,24 h最大花粉管长度为2 809.56 μm。50~150 mg·L-1 CaCl2·2H2O处理的萌发率为59.91%~63.28%,24 h最大花粉管长度为2 770.11 μm,差异达显著水平。随着Ca2+的抑制剂乙二醇双四乙酸EGTA、乙烯利(ETH)和NO供体硝普钠(SNP)浓度的增加,花粉萌发率和花粉管长度降低。100~300 μmol·L-1 N'-硝基-L-精氨酸(L-NNA,NO抑制剂)促进花粉萌发和花粉管生长,最大花粉萌发率为68.12%。H2O2(ROS供体)和乙酰半胱氨酸(NAC,ROS抑制剂)浓度越高,花粉萌发率越低,花粉管长度越小,最大花粉萌发率分别为48.39%和45.78%。正交试验结果表明,促进油茶花粉萌发的最佳配比为100 g·L-1蔗糖、10 g·L-1琼脂、0.1 g·L-1 H3BO3、50 mg·L-1 CaCl2·2H2O、10 mg·L-1 MgSO4、0.5 mg·L-1 NAA和2 mg·L-1 GA3,促进油茶花粉管生长的最佳配比为100 g·L-1蔗糖、10 g·L-1琼脂、0.1 g·L-1 H3BO3、50 mg·L-1 CaCl2·2H2O、10 mg·L-1 MgSO4、0.5 mg·L-1 NAA和8 mg·L-1 GA3。Ca2+、Mg2+和适当浓度的GA3、NAA促进花粉萌发和花粉管生长,而乙烯利、NO和ROS对花粉萌发和花粉管生长起抑制作用。本研究结果可为油茶花粉离体萌发试验提供依据。
中图分类号:
徐金铭, 常毅洪, 龚涵, 龚文芳, 袁德义. 外源物质对油茶花粉萌发和花粉管生长的影响[J]. 浙江农业学报, 2023, 35(4): 789-798.
XU Jinming, CHANG Yihong, GONG Han, GONG Wenfang, YUAN Deyi. Effects of different exogenous substances on pollen germination and pollen tube growth of Camellia oleifera[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 789-798.
水平 Level | 因素Factor | |||
---|---|---|---|---|
CaCl2·2H2O | MgSO4 | NAA | GA3 | |
1 | 50 | 10 | 0.5 | 2 |
2 | 100 | 30 | 1.0 | 5 |
3 | 150 | 50 | 2.0 | 8 |
表1 正交试验因素水平表
Table 1 Factors and levels for orthogonal test mg·L-1
水平 Level | 因素Factor | |||
---|---|---|---|---|
CaCl2·2H2O | MgSO4 | NAA | GA3 | |
1 | 50 | 10 | 0.5 | 2 |
2 | 100 | 30 | 1.0 | 5 |
3 | 150 | 50 | 2.0 | 8 |
质量浓度 Concentration/ (mg·L-1) | 乙烯利Ethephon | 萘乙酸NAA | 赤霉素GA3 | |||
---|---|---|---|---|---|---|
花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | |
0 | 54.78±1.46 a | 789.22±37.73 a | 54.78±1.46 b | 789.22±37.73 b | 54.78±1.46 a | 789.22±37.73 b |
0.5 | 47.57±3.54 b | 719.87±71.26 a | 71.29±1.27 a | 1 011.51±54.49 a | 56.85±4.09 a | 998.98±71.18 a |
5 | 45.99±1.44 b | 708.44±22.50 a | 50.31±3.99 b | 750.63±8.48 b | 59.07±2.59 a | 1 013.94±42.04 a |
50 | 4.37±2.76 c | 202.59±16.25 b | 2.86±0.09 c | 127.83±17.11 c | 4.90±0.58 b | 357.95±32.26 c |
表2 不同植物生长调节剂处理下油茶花粉萌发率与花粉管长度
Table 2 Pollen germination rate and pollen tube length of C. oleifera under different plant growth regulator treatments
质量浓度 Concentration/ (mg·L-1) | 乙烯利Ethephon | 萘乙酸NAA | 赤霉素GA3 | |||
---|---|---|---|---|---|---|
花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | |
0 | 54.78±1.46 a | 789.22±37.73 a | 54.78±1.46 b | 789.22±37.73 b | 54.78±1.46 a | 789.22±37.73 b |
0.5 | 47.57±3.54 b | 719.87±71.26 a | 71.29±1.27 a | 1 011.51±54.49 a | 56.85±4.09 a | 998.98±71.18 a |
5 | 45.99±1.44 b | 708.44±22.50 a | 50.31±3.99 b | 750.63±8.48 b | 59.07±2.59 a | 1 013.94±42.04 a |
50 | 4.37±2.76 c | 202.59±16.25 b | 2.86±0.09 c | 127.83±17.11 c | 4.90±0.58 b | 357.95±32.26 c |
矿质元素 Mineral element | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | |
---|---|---|---|
硫酸镁MgSO4/(mg·L-1) | 0 | 54.78±1.46 b | 789.22±37.73 b |
10 | 65.83±2.99 a | 1026.35±45.37 a | |
30 | 60.57±2.72 ab | 883.52±22.81 b | |
50 | 56.88±3.40 ab | 860.97±52.52 b | |
二水氯化钙CaCl2·2H2O/(mg·L-1) | 0 | 54.78±1.46 b | 789.22±37.73 c |
50 | 63.28±1.46 a | 976.28±20.30 a | |
150 | 59.91±7.08 b | 803.10±32.52 b | |
450 | 33.44±1.34 c | 639.74±17.60 d | |
乙二醇双四乙酸EGTA/(μmol·L-1) | 0 | 54.78±1.46 a | 789.22±37.73 a |
200 | 49.92±4.35 a | 555.46±20.54 b | |
400 | 39.71±6.23 b | 445.88±37.14 c | |
600 | 21.03±1.56 c | 427.23±23.17 c | |
800 | 10.13±3.67 d | 394.26±22.32 d |
表3 不同矿质元素处理下油茶花粉萌发率与花粉管长度
Table 3 Pollen germination rate and pollen tube length of C. oleifera under different mineral element treatments
矿质元素 Mineral element | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | |
---|---|---|---|
硫酸镁MgSO4/(mg·L-1) | 0 | 54.78±1.46 b | 789.22±37.73 b |
10 | 65.83±2.99 a | 1026.35±45.37 a | |
30 | 60.57±2.72 ab | 883.52±22.81 b | |
50 | 56.88±3.40 ab | 860.97±52.52 b | |
二水氯化钙CaCl2·2H2O/(mg·L-1) | 0 | 54.78±1.46 b | 789.22±37.73 c |
50 | 63.28±1.46 a | 976.28±20.30 a | |
150 | 59.91±7.08 b | 803.10±32.52 b | |
450 | 33.44±1.34 c | 639.74±17.60 d | |
乙二醇双四乙酸EGTA/(μmol·L-1) | 0 | 54.78±1.46 a | 789.22±37.73 a |
200 | 49.92±4.35 a | 555.46±20.54 b | |
400 | 39.71±6.23 b | 445.88±37.14 c | |
600 | 21.03±1.56 c | 427.23±23.17 c | |
800 | 10.13±3.67 d | 394.26±22.32 d |
化合物 Compound | 浓度 Concentration/(μmol·L-1) | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm |
---|---|---|---|
硝普钠SNP | 0 | 54.78±1.46 a | 789.22±37.73 a |
100 | 53.19±2.34 a | 735.99±41.53 a | |
200 | 51.25±1.43 ab | 720.24±61.36 a | |
300 | 47.38±2.08 b | 717.12±51.11 a | |
N'-硝基-L-精氨酸 L-NNA | 0 | 54.78±1.46 b | 789.22±37.73 b |
100 | 59.69±4.52 ab | 879.72±45.66 ab | |
200 | 68.12±2.66 a | 948.64±50.26 a | |
300 | 61.85±5.42 ab | 891.66±29.00 ab | |
过氧化氢H2O2 | 0 | 54.78±1.46 a | 789.22±37.73 a |
100 | 48.39±6.33 a | 576.75±29.06 b | |
300 | 36.75±2.24 b | 441.87±26.04 c | |
500 | 19.38±3.16 c | 403.03±30.43 c | |
乙酰半胱氨酸NAC | 0 | 54.78±1.46 a | 789.22±37.73 a |
100 | 45.78±1.58 b | 591.13±32.43 b | |
300 | 42.23±2.13 b | 562.81±6.88 bc | |
500 | 38.94±3.75 c | 497.45±14.82 c |
表4 不同化合物处理下油茶花粉萌发率与花粉管长度
Table 4 Pollen germination rate and pollen tube length of C. oleifera under different compound treatments
化合物 Compound | 浓度 Concentration/(μmol·L-1) | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm |
---|---|---|---|
硝普钠SNP | 0 | 54.78±1.46 a | 789.22±37.73 a |
100 | 53.19±2.34 a | 735.99±41.53 a | |
200 | 51.25±1.43 ab | 720.24±61.36 a | |
300 | 47.38±2.08 b | 717.12±51.11 a | |
N'-硝基-L-精氨酸 L-NNA | 0 | 54.78±1.46 b | 789.22±37.73 b |
100 | 59.69±4.52 ab | 879.72±45.66 ab | |
200 | 68.12±2.66 a | 948.64±50.26 a | |
300 | 61.85±5.42 ab | 891.66±29.00 ab | |
过氧化氢H2O2 | 0 | 54.78±1.46 a | 789.22±37.73 a |
100 | 48.39±6.33 a | 576.75±29.06 b | |
300 | 36.75±2.24 b | 441.87±26.04 c | |
500 | 19.38±3.16 c | 403.03±30.43 c | |
乙酰半胱氨酸NAC | 0 | 54.78±1.46 a | 789.22±37.73 a |
100 | 45.78±1.58 b | 591.13±32.43 b | |
300 | 42.23±2.13 b | 562.81±6.88 bc | |
500 | 38.94±3.75 c | 497.45±14.82 c |
试验号 Test No. | 试验设计方案Rxperiment scheme | 结果Result | ||||
---|---|---|---|---|---|---|
CaCl2·2H2O (A) | MgSO4(B) | NAA(C) | GA3(D) | 花粉萌发率 Pollen germinationrate/% | 花粉管长度 Pollen tube length/μm | |
CK | 0 | 0 | 0 | 0 | 58.60±2.36 d | 702.88±43.12 e |
1 | 1 | 1 | 1 | 1 | 80.82±2.59 a | 1 015±30.94 a |
2 | 1 | 2 | 2 | 2 | 76.24±3.84 ab | 824.95±19.79 cd |
3 | 1 | 3 | 3 | 3 | 72.12±2.41 abc | 907.30±20.88 bc |
4 | 2 | 1 | 3 | 2 | 69.86±1.20 bc | 773.73±39.01 de |
5 | 2 | 2 | 1 | 3 | 66.92±1.26 bcd | 798.60±15.08 de |
6 | 2 | 3 | 2 | 1 | 63.57±6.51 cd | 726.13±21.14 de |
7 | 3 | 2 | 2 | 1 | 67.68±2.06 bcd | 793.71±54.95 de |
8 | 3 | 3 | 3 | 2 | 62.65±4.61 cd | 750.84±31.86 de |
9 | 3 | 1 | 1 | 3 | 71.06±1.49 bc | 927.95±7.74 ab |
表5 油茶花粉萌发的正交试验结果
Table 5 Orthogonal test results of pollen germination of C. oleifera
试验号 Test No. | 试验设计方案Rxperiment scheme | 结果Result | ||||
---|---|---|---|---|---|---|
CaCl2·2H2O (A) | MgSO4(B) | NAA(C) | GA3(D) | 花粉萌发率 Pollen germinationrate/% | 花粉管长度 Pollen tube length/μm | |
CK | 0 | 0 | 0 | 0 | 58.60±2.36 d | 702.88±43.12 e |
1 | 1 | 1 | 1 | 1 | 80.82±2.59 a | 1 015±30.94 a |
2 | 1 | 2 | 2 | 2 | 76.24±3.84 ab | 824.95±19.79 cd |
3 | 1 | 3 | 3 | 3 | 72.12±2.41 abc | 907.30±20.88 bc |
4 | 2 | 1 | 3 | 2 | 69.86±1.20 bc | 773.73±39.01 de |
5 | 2 | 2 | 1 | 3 | 66.92±1.26 bcd | 798.60±15.08 de |
6 | 2 | 3 | 2 | 1 | 63.57±6.51 cd | 726.13±21.14 de |
7 | 3 | 2 | 2 | 1 | 67.68±2.06 bcd | 793.71±54.95 de |
8 | 3 | 3 | 3 | 2 | 62.65±4.61 cd | 750.84±31.86 de |
9 | 3 | 1 | 1 | 3 | 71.06±1.49 bc | 927.95±7.74 ab |
因素 Factor | 花粉萌发率Pollen germinationrate/% | 花粉管长度Pollen tube length/μm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
k1 | k2 | k3 | R | 最优水平 Optimal level | k1 | k2 | k3 | R | 最优水平 Optimal level | |
CaCl2·2H2O(A) | 76.39 | 66.78 | 67.13 | 9.61 | 1 | 915.75 | 766.15 | 824.17 | 149.6 | 1 |
MgSO4(B) | 73.91 | 70.28 | 66.11 | 7.8 | 1 | 905.56 | 805.75 | 794.76 | 110.8 | 1 |
NAA(C) | 72.93 | 69.16 | 68.21 | 4.72 | 1 | 913.85 | 781.6 | 810.62 | 132.25 | 1 |
GA3(D) | 70.69 | 69.58 | 70.03 | 1.11 | 1 | 844.95 | 783.17 | 877.95 | 94.78 | 3 |
表6 极差分析结果
Table 6 Results of range analysis
因素 Factor | 花粉萌发率Pollen germinationrate/% | 花粉管长度Pollen tube length/μm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
k1 | k2 | k3 | R | 最优水平 Optimal level | k1 | k2 | k3 | R | 最优水平 Optimal level | |
CaCl2·2H2O(A) | 76.39 | 66.78 | 67.13 | 9.61 | 1 | 915.75 | 766.15 | 824.17 | 149.6 | 1 |
MgSO4(B) | 73.91 | 70.28 | 66.11 | 7.8 | 1 | 905.56 | 805.75 | 794.76 | 110.8 | 1 |
NAA(C) | 72.93 | 69.16 | 68.21 | 4.72 | 1 | 913.85 | 781.6 | 810.62 | 132.25 | 1 |
GA3(D) | 70.69 | 69.58 | 70.03 | 1.11 | 1 | 844.95 | 783.17 | 877.95 | 94.78 | 3 |
[1] | 庄瑞林. 中国油茶[M]. 北京: 中国林业出版社, 1988. |
[2] |
YU C Y, ZHANG H K, WANG N, et al. Glycosylphosphatidylinositol-anchored proteins mediate the interactions between pollen/pollen tube and pistil tissues[J]. Planta, 2021, 253(1): 19.
DOI PMID |
[3] |
DRESSELHAUS T, FRANKLIN-TONG N. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization[J]. Molecular Plant, 2013, 6(4): 1018-1036.
DOI PMID |
[4] |
LOPES A L, MOREIRA D, FERREIRA M J, et al. Insights into secrets along the pollen tube pathway in need to be discovered[J]. Journal of Experimental Botany, 2019, 70(11): 2979-2992.
DOI PMID |
[5] |
FRAGALLAH S, LIN S Z, LI N, et al. Effects of sucrose, boric acid, pH, and incubation time on in vitro germination of pollen and tube growth of Chinese fir (Cunnighamial lanceolata L.)[J]. Forests, 2019, 10(2): 102.
DOI URL |
[6] |
KREMER D, JEMRIC T. Pollen germination and pollen tube growth in Fraxinus pennsylvanica[J]. Biologia, 2006, 61(1): 79-83.
DOI URL |
[7] | 蔡昭艳, 董龙, 王小媚, 等. 培养基pH值及蔗糖、硼酸、PEG-4000对百香果花粉体外萌发的影响[J]. 分子植物育种, 2021, 19(21): 7274-7281. |
CAI Z Y, DONG L, WANG X M, et al. Effects of medium pH and sucrose, boric acid and PEG-4000 on in vitro germination of passion fruit pollen[J]. Molecular Plant Breeding, 2021, 19(21): 7274-7281. (in Chinese with English abstract) | |
[8] | 冯都煌, 刘会云, 张莉, 等. 促进油茶花粉萌发的营养物质配比研究[J]. 西南林业大学学报(自然科学), 2022, 42(1): 91-99. |
FENG D H, LIU H Y, ZHANG L, et al. Study on the ratio of nutrients for promoting pollen germination of Camellia oleifera[J]. Journal of Southwest Forestry University(Natural Sciences), 2022, 42(1): 91-99. (in Chinese with English abstract) | |
[9] | 刘林秀, 曾海涛, 徐皓, 等. 几种植物激素对4种山茶属植物花粉萌发及花粉管生长的影响[J]. 中国油料作物学报, 2021, 43(4): 700-707. |
LIU L X, ZENG H T, XU H, et al. Effects of phytohormones on pollen germination and pollen tube growth of 4 Camellia plants[J]. Chinese Journal of Oil Crop Sciences, 2021, 43(4): 700-707. (in Chinese with English abstract) | |
[10] | 郭丽, 朱飞雪, 王存纲, 等. 温度与汞胁迫对大岩桐花粉萌发及花粉管生长的影响[J]. 分子植物育种, 2022, 20(2): 511-517. |
GUO L, ZHU F X, WANG C G, et al. Effects of different temperature and Hg stress on pollen morphology and germination characteristics in Sinningia speciosa[J]. Molecular Plant Breeding, 2022, 20(2): 511-517. (in Chinese with English abstract) | |
[11] |
BECK-PAY S L. The effect of temperature and relative humidity on Acacia mearnsii polyad viability and pollen tube development[J]. South African Journal of Botany, 2012, 83: 165-171.
DOI URL |
[12] | 王波, 周兰英, 夏华梅, 等. 蔗糖、硼酸、Ca2+对大白杜鹃花粉萌发的影响[J]. 江苏农业科学, 2021, 49(6): 129-133. |
WANG B, ZHOU L Y, XIA H M, et al. Impacts of sucrose, boric acid and Ca2+ on pollen germination of Rhododendron decorum Franch[J]. Jiangsu Agricultural Sciences, 2021, 49(6): 129-133. (in Chinese) | |
[13] | ZHAO R, HU X, YUAN D Y, et al. Orthogonal test design for optimizing culture medium for in vitro pollen germination of interspecific oil tea hybrids[J]. Anais Da Academia Brasileira De Ciencias, 2021, 93(2): e20190431. |
[14] |
WANG Y H, LI X C, ZHU-GE Q, et al. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro[J]. PLoS One, 2012, 7(12): e52436.
DOI URL |
[15] | SINGH R, SINGH S, PARIHAR P, et al. Reactive oxygen species (ROS): beneficial companions of plants’ developmental processes[J]. Frontiers in Plant Science, 2016, 7: 1299. |
[16] | 谭晓风, 袁德义, 袁军, 等. 维生素C及植物生长调节物质对油茶花粉萌发率的影响[J]. 浙江林学院学报, 2010, 27(6): 941-944. |
TAN X F, YUAN D Y, YUAN J, et al. Pollen germination in Camellia oleifera with ascorbic acid and plant growth regulators[J]. Journal of Zhejiang Forestry College, 2010, 27(6): 941-944. (in Chinese with English abstract) | |
[17] | 邹锋, 谭晓风, 袁德义, 等. 油茶花粉数量及4℃贮藏萌发率特性研究[J]. 江西农业大学学报, 2009, 31(5): 892-895. |
ZOU F, TAN X F, YUAN D Y, et al. A study on Camellia pollen number and the vitality change under 4 ℃ storage[J]. Acta Agriculturae Universitatis Jiangxiensis, 2009, 31(5): 892-895. (in Chinese with English abstract) | |
[18] | 胡适宜. 植物胚胎学实验方法 (一)花粉生活力的测定[J]. 植物学通报, 1993, 28(2): 60-62. |
HU S Y. Experimental methods in plant embryology (ⅰ) determination of pollen viability[J]. Chinese Bulletin of Botany, 1993, 28(2): 60-62. (in Chinese) | |
[19] |
XIONG H, ZOU F, YUAN D, et al. Orthogonal test design for optimising the culture medium for in vitro pollen germination of feijoa (Acca sellowiana cv. Unique)[J]. New Zealand Journal of Crop and Horticultural Science, 2016, 44(3): 192-202.
DOI URL |
[20] | 袁德义, 王瑞, 袁军, 等. 不同营养元素及配比对油茶花粉萌发率的影响[J]. 福建农林大学学报(自然科学版), 2010, 39(5): 471-474. |
YUAN D Y, WANG R, YUAN J, et al. The influence of nutrient elements on pollen germination percentage in Camellia oleifera[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2010, 39(5): 471-474. (in Chinese with English abstract) | |
[21] |
GOKBAYRAK Z, ENGIN H. Brassinosteroids and gibberellic acid: effects on in vitro pollen germination in grapevine[J]. OENO One, 2017, 51(3): 303.
DOI URL |
[22] | 曾令达, 谭秋霞, 黄建昌, 等. NAA和ETH对荔枝花粉萌发及花粉管生长的影响[J]. 仲恺农业工程学院学报, 2017, 30(4): 15-20. |
ZENG L D, TAN Q X, HUANG J C, et al. Effects of NAA and ETH on germination and tube growth of litchi’s pollen[J]. Journal of Zhongkai University of Agriculture and Engineering, 2017, 30(4): 15-20. (in Chinese with English abstract) | |
[23] | ACAR I, AK B, SARPKAYA K. Effects of boron and gibberellic acid on in vitro pollen germination of pistachio Pistacia vera L[J]. African Journal of Biotechnology, 2010, 9: 5126-5130. |
[24] | 薛晓敏, 王金政, 张安宁, 等. 植物生长调节物质对桃花粉萌发和花粉管生长的影响[J]. 西北农林科技大学学报(自然科学版), 2008, 36(4): 123-127, 134. |
XUE X M, WANG J Z, ZHANG A N, et al. Effects of plant growth regulating substances on pollen germination and tube growth in Chaohong peach[J]. Journal of Northwest A & F University(Natural Science Edition), 2008, 36(4): 123-127, 134. (in Chinese with English abstract) | |
[25] | 刘才宇, 王成斌. 植物生长调节剂及硼营养与蔬菜花粉萌发及生长关系的研究[J]. 安徽农业科学, 2000, 28(4): 502-503. |
LIU C Y, WANG C B. Study on the relationship between plant growth regulators and boron nutrition and vegetable pollen germination and growth[J]. Journal of Anhui Agricultural Sciences, 2000, 28(4): 502-503. (in Chinese) | |
[26] | 韩志强, 袁德义, 陈文涛, 等. 不同营养元素及其配比对枣花粉萌发与花粉管生长的影响[J]. 江西农业大学学报, 2014, 36(2): 357-363. |
HAN Z Q, YUAN D Y, CHEN W T, et al. Effects of different nutrient elements on pollen germination and tube growth in Ziziphus jujube Mill[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(2): 357-363. (in Chinese with English abstract) | |
[27] | 常海龙, 张伟, 陈俊吕, 等. 甘蔗花粉离体萌发研究[J]. 热带作物学报, 2019, 40(10): 2068-2075. |
CHANG H L, ZHANG W, CHEN J L, et al. Sugarcane pollen germination in vitro[J]. Chinese Journal of Tropical Crops, 2019, 40(10): 2068-2075. (in Chinese with English abstract) | |
[28] | STEINHORST L, KUDLA J. Calcium-a central regulator of pollen germination and tube growth[J]. Biochimica et Biophysica Acta(BBA)-Molecular Cell Research, 2013, 1833(7): 1573-1581. |
[29] | 谢彭雪, 张伟伟, 张卿, 等. EGTA对‘秦冠’苹果花粉管Ca2+、微丝分布以及囊泡运输的影响[J]. 北京农学院学报, 2017, 32(3): 27-32. |
XIE P X, ZHANG W W, ZHANG Q, et al. Effects of EGTA treatment on calcium, actin distribution and vesicle trafficking of apple (Malus pumila Mill.) pollen tubes[J]. Journal of Beijing University of Agriculture, 2017, 32(3): 27-32. (in Chinese with English abstract) | |
[30] |
BREWBAKER J L, KWACK B H. The essential role of calcium ion in pollen germination and pollen tube growth[J]. American Journal of Botany, 1963, 50(9): 859-865.
DOI URL |
[31] | 何金环, 李巧枝, 任敏. Ca2+对黄瓜花粉萌发和花粉管生长的影响[J]. 河南农业科学, 2006, 35(1): 75-77. |
HE J H, LI Q Z, REN M. The effects of Ca2+ on pollen germination and tube growth in cucumber[J]. Journal of Henan Agricultural Sciences, 2006, 35(1): 75-77. (in Chinese with English abstract) | |
[32] |
ZHAN N, HUANG L J. Effects of Ca2+ on in vitro pollen germination of three Acacia species[J]. Silvae Genetica, 2016, 65(2): 11-16.
DOI URL |
[33] |
DELLEDONNE M. NO news is good news for plants[J]. Current Opinion in Plant Biology, 2005, 8(4): 390-396.
PMID |
[34] |
LAMOTTE O, COURTOIS C, BARNAVON L, et al. Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule[J]. Planta, 2005, 221(1): 1-4.
PMID |
[35] | 李孝诚. 一氧化氮调节茶树花粉低温萌发和花粉管生长的研究[D]. 南京: 南京农业大学, 2012. |
LI X C. Modulation of nitric oxide in tea pollen germination and pollen tube growth under low temperature[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract) | |
[36] |
PASQUALINI S, CRESTI M, DEL CASINO C, et al. Roles for NO and ROS signalling in pollen germination and pollen-tube elongation in Cupressus arizonica[J]. Biologia Plantarum, 2015, 59(4): 735-744.
DOI URL |
[37] |
DUAN Q H, LIU M C J, KITA D, et al. FERONIA controls pectin-and nitric oxide-mediated male-female interaction[J]. Nature, 2020, 579(7800): 561-566.
DOI |
[38] |
CURTIN J F, DONOVAN M, COTTER T G. Regulation and measurement of oxidative stress in apoptosis[J]. Journal of Immunological Methods, 2002, 265(1/2): 49-72.
DOI URL |
[39] |
TRACHOOTHAM D, ALEXANDRE J, HUANG P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?[J]. Nature Reviews Drug Discovery, 2009, 8(7): 579-591.
DOI PMID |
[40] | AZAD M B, CHEN Y Q, GIBSON S B. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment[J]. Antioxidants & Redox Signaling, 2009, 11(4): 777-790. |
[41] |
FINKEL T, HOLBROOK N J. Oxidants, oxidative stress and the biology of ageing[J]. Nature, 2000, 408(6809): 239-247.
DOI |
[42] |
LIU C, SHEN L P, XIAO Y, et al. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination[J]. Science, 2021, 372: 171-175.
DOI PMID |
[1] | 陈乐然, 郑建波, 贾永义, 迟美丽, 李飞, 程顺, 刘士力, 刘一诺, 蒋文枰, 顾志敏. 红螯螯虾CHH2基因的表达特征及其在卵巢发育中的功能[J]. 浙江农业学报, 2023, 35(1): 33-40. |
[2] | 金宝霞, 王伟杰, 朱晓林, 王贤, 魏小红. 不同激素组合对番茄离体再生和相关基因表达的影响[J]. 浙江农业学报, 2022, 34(9): 1889-1900. |
[3] | 沈植国, 孙萌, 丁鑫, 程建明, 陈迪新. 不同培养基组分对5个蜡梅品系花粉萌发和花粉管生长的影响[J]. 浙江农业学报, 2021, 33(2): 278-287. |
[4] | 岳建华, 董艳, 李文杨, 李蒙, 张琰. pH对百子莲体胚诱导期生理特性的影响[J]. 浙江农业学报, 2020, 32(8): 1405-1414. |
[5] | 陆锡昆, 罗亚辉, 蒋蘋, 胡文武. 基于高光谱的油茶籽含水量检测方法[J]. 浙江农业学报, 2020, 32(7): 1302-1310. |
[6] | 邱文怡, 王诗雨, 李晓芳, 徐恒, 张华, 朱英, 王良超. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
[7] | 王峰, 叶静, 高敬文, 王强, 俞巧钢, 何新华, 马军伟. 外源增钾缓解铵胁迫下小麦根系受抑[J]. 浙江农业学报, 2020, 32(11): 1923-1933. |
[8] | 王震光, 余义和, 郭大龙. 活性氧调控果实发育成熟的研究进展[J]. 浙江农业学报, 2020, 32(11): 2103-2110. |
[9] | 刘加林, 刘士力, 蒋文枰, 程顺, 迟美丽, 郑建波, 贾永义, 赵金良, 尹绍武, 顾志敏. 河川沙塘鳢GH基因及侧翼的克隆与生物信息学分析[J]. 浙江农业学报, 2019, 31(9): 1461-1470. |
[10] | 刘士力, 蒋文枰, 程顺, 迟美丽, 郑建波, 贾永义, 赵金良, 顾志敏. 翘嘴鲌生长激素基因侧翼2个微卫星位点与生长性状的关联分析[J]. 浙江农业学报, 2019, 31(1): 62-68. |
[11] | 杨颜铱, 邓俊良, 陈芸, 高爽, 刘旗, 陈憧, 姚淑华. 精料水平和复合抗菌肽对川中黑山羊生长性能及血清中免疫球蛋白、补体、细胞因子和激素水平的影响[J]. 浙江农业学报, 2017, 29(8): 1243-1252. |
[12] | 刘士力, 贾永义, 蒋文枰, 迟美丽, 程顺, 赵金良, 顾志敏, 傅建军. 翘嘴鲌生长激素(GH)基因与侧翼区的克隆及分析[J]. 浙江农业学报, 2017, 29(8): 1281-1289. |
[13] | 沈留红, 巫晓峰, 肖劲邦, 姜思汛, 邓俊良, 左之才, 傅宏庆, 曹随忠, 余树民, 张有瑞. 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量变化[J]. 浙江农业学报, 2017, 29(4): 548-554. |
[14] | 王代懿, 余洋, 张丰松, 李性苑, 苟体忠. 堆肥方式和温度对牛粪堆肥过程中天然类固醇激素降解的影响[J]. 浙江农业学报, 2017, 29(12): 2104-2108. |
[15] | 饶洪辉, 罗时挺, 余佳佳, 张立勇, 刘木华. 基于ANSYS Workbench的齿梳拨刀式油茶果采摘机拨果及花苞损伤仿真研究[J]. 浙江农业学报, 2017, 29(12): 2134-2141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||