[1] |
THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic[J]. Science, 2004, 304(5672): 838.
|
[2] |
ZHANG Z Q, CUI Q L, CHEN L, et al. A critical review of microplastics in the soil-plant system: distribution, uptake, phytotoxicity and prevention[J]. Journal of Hazardous Materials, 2022, 424: 127750.
|
[3] |
LETT Z, HALL A, SKIDMORE S, et al. Environmental microplastic and nanoplastic: exposure routes and effects on coagulation and the cardiovascular system[J]. Environmental Pollution, 2021, 291: 118190.
|
[4] |
ZHANG L S, XIE Y S, LIU J Y, et al. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers[J]. Environmental Science & Technology, 2020, 54(7): 4248-4255.
|
[5] |
HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260: 114096.
|
[6] |
ALLEN S, ALLEN D, PHOENIX V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nature Geoscience, 2019, 12(5): 339-344.
|
[7] |
ZHOU Q, TIAN C G, LUO Y M. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere[J]. Chinese Science Bulletin, 2017, 62(33): 3902-3909.
|
[8] |
蒲生彦, 张颖, 吕雪. 微塑料在土壤-地下水中的环境行为及其生态毒性研究进展[J]. 生态毒理学报, 2020, 15(1): 44-55.
|
|
PU S Y, ZHANG Y, LV X. Review on the environmental behavior and ecotoxicity of microplastics in soil-groundwater[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 44-55. (in Chinese with English abstract)
|
[9] |
LI L Z, ZHOU Q, YIN N, et al. Uptake and accumulation of microplastics in an edible plant[J]. Chinese Science Bulletin, 2019, 64(9): 928-934.
|
[10] |
LIAN J P, LIU W T, MENG L Z, et al. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.)[J]. Environmental Pollution, 2021, 280: 116978.
|
[11] |
SUN H F, LEI C L, XU J H, et al. Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants[J]. Journal of Hazardous Materials, 2021, 416: 125854.
|
[12] |
LIU Y Q, BEN Y, CHE R J, et al. Uptake, transport and accumulation of micro-and nano-plastics in terrestrial plants and health risk associated with their transfer to food chain-A mini review[J]. Science of The Total Environment, 2023, 902: 166045.
|
[13] |
BANDMANN V, HOMANN U. Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts[J]. The Plant Journal, 2012, 70(4): 578-584.
|
[14] |
AZEEM I, ADEEL M, AHMAD M A, et al. Uptake and accumulation of nano/microplastics in plants: a critical review[J]. Nanomaterials, 2021, 11(11): 2935.
|
[15] |
YU Z F, XU X L, GUO L, et al. Uptake and transport of micro/nanoplastics in terrestrial plants: detection, mechanisms, and influencing factors[J]. Science of The Total Environment, 2024, 907: 168155.
|
[16] |
LIU Y, HU W, HUANG Q, et al. Plastic mulch debris in rhizosphere: interactions with soil-microbe-plant systems[J]. Science of The Total Environment, 2022, 807: 151435.
|
[17] |
SEELEY M E, SONG B, PASSIE R, et al. Microplastics affect sedimentary microbial communities and nitrogen cycling[J]. Nature Communications, 2020, 11: 2372.
|
[18] |
MATEOS-CÁRDENAS A, VAN PELT F N A M, O’HALLORAN J, et al. Adsorption, uptake and toxicity of micro-and nanoplastics: effects on terrestrial plants and aquatic macrophytes[J]. Environmental Pollution, 2021, 284: 117183.
|
[19] |
LOZANO Y M, RILLIG M C. Effects of microplastic fibers and drought on plant communities[J]. Environmental Science & Technology, 2020, 54(10): 6166-6173.
|
[20] |
WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil[J]. Science of The Total Environment, 2019, 654: 576-582.
|
[21] |
GAO M L, LIU Y, DONG Y M, et al. Effect of polyethylene particles on dibutyl phthalate toxicity in lettuce (Lactuca sativa L.)[J]. Journal of Hazardous Materials, 2021, 401: 123422.
|
[22] |
ZHANG Y Y, CAI C, GU Y F, et al. Microplastics in plant-soil ecosystems: a meta-analysis[J]. Environmental Pollution, 2022, 308: 119718.
|
[23] |
LI H X, LU X Q, WANG S Y, et al. Vertical migration of microplastics along soil profile under different crop root systems[J]. Environmental Pollution, 2021, 278: 116833.
|
[24] |
BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774-781.
|
[25] |
KALČÍKOVÁ G, ŽGAJNAR GOTVAJN A, KLADNIK A, et al. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor[J]. Environmental Pollution, 2017, 230: 1108-1115.
|
[26] |
YUAN W K, ZHOU Y F, LIU X N, et al. New perspective on the nanoplastics disrupting the reproduction of an endangered fern in artificial freshwater[J]. Environmental Science & Technology, 2019, 53(21): 12715-12724.
|
[27] |
LI L Z, LUO Y M, LI R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929-937.
|
[28] |
SILVA Y, RAJAGOPALAN U, KADONO H. Microplastics on the growth of plants and seed germination in aquatic and terrestrial ecosystems[J]. Global Journal of Environmental Science and Management, 2021(7): 347-368.
|
[29] |
KOELMANS A A, REDONDO-HASSELERHARM P E, NOR N H M, et al. Risk assessment of microplastic particles[J]. Nature Reviews Materials, 2022, 7(2): 138-152.
|
[30] |
CALDANA C, DEGENKOLBE T, CUADROS-INOSTROZA A, et al. High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions[J]. The Plant Journal, 2011, 67(5): 869-884.
|
[31] |
DONG Y M, GAO M L, SONG Z G, et al. Microplastic particles increase arsenic toxicity to rice seedlings[J]. Environmental Pollution, 2020, 259: 113892.
|
[32] |
WANG Z H, SEDIGHI M, LEA-LANGTON A. Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms[J]. Water Research, 2020, 184: 116165.
|
[33] |
LI J, YU S G, YU Y F, et al. Effects of microplastics on higher plants: a review[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(2): 241-265.
|
[34] |
MAITY S, CHATTERJEE A, GUCHHAIT R, et al. Cytogenotoxic potential of a hazardous material, polystyrene microparticles on Allium cepa L[J]. Journal of Hazardous Materials, 2020, 385: 121560.
|
[35] |
ZHANG Q G, ZHAO M S, MENG F S, et al. Effect of polystyrene microplastics on rice seed germination and antioxidant enzyme activity[J]. Toxics, 2021, 9(8): 179.
|
[36] |
LI Z X, LI R J, LI Q F, et al. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution[J]. Chemosphere, 2020, 255: 127041.
|
[37] |
QU Q, ZHANG Z Y, LI Y, et al. Comparative molecular and metabolic responses of wheat seedlings (Triticum aestivum L.) to the imazethapyr enantiomers S-IM and R-IM[J]. Science of The Total Environment, 2019, 692: 723-731.
|
[38] |
ZHAO L J, HUANG Y X, KELLER A A. Comparative metabolic response between cucumber (Cucumis sativus) and corn (Zea mays) to a Cu(OH)2 nanopesticide[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6628-6636.
|
[39] |
WU X, HOU H J, LIU Y, et al. Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: a field study[J]. Journal of Hazardous Materials, 2022, 422: 126834.
|
[40] |
DU W C, GARDEA-TORRESDEY J L, JI R, et al. Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study[J]. Environmental Science & Technology, 2015, 49(19): 11884-11893.
|
[41] |
YU H W, ZHANG X L, HU J W, et al. Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems[J]. Environmental Pollution, 2020, 265: 114830.
|
[42] |
ZHOU J, GUI H, BANFIELD C C, et al. The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function[J]. Soil Biology and Biochemistry, 2021, 156: 108211.
|
[43] |
LIAN J P, WU J N, XIONG H X, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 2020, 385: 121620.
|
[44] |
REDDY A R, CHAITANYA K V, VIVEKANANDAN M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology, 2004, 161(11): 1189-1202.
|
[45] |
MURRAY J W, DUNCAN J, BARBER J. CP43-like chlorophyll binding proteins: structural and evolutionary implications[J]. Trends in Plant Science, 2006, 11(3): 152-158.
|
[46] |
KIMATA-ARIGA Y, CHIKUMA Y, SAITOH T, et al. NADP(H) allosterically regulates the interaction between ferredoxin and ferredoxin-NADP+ reductase[J]. FEBS Open Bio, 2019, 9(12):2126-2136.
|
[47] |
IINO R, HASEGAWA R, TABATA K V, et al. Mechanism of inhibition by C-terminal alpha-helices of the epsilon subunit of Escherichia coli FoF1-ATP synthase[J]. Journal of Biological Chemistry, 2009, 284(26): 17457-17464.
|
[48] |
ZHUANG H R, QIN M R, LIU B, et al. Combination of transcriptomics, metabolomics and physiological traits reveals the effects of polystyrene microplastics on photosynthesis, carbon and nitrogen metabolism in cucumber (Cucumis sativus L.)[J]. Plant Physiology and Biochemistry, 2023, 205: 108201.
|
[49] |
PIGNATTELLI S, BROCCOLI A, RENZI M. Physiological responses of garden cress (L. sativum) to different types of microplastics[J]. Science of the Total Environment, 2020, 20(727):138609.
|
[50] |
WEI Y X, CHANG Y L, ZENG H Q, et al. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes[J]. Journal of Pineal Research, 2018, 64(1): e12454.
|
[51] |
ZHANG R M, SUN Y K, LIU Z Y, et al. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress[J]. Journal of Pineal Research, 2017, 62(4): e12403.
|
[52] |
LI X N, TAN D X, JIANG D, et al. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley[J]. Journal of Pineal Research, 2016, 61(3): 328-339.
|
[53] |
MANCHESTER L C, COTO-MONTES A, BOGA J A, et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable[J]. Journal of Pineal Research, 2015, 59(4): 403-419.
|
[54] |
KANWAR M K, YU J Q, ZHOU J. Phytomelatonin: recent advances and future prospects[J]. Journal of Pineal Research, 2018, 65(4): e12526.
|
[55] |
ZUO Z Y, SUN L Y, WANG T Y, et al. Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to nano-ZnO stress[J]. Molecules, 2017, 22(10): 1727.
|
[56] |
ZHOU C Q, LU C H, MAI L, et al. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials, 2021, 401: 123412.
|
[57] |
ZHOU Q X, HU X G. Systemic stress and recovery patterns of rice roots in response to graphene oxide nanosheets[J]. Environmental Science & Technology, 2017, 51(4): 2022-2030.
|
[58] |
WANG P, LOMBI E, SUN S K, et al. Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants[J]. Environmental Science: Nano, 2017, 4(2): 448-460.
|
[59] |
QIAO Y J, REN J H, YIN L N, et al. Exogenous melatonin alleviates PEG-induced short-term water deficiency in maize by increasing hydraulic conductance[J]. BMC Plant Biology, 2020, 20(1): 218.
|
[60] |
TIWARI R K, LAL M K, KUMAR R, et al. Mechanistic insights on melatonin-mediated drought stress mitigation in plants[J]. Physiologia Plantarum, 2021, 172(2): 1212-1226.
|
[61] |
LI S X, GUO J H, WANG T Y, et al. Melatonin reduces nanoplastic uptake, translocation, and toxicity in wheat[J]. Journal of Pineal Research, 2021, 71(3): e12761.
|