浙江农业学报 ›› 2023, Vol. 35 ›› Issue (4): 789-798.DOI: 10.3969/j.issn.1004-1524.2023.04.06
收稿日期:2022-05-12
出版日期:2023-04-25
发布日期:2023-05-05
作者简介:徐金铭(1996—),女,安徽马鞍山人,硕士研究生,主要从事经济林研究。E-mail:xujinming0504@163.com
通讯作者:
*袁德义,E-mail: yuan-deyi@163.com
基金资助:
XU Jinming(
), CHANG Yihong, GONG Han, GONG Wenfang, YUAN Deyi(
)
Received:2022-05-12
Online:2023-04-25
Published:2023-05-05
摘要:
以普通油茶花粉为材料,研究不同浓度的植物生长调节剂、矿质元素、一氧化氮(NO)和活性氧(ROS))对花粉萌发和花粉管生长的影响,并采用正交试验优化普通油茶花粉的萌发条件。结果表明:0.5~5.0 mg·L-1赤霉酸(GA3)、0.5 mg·L-1 萘乙酸(NAA)显著促进花粉萌发和花粉管生长,最大花粉萌发率分别为59.07%,71.29%,而高浓度的NAA、GA3(50 mg·L-1)却极显著抑制花粉萌发和花粉管生长。10~50 mg·L-1 MgSO4处理的萌发率为56.88%~65.83%,24 h最大花粉管长度为2 809.56 μm。50~150 mg·L-1 CaCl2·2H2O处理的萌发率为59.91%~63.28%,24 h最大花粉管长度为2 770.11 μm,差异达显著水平。随着Ca2+的抑制剂乙二醇双四乙酸EGTA、乙烯利(ETH)和NO供体硝普钠(SNP)浓度的增加,花粉萌发率和花粉管长度降低。100~300 μmol·L-1 N'-硝基-L-精氨酸(L-NNA,NO抑制剂)促进花粉萌发和花粉管生长,最大花粉萌发率为68.12%。H2O2(ROS供体)和乙酰半胱氨酸(NAC,ROS抑制剂)浓度越高,花粉萌发率越低,花粉管长度越小,最大花粉萌发率分别为48.39%和45.78%。正交试验结果表明,促进油茶花粉萌发的最佳配比为100 g·L-1蔗糖、10 g·L-1琼脂、0.1 g·L-1 H3BO3、50 mg·L-1 CaCl2·2H2O、10 mg·L-1 MgSO4、0.5 mg·L-1 NAA和2 mg·L-1 GA3,促进油茶花粉管生长的最佳配比为100 g·L-1蔗糖、10 g·L-1琼脂、0.1 g·L-1 H3BO3、50 mg·L-1 CaCl2·2H2O、10 mg·L-1 MgSO4、0.5 mg·L-1 NAA和8 mg·L-1 GA3。Ca2+、Mg2+和适当浓度的GA3、NAA促进花粉萌发和花粉管生长,而乙烯利、NO和ROS对花粉萌发和花粉管生长起抑制作用。本研究结果可为油茶花粉离体萌发试验提供依据。
中图分类号:
徐金铭, 常毅洪, 龚涵, 龚文芳, 袁德义. 外源物质对油茶花粉萌发和花粉管生长的影响[J]. 浙江农业学报, 2023, 35(4): 789-798.
XU Jinming, CHANG Yihong, GONG Han, GONG Wenfang, YUAN Deyi. Effects of different exogenous substances on pollen germination and pollen tube growth of Camellia oleifera[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 789-798.
| 水平 Level | 因素Factor | |||
|---|---|---|---|---|
| CaCl2·2H2O | MgSO4 | NAA | GA3 | |
| 1 | 50 | 10 | 0.5 | 2 |
| 2 | 100 | 30 | 1.0 | 5 |
| 3 | 150 | 50 | 2.0 | 8 |
表1 正交试验因素水平表
Table 1 Factors and levels for orthogonal test mg·L-1
| 水平 Level | 因素Factor | |||
|---|---|---|---|---|
| CaCl2·2H2O | MgSO4 | NAA | GA3 | |
| 1 | 50 | 10 | 0.5 | 2 |
| 2 | 100 | 30 | 1.0 | 5 |
| 3 | 150 | 50 | 2.0 | 8 |
| 质量浓度 Concentration/ (mg·L-1) | 乙烯利Ethephon | 萘乙酸NAA | 赤霉素GA3 | |||
|---|---|---|---|---|---|---|
| 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | |
| 0 | 54.78±1.46 a | 789.22±37.73 a | 54.78±1.46 b | 789.22±37.73 b | 54.78±1.46 a | 789.22±37.73 b |
| 0.5 | 47.57±3.54 b | 719.87±71.26 a | 71.29±1.27 a | 1 011.51±54.49 a | 56.85±4.09 a | 998.98±71.18 a |
| 5 | 45.99±1.44 b | 708.44±22.50 a | 50.31±3.99 b | 750.63±8.48 b | 59.07±2.59 a | 1 013.94±42.04 a |
| 50 | 4.37±2.76 c | 202.59±16.25 b | 2.86±0.09 c | 127.83±17.11 c | 4.90±0.58 b | 357.95±32.26 c |
表2 不同植物生长调节剂处理下油茶花粉萌发率与花粉管长度
Table 2 Pollen germination rate and pollen tube length of C. oleifera under different plant growth regulator treatments
| 质量浓度 Concentration/ (mg·L-1) | 乙烯利Ethephon | 萘乙酸NAA | 赤霉素GA3 | |||
|---|---|---|---|---|---|---|
| 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | |
| 0 | 54.78±1.46 a | 789.22±37.73 a | 54.78±1.46 b | 789.22±37.73 b | 54.78±1.46 a | 789.22±37.73 b |
| 0.5 | 47.57±3.54 b | 719.87±71.26 a | 71.29±1.27 a | 1 011.51±54.49 a | 56.85±4.09 a | 998.98±71.18 a |
| 5 | 45.99±1.44 b | 708.44±22.50 a | 50.31±3.99 b | 750.63±8.48 b | 59.07±2.59 a | 1 013.94±42.04 a |
| 50 | 4.37±2.76 c | 202.59±16.25 b | 2.86±0.09 c | 127.83±17.11 c | 4.90±0.58 b | 357.95±32.26 c |
| 矿质元素 Mineral element | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | |
|---|---|---|---|
| 硫酸镁MgSO4/(mg·L-1) | 0 | 54.78±1.46 b | 789.22±37.73 b |
| 10 | 65.83±2.99 a | 1026.35±45.37 a | |
| 30 | 60.57±2.72 ab | 883.52±22.81 b | |
| 50 | 56.88±3.40 ab | 860.97±52.52 b | |
| 二水氯化钙CaCl2·2H2O/(mg·L-1) | 0 | 54.78±1.46 b | 789.22±37.73 c |
| 50 | 63.28±1.46 a | 976.28±20.30 a | |
| 150 | 59.91±7.08 b | 803.10±32.52 b | |
| 450 | 33.44±1.34 c | 639.74±17.60 d | |
| 乙二醇双四乙酸EGTA/(μmol·L-1) | 0 | 54.78±1.46 a | 789.22±37.73 a |
| 200 | 49.92±4.35 a | 555.46±20.54 b | |
| 400 | 39.71±6.23 b | 445.88±37.14 c | |
| 600 | 21.03±1.56 c | 427.23±23.17 c | |
| 800 | 10.13±3.67 d | 394.26±22.32 d | |
表3 不同矿质元素处理下油茶花粉萌发率与花粉管长度
Table 3 Pollen germination rate and pollen tube length of C. oleifera under different mineral element treatments
| 矿质元素 Mineral element | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm | |
|---|---|---|---|
| 硫酸镁MgSO4/(mg·L-1) | 0 | 54.78±1.46 b | 789.22±37.73 b |
| 10 | 65.83±2.99 a | 1026.35±45.37 a | |
| 30 | 60.57±2.72 ab | 883.52±22.81 b | |
| 50 | 56.88±3.40 ab | 860.97±52.52 b | |
| 二水氯化钙CaCl2·2H2O/(mg·L-1) | 0 | 54.78±1.46 b | 789.22±37.73 c |
| 50 | 63.28±1.46 a | 976.28±20.30 a | |
| 150 | 59.91±7.08 b | 803.10±32.52 b | |
| 450 | 33.44±1.34 c | 639.74±17.60 d | |
| 乙二醇双四乙酸EGTA/(μmol·L-1) | 0 | 54.78±1.46 a | 789.22±37.73 a |
| 200 | 49.92±4.35 a | 555.46±20.54 b | |
| 400 | 39.71±6.23 b | 445.88±37.14 c | |
| 600 | 21.03±1.56 c | 427.23±23.17 c | |
| 800 | 10.13±3.67 d | 394.26±22.32 d | |
| 化合物 Compound | 浓度 Concentration/(μmol·L-1) | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm |
|---|---|---|---|
| 硝普钠SNP | 0 | 54.78±1.46 a | 789.22±37.73 a |
| 100 | 53.19±2.34 a | 735.99±41.53 a | |
| 200 | 51.25±1.43 ab | 720.24±61.36 a | |
| 300 | 47.38±2.08 b | 717.12±51.11 a | |
| N'-硝基-L-精氨酸 L-NNA | 0 | 54.78±1.46 b | 789.22±37.73 b |
| 100 | 59.69±4.52 ab | 879.72±45.66 ab | |
| 200 | 68.12±2.66 a | 948.64±50.26 a | |
| 300 | 61.85±5.42 ab | 891.66±29.00 ab | |
| 过氧化氢H2O2 | 0 | 54.78±1.46 a | 789.22±37.73 a |
| 100 | 48.39±6.33 a | 576.75±29.06 b | |
| 300 | 36.75±2.24 b | 441.87±26.04 c | |
| 500 | 19.38±3.16 c | 403.03±30.43 c | |
| 乙酰半胱氨酸NAC | 0 | 54.78±1.46 a | 789.22±37.73 a |
| 100 | 45.78±1.58 b | 591.13±32.43 b | |
| 300 | 42.23±2.13 b | 562.81±6.88 bc | |
| 500 | 38.94±3.75 c | 497.45±14.82 c |
表4 不同化合物处理下油茶花粉萌发率与花粉管长度
Table 4 Pollen germination rate and pollen tube length of C. oleifera under different compound treatments
| 化合物 Compound | 浓度 Concentration/(μmol·L-1) | 花粉萌发率 Pollen germination rate/% | 2 h花粉管长度 Pollen tube length at 2 h/μm |
|---|---|---|---|
| 硝普钠SNP | 0 | 54.78±1.46 a | 789.22±37.73 a |
| 100 | 53.19±2.34 a | 735.99±41.53 a | |
| 200 | 51.25±1.43 ab | 720.24±61.36 a | |
| 300 | 47.38±2.08 b | 717.12±51.11 a | |
| N'-硝基-L-精氨酸 L-NNA | 0 | 54.78±1.46 b | 789.22±37.73 b |
| 100 | 59.69±4.52 ab | 879.72±45.66 ab | |
| 200 | 68.12±2.66 a | 948.64±50.26 a | |
| 300 | 61.85±5.42 ab | 891.66±29.00 ab | |
| 过氧化氢H2O2 | 0 | 54.78±1.46 a | 789.22±37.73 a |
| 100 | 48.39±6.33 a | 576.75±29.06 b | |
| 300 | 36.75±2.24 b | 441.87±26.04 c | |
| 500 | 19.38±3.16 c | 403.03±30.43 c | |
| 乙酰半胱氨酸NAC | 0 | 54.78±1.46 a | 789.22±37.73 a |
| 100 | 45.78±1.58 b | 591.13±32.43 b | |
| 300 | 42.23±2.13 b | 562.81±6.88 bc | |
| 500 | 38.94±3.75 c | 497.45±14.82 c |
| 试验号 Test No. | 试验设计方案Rxperiment scheme | 结果Result | ||||
|---|---|---|---|---|---|---|
| CaCl2·2H2O (A) | MgSO4(B) | NAA(C) | GA3(D) | 花粉萌发率 Pollen germinationrate/% | 花粉管长度 Pollen tube length/μm | |
| CK | 0 | 0 | 0 | 0 | 58.60±2.36 d | 702.88±43.12 e |
| 1 | 1 | 1 | 1 | 1 | 80.82±2.59 a | 1 015±30.94 a |
| 2 | 1 | 2 | 2 | 2 | 76.24±3.84 ab | 824.95±19.79 cd |
| 3 | 1 | 3 | 3 | 3 | 72.12±2.41 abc | 907.30±20.88 bc |
| 4 | 2 | 1 | 3 | 2 | 69.86±1.20 bc | 773.73±39.01 de |
| 5 | 2 | 2 | 1 | 3 | 66.92±1.26 bcd | 798.60±15.08 de |
| 6 | 2 | 3 | 2 | 1 | 63.57±6.51 cd | 726.13±21.14 de |
| 7 | 3 | 2 | 2 | 1 | 67.68±2.06 bcd | 793.71±54.95 de |
| 8 | 3 | 3 | 3 | 2 | 62.65±4.61 cd | 750.84±31.86 de |
| 9 | 3 | 1 | 1 | 3 | 71.06±1.49 bc | 927.95±7.74 ab |
表5 油茶花粉萌发的正交试验结果
Table 5 Orthogonal test results of pollen germination of C. oleifera
| 试验号 Test No. | 试验设计方案Rxperiment scheme | 结果Result | ||||
|---|---|---|---|---|---|---|
| CaCl2·2H2O (A) | MgSO4(B) | NAA(C) | GA3(D) | 花粉萌发率 Pollen germinationrate/% | 花粉管长度 Pollen tube length/μm | |
| CK | 0 | 0 | 0 | 0 | 58.60±2.36 d | 702.88±43.12 e |
| 1 | 1 | 1 | 1 | 1 | 80.82±2.59 a | 1 015±30.94 a |
| 2 | 1 | 2 | 2 | 2 | 76.24±3.84 ab | 824.95±19.79 cd |
| 3 | 1 | 3 | 3 | 3 | 72.12±2.41 abc | 907.30±20.88 bc |
| 4 | 2 | 1 | 3 | 2 | 69.86±1.20 bc | 773.73±39.01 de |
| 5 | 2 | 2 | 1 | 3 | 66.92±1.26 bcd | 798.60±15.08 de |
| 6 | 2 | 3 | 2 | 1 | 63.57±6.51 cd | 726.13±21.14 de |
| 7 | 3 | 2 | 2 | 1 | 67.68±2.06 bcd | 793.71±54.95 de |
| 8 | 3 | 3 | 3 | 2 | 62.65±4.61 cd | 750.84±31.86 de |
| 9 | 3 | 1 | 1 | 3 | 71.06±1.49 bc | 927.95±7.74 ab |
| 因素 Factor | 花粉萌发率Pollen germinationrate/% | 花粉管长度Pollen tube length/μm | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| k1 | k2 | k3 | R | 最优水平 Optimal level | k1 | k2 | k3 | R | 最优水平 Optimal level | |
| CaCl2·2H2O(A) | 76.39 | 66.78 | 67.13 | 9.61 | 1 | 915.75 | 766.15 | 824.17 | 149.6 | 1 |
| MgSO4(B) | 73.91 | 70.28 | 66.11 | 7.8 | 1 | 905.56 | 805.75 | 794.76 | 110.8 | 1 |
| NAA(C) | 72.93 | 69.16 | 68.21 | 4.72 | 1 | 913.85 | 781.6 | 810.62 | 132.25 | 1 |
| GA3(D) | 70.69 | 69.58 | 70.03 | 1.11 | 1 | 844.95 | 783.17 | 877.95 | 94.78 | 3 |
表6 极差分析结果
Table 6 Results of range analysis
| 因素 Factor | 花粉萌发率Pollen germinationrate/% | 花粉管长度Pollen tube length/μm | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| k1 | k2 | k3 | R | 最优水平 Optimal level | k1 | k2 | k3 | R | 最优水平 Optimal level | |
| CaCl2·2H2O(A) | 76.39 | 66.78 | 67.13 | 9.61 | 1 | 915.75 | 766.15 | 824.17 | 149.6 | 1 |
| MgSO4(B) | 73.91 | 70.28 | 66.11 | 7.8 | 1 | 905.56 | 805.75 | 794.76 | 110.8 | 1 |
| NAA(C) | 72.93 | 69.16 | 68.21 | 4.72 | 1 | 913.85 | 781.6 | 810.62 | 132.25 | 1 |
| GA3(D) | 70.69 | 69.58 | 70.03 | 1.11 | 1 | 844.95 | 783.17 | 877.95 | 94.78 | 3 |
| [1] | 庄瑞林. 中国油茶[M]. 北京: 中国林业出版社, 1988. |
| [2] |
YU C Y, ZHANG H K, WANG N, et al. Glycosylphosphatidylinositol-anchored proteins mediate the interactions between pollen/pollen tube and pistil tissues[J]. Planta, 2021, 253(1): 19.
DOI PMID |
| [3] |
DRESSELHAUS T, FRANKLIN-TONG N. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization[J]. Molecular Plant, 2013, 6(4): 1018-1036.
DOI PMID |
| [4] |
LOPES A L, MOREIRA D, FERREIRA M J, et al. Insights into secrets along the pollen tube pathway in need to be discovered[J]. Journal of Experimental Botany, 2019, 70(11): 2979-2992.
DOI PMID |
| [5] |
FRAGALLAH S, LIN S Z, LI N, et al. Effects of sucrose, boric acid, pH, and incubation time on in vitro germination of pollen and tube growth of Chinese fir (Cunnighamial lanceolata L.)[J]. Forests, 2019, 10(2): 102.
DOI URL |
| [6] |
KREMER D, JEMRIC T. Pollen germination and pollen tube growth in Fraxinus pennsylvanica[J]. Biologia, 2006, 61(1): 79-83.
DOI URL |
| [7] | 蔡昭艳, 董龙, 王小媚, 等. 培养基pH值及蔗糖、硼酸、PEG-4000对百香果花粉体外萌发的影响[J]. 分子植物育种, 2021, 19(21): 7274-7281. |
| CAI Z Y, DONG L, WANG X M, et al. Effects of medium pH and sucrose, boric acid and PEG-4000 on in vitro germination of passion fruit pollen[J]. Molecular Plant Breeding, 2021, 19(21): 7274-7281. (in Chinese with English abstract) | |
| [8] | 冯都煌, 刘会云, 张莉, 等. 促进油茶花粉萌发的营养物质配比研究[J]. 西南林业大学学报(自然科学), 2022, 42(1): 91-99. |
| FENG D H, LIU H Y, ZHANG L, et al. Study on the ratio of nutrients for promoting pollen germination of Camellia oleifera[J]. Journal of Southwest Forestry University(Natural Sciences), 2022, 42(1): 91-99. (in Chinese with English abstract) | |
| [9] | 刘林秀, 曾海涛, 徐皓, 等. 几种植物激素对4种山茶属植物花粉萌发及花粉管生长的影响[J]. 中国油料作物学报, 2021, 43(4): 700-707. |
| LIU L X, ZENG H T, XU H, et al. Effects of phytohormones on pollen germination and pollen tube growth of 4 Camellia plants[J]. Chinese Journal of Oil Crop Sciences, 2021, 43(4): 700-707. (in Chinese with English abstract) | |
| [10] | 郭丽, 朱飞雪, 王存纲, 等. 温度与汞胁迫对大岩桐花粉萌发及花粉管生长的影响[J]. 分子植物育种, 2022, 20(2): 511-517. |
| GUO L, ZHU F X, WANG C G, et al. Effects of different temperature and Hg stress on pollen morphology and germination characteristics in Sinningia speciosa[J]. Molecular Plant Breeding, 2022, 20(2): 511-517. (in Chinese with English abstract) | |
| [11] |
BECK-PAY S L. The effect of temperature and relative humidity on Acacia mearnsii polyad viability and pollen tube development[J]. South African Journal of Botany, 2012, 83: 165-171.
DOI URL |
| [12] | 王波, 周兰英, 夏华梅, 等. 蔗糖、硼酸、Ca2+对大白杜鹃花粉萌发的影响[J]. 江苏农业科学, 2021, 49(6): 129-133. |
| WANG B, ZHOU L Y, XIA H M, et al. Impacts of sucrose, boric acid and Ca2+ on pollen germination of Rhododendron decorum Franch[J]. Jiangsu Agricultural Sciences, 2021, 49(6): 129-133. (in Chinese) | |
| [13] | ZHAO R, HU X, YUAN D Y, et al. Orthogonal test design for optimizing culture medium for in vitro pollen germination of interspecific oil tea hybrids[J]. Anais Da Academia Brasileira De Ciencias, 2021, 93(2): e20190431. |
| [14] |
WANG Y H, LI X C, ZHU-GE Q, et al. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro[J]. PLoS One, 2012, 7(12): e52436.
DOI URL |
| [15] | SINGH R, SINGH S, PARIHAR P, et al. Reactive oxygen species (ROS): beneficial companions of plants’ developmental processes[J]. Frontiers in Plant Science, 2016, 7: 1299. |
| [16] | 谭晓风, 袁德义, 袁军, 等. 维生素C及植物生长调节物质对油茶花粉萌发率的影响[J]. 浙江林学院学报, 2010, 27(6): 941-944. |
| TAN X F, YUAN D Y, YUAN J, et al. Pollen germination in Camellia oleifera with ascorbic acid and plant growth regulators[J]. Journal of Zhejiang Forestry College, 2010, 27(6): 941-944. (in Chinese with English abstract) | |
| [17] | 邹锋, 谭晓风, 袁德义, 等. 油茶花粉数量及4℃贮藏萌发率特性研究[J]. 江西农业大学学报, 2009, 31(5): 892-895. |
| ZOU F, TAN X F, YUAN D Y, et al. A study on Camellia pollen number and the vitality change under 4 ℃ storage[J]. Acta Agriculturae Universitatis Jiangxiensis, 2009, 31(5): 892-895. (in Chinese with English abstract) | |
| [18] | 胡适宜. 植物胚胎学实验方法 (一)花粉生活力的测定[J]. 植物学通报, 1993, 28(2): 60-62. |
| HU S Y. Experimental methods in plant embryology (ⅰ) determination of pollen viability[J]. Chinese Bulletin of Botany, 1993, 28(2): 60-62. (in Chinese) | |
| [19] |
XIONG H, ZOU F, YUAN D, et al. Orthogonal test design for optimising the culture medium for in vitro pollen germination of feijoa (Acca sellowiana cv. Unique)[J]. New Zealand Journal of Crop and Horticultural Science, 2016, 44(3): 192-202.
DOI URL |
| [20] | 袁德义, 王瑞, 袁军, 等. 不同营养元素及配比对油茶花粉萌发率的影响[J]. 福建农林大学学报(自然科学版), 2010, 39(5): 471-474. |
| YUAN D Y, WANG R, YUAN J, et al. The influence of nutrient elements on pollen germination percentage in Camellia oleifera[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2010, 39(5): 471-474. (in Chinese with English abstract) | |
| [21] |
GOKBAYRAK Z, ENGIN H. Brassinosteroids and gibberellic acid: effects on in vitro pollen germination in grapevine[J]. OENO One, 2017, 51(3): 303.
DOI URL |
| [22] | 曾令达, 谭秋霞, 黄建昌, 等. NAA和ETH对荔枝花粉萌发及花粉管生长的影响[J]. 仲恺农业工程学院学报, 2017, 30(4): 15-20. |
| ZENG L D, TAN Q X, HUANG J C, et al. Effects of NAA and ETH on germination and tube growth of litchi’s pollen[J]. Journal of Zhongkai University of Agriculture and Engineering, 2017, 30(4): 15-20. (in Chinese with English abstract) | |
| [23] | ACAR I, AK B, SARPKAYA K. Effects of boron and gibberellic acid on in vitro pollen germination of pistachio Pistacia vera L[J]. African Journal of Biotechnology, 2010, 9: 5126-5130. |
| [24] | 薛晓敏, 王金政, 张安宁, 等. 植物生长调节物质对桃花粉萌发和花粉管生长的影响[J]. 西北农林科技大学学报(自然科学版), 2008, 36(4): 123-127, 134. |
| XUE X M, WANG J Z, ZHANG A N, et al. Effects of plant growth regulating substances on pollen germination and tube growth in Chaohong peach[J]. Journal of Northwest A & F University(Natural Science Edition), 2008, 36(4): 123-127, 134. (in Chinese with English abstract) | |
| [25] | 刘才宇, 王成斌. 植物生长调节剂及硼营养与蔬菜花粉萌发及生长关系的研究[J]. 安徽农业科学, 2000, 28(4): 502-503. |
| LIU C Y, WANG C B. Study on the relationship between plant growth regulators and boron nutrition and vegetable pollen germination and growth[J]. Journal of Anhui Agricultural Sciences, 2000, 28(4): 502-503. (in Chinese) | |
| [26] | 韩志强, 袁德义, 陈文涛, 等. 不同营养元素及其配比对枣花粉萌发与花粉管生长的影响[J]. 江西农业大学学报, 2014, 36(2): 357-363. |
| HAN Z Q, YUAN D Y, CHEN W T, et al. Effects of different nutrient elements on pollen germination and tube growth in Ziziphus jujube Mill[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(2): 357-363. (in Chinese with English abstract) | |
| [27] | 常海龙, 张伟, 陈俊吕, 等. 甘蔗花粉离体萌发研究[J]. 热带作物学报, 2019, 40(10): 2068-2075. |
| CHANG H L, ZHANG W, CHEN J L, et al. Sugarcane pollen germination in vitro[J]. Chinese Journal of Tropical Crops, 2019, 40(10): 2068-2075. (in Chinese with English abstract) | |
| [28] | STEINHORST L, KUDLA J. Calcium-a central regulator of pollen germination and tube growth[J]. Biochimica et Biophysica Acta(BBA)-Molecular Cell Research, 2013, 1833(7): 1573-1581. |
| [29] | 谢彭雪, 张伟伟, 张卿, 等. EGTA对‘秦冠’苹果花粉管Ca2+、微丝分布以及囊泡运输的影响[J]. 北京农学院学报, 2017, 32(3): 27-32. |
| XIE P X, ZHANG W W, ZHANG Q, et al. Effects of EGTA treatment on calcium, actin distribution and vesicle trafficking of apple (Malus pumila Mill.) pollen tubes[J]. Journal of Beijing University of Agriculture, 2017, 32(3): 27-32. (in Chinese with English abstract) | |
| [30] |
BREWBAKER J L, KWACK B H. The essential role of calcium ion in pollen germination and pollen tube growth[J]. American Journal of Botany, 1963, 50(9): 859-865.
DOI URL |
| [31] | 何金环, 李巧枝, 任敏. Ca2+对黄瓜花粉萌发和花粉管生长的影响[J]. 河南农业科学, 2006, 35(1): 75-77. |
| HE J H, LI Q Z, REN M. The effects of Ca2+ on pollen germination and tube growth in cucumber[J]. Journal of Henan Agricultural Sciences, 2006, 35(1): 75-77. (in Chinese with English abstract) | |
| [32] |
ZHAN N, HUANG L J. Effects of Ca2+ on in vitro pollen germination of three Acacia species[J]. Silvae Genetica, 2016, 65(2): 11-16.
DOI URL |
| [33] |
DELLEDONNE M. NO news is good news for plants[J]. Current Opinion in Plant Biology, 2005, 8(4): 390-396.
PMID |
| [34] |
LAMOTTE O, COURTOIS C, BARNAVON L, et al. Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule[J]. Planta, 2005, 221(1): 1-4.
PMID |
| [35] | 李孝诚. 一氧化氮调节茶树花粉低温萌发和花粉管生长的研究[D]. 南京: 南京农业大学, 2012. |
| LI X C. Modulation of nitric oxide in tea pollen germination and pollen tube growth under low temperature[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract) | |
| [36] |
PASQUALINI S, CRESTI M, DEL CASINO C, et al. Roles for NO and ROS signalling in pollen germination and pollen-tube elongation in Cupressus arizonica[J]. Biologia Plantarum, 2015, 59(4): 735-744.
DOI URL |
| [37] |
DUAN Q H, LIU M C J, KITA D, et al. FERONIA controls pectin-and nitric oxide-mediated male-female interaction[J]. Nature, 2020, 579(7800): 561-566.
DOI |
| [38] |
CURTIN J F, DONOVAN M, COTTER T G. Regulation and measurement of oxidative stress in apoptosis[J]. Journal of Immunological Methods, 2002, 265(1/2): 49-72.
DOI URL |
| [39] |
TRACHOOTHAM D, ALEXANDRE J, HUANG P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?[J]. Nature Reviews Drug Discovery, 2009, 8(7): 579-591.
DOI PMID |
| [40] | AZAD M B, CHEN Y Q, GIBSON S B. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment[J]. Antioxidants & Redox Signaling, 2009, 11(4): 777-790. |
| [41] |
FINKEL T, HOLBROOK N J. Oxidants, oxidative stress and the biology of ageing[J]. Nature, 2000, 408(6809): 239-247.
DOI |
| [42] |
LIU C, SHEN L P, XIAO Y, et al. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination[J]. Science, 2021, 372: 171-175.
DOI PMID |
| [1] | 曹永庆, 姚小华, 王开良, 任华东. 普通油茶主要性状的年际稳定性[J]. 浙江农业学报, 2025, 37(8): 1624-1633. |
| [2] | 缪百灵, 陈娟娟, 李亮杰, 楚宗丽, 董向向. 浙江红花油茶CchABCG5基因的功能[J]. 浙江农业学报, 2025, 37(7): 1407-1416. |
| [3] | 赵泓雨, 周宇杰, 李建忠, 郑涵, 毕继安, 余初浪, 周宇航, 侯凡, 戴彬凤, 钟列权, 严成其, 张海鹏, 杨勇, 陈剑平, 王成雨. 微塑料对植物影响的研究现状、未来展望与植物激素抵抗微塑料的分子生物学机制[J]. 浙江农业学报, 2025, 37(7): 1595-1604. |
| [4] | 陈凤, 陈虹, 陈兵权, 宝春杰, 周昊亮, 赵鑫, 郭来珍. 核桃无融合生殖核仁内源激素含量变化与基因表达分析[J]. 浙江农业学报, 2025, 37(2): 381-393. |
| [5] | 刘雅丽, 杨福生, 宋榜桂, 杜雪, 俞奇力, 陈菲, 陈国宏. 甜菊糖苷对黄羽肉鸡生长的影响[J]. 浙江农业学报, 2025, 37(10): 2049-2056. |
| [6] | 蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843. |
| [7] | 诸燕, 丁兰, 陈忆乾, 黄秀静, 姜伟伟, 陈东红. 铁皮石斛CLE基因家族鉴定与功能分析[J]. 浙江农业学报, 2024, 36(7): 1583-1590. |
| [8] | 黄融, 孟庆鑫, 吴晓漫, 荀利杰, 张俊丽, 董霞, 董坤, 龚雪阳. 两种树龄腾冲红花油茶花梗内生真菌的多样性[J]. 浙江农业学报, 2024, 36(5): 1076-1085. |
| [9] | 陈尚昱, 宋雪薇, 齐振宇, 周艳虹, 喻景权, 夏晓剑. 植物侧枝发育的遗传基础及激素、代谢与环境调控[J]. 浙江农业学报, 2024, 36(3): 690-703. |
| [10] | 王智豪, 奚昕琰, 王莉, 杨淑娜, 高志远, 殷益明, 邹辉, 贾惠娟. 浙北地区红美人杂柑成花过程及其生理生化特征[J]. 浙江农业学报, 2023, 35(7): 1571-1581. |
| [11] | 徐红霞, 李晓颖, 葛航, 朱启轩, 陈俊伟. 基于转录组分析内源激素在调控枇杷花发育进程中的作用[J]. 浙江农业学报, 2023, 35(7): 1648-1661. |
| [12] | 朱燕, 魏佳, 许自龙, 林天宝, 杨升, 刘岩, 吕志强, 刘培刚. 促生长植物激素对桑树叶片衰老过程生理生化指标的影响[J]. 浙江农业学报, 2023, 35(6): 1278-1285. |
| [13] | 莘晓月, 刘鹏. 激素调控种子休眠与萌发分子机制研究进展[J]. 浙江农业学报, 2023, 35(6): 1485-1496. |
| [14] | 陈乐然, 郑建波, 贾永义, 迟美丽, 李飞, 程顺, 刘士力, 刘一诺, 蒋文枰, 顾志敏. 红螯螯虾CHH2基因的表达特征及其在卵巢发育中的功能[J]. 浙江农业学报, 2023, 35(1): 33-40. |
| [15] | 金宝霞, 王伟杰, 朱晓林, 王贤, 魏小红. 不同激素组合对番茄离体再生和相关基因表达的影响[J]. 浙江农业学报, 2022, 34(9): 1889-1900. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||