浙江农业学报 ›› 2023, Vol. 35 ›› Issue (10): 2500-2506.DOI: 10.3969/j.issn.1004-1524.20230369
• 综述 • 上一篇
收稿日期:
2023-08-30
出版日期:
2023-10-25
发布日期:
2023-10-31
作者简介:
卞美云(1996—),女,江苏南通人,硕士,研究方向为真菌分子生物学。E-mail: 1872557318@qq.com
通讯作者:
*王教瑜,E-mail: 基金资助:
BIAN Meiyun1,2(), WANG Jing2, WANG Jiaoyu2,*(
), CHEN Jie1
Received:
2023-08-30
Online:
2023-10-25
Published:
2023-10-31
摘要:
过氧化物酶体是一种多功能、动态变化的细胞器,对大多数真核生物的发育至关重要。真菌中过氧化物酶体参与多个生长与发育过程,包括有性生殖。真菌有性孢子的形成,通常发生在多细胞的子实体内,需要经过有丝分裂、减数分裂、细胞分化等多个步骤。研究表明,过氧化物酶体在上述过程的调控中发挥作用,是维持子实体形成、有性孢子产生和成熟所必需的。首先,真菌有性生殖依赖菌丝细胞内储藏脂类物质的降解提供能量,而过氧化物酶体内的脂肪酸β-氧化和乙醛酸循环是脂类降解和转化的必需步骤。其次,过氧化物酶体还可能直接参与细胞减数分裂过程。在细胞减数分裂过程中,过氧化物酶体大小、数量和位置都发生规律性的变化。此外,过氧化物酶体还参与有性生殖过程中信号分子的形成,敲除过氧化物酶体形成相关基因会影响真菌子囊壳的形成。
中图分类号:
卞美云, 王静, 王教瑜, 陈杰. 过氧化物酶体与真菌有性生殖的关系[J]. 浙江农业学报, 2023, 35(10): 2500-2506.
BIAN Meiyun, WANG Jing, WANG Jiaoyu, CHEN Jie. The relationship between peroxisome and fungal sexual reproduction[J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2500-2506.
[1] | FRANSEN M, NORDGREN M, WANG B, et al. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease[J]. Biochimica et Biophysica Acta, 2012, 1822(9): 1363-1373. |
[2] | DI CARA F, SAVARY S, KOVACS W J, et al. The peroxisome: an up-and-coming organelle in immunometabolism[J]. Trends in Cell Biology, 2023, 33(1): 70-86. |
[3] | PLETT A, CHARTON L, LINKA N. Peroxisomal cofactor transport[J]. Biomolecules, 2020, 10(8): 1174. |
[4] | OKUMOTO K, TAMURA S, HONSHO M, et al. Peroxisome: metabolic functions and biogenesis[J]. Advances in Experimental Medicine and Biology, 2020, 1299: 3-17. |
[5] | LI Y, THARAPPEL J C, COOPER S, et al. Expression of the hydrogen peroxide-generating enzyme fatty acyl CoA oxidase activates NF-kappaB[J]. DNA and Cell Biology, 2000, 19(2): 113-120. |
[6] | BOISSON-DERNIER A, FRIETSCH S, KIM T H, et al. The peroxin loss-of-function mutation abstinence by mutual consent disrupts male-female gametophyte recognition[J]. Current Biology, 2008, 18(1): 63-68. |
[7] | BAES M, VAN VELDHOVEN P P. Mouse models for peroxisome biogenesis defects and β-oxidation enzyme deficiencies[J]. Biochimica et Biophysica Acta, 2012, 1822(9): 1489-1500. |
[8] | MAST F D, LI J, VIRK M K, et al. A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders[J]. Disease Models & Mechanisms, 2011, 4(5): 659-672. |
[9] | SZÖOR B, RUBERTO I, BURCHMORE R, et al. A novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway[J]. Genes & Development, 2010, 24(12): 1306-1316. |
[10] | WATERHAM H R, EBBERINK M S. Genetics and molecular basis of human peroxisome biogenesis disorders[J]. Biochimica et Biophysica Acta(BBA)-Molecular Basis of Disease, 2012, 1822(9): 1430-1441. |
[11] | WANG S, YANG H X, FU Y L, et al. The key role of peroxisomes in follicular growth, oocyte maturation, ovulation, and steroid biosynthesis[J]. Oxidative Medicine and Cellular Longevity, 2022, 2022: 7982344. |
[12] | TANABE Y, MARUYAMA J I, YAMAOKA S, et al. Peroxisomes are involved in biotin biosynthesis in Aspergillus and Arabidopsis[J]. The Journal of Biological Chemistry, 2011, 286(35): 30455-30461. |
[13] | GRÜNDLINGER M, YASMIN S, LECHNER B E, et al. Fungal siderophore biosynthesis is partially localized in peroxisomes[J]. Molecular Microbiology, 2013, 88(5): 862-875. |
[14] | MARTÍN J F, ULLÁN R V, GARCÍA-ESTRADA C. Role of peroxisomes in the biosynthesis and secretion of β-lactams and other secondary metabolites[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(3): 367-382. |
[15] | RAMOS-PAMPLONA M, NAQVI N I. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA[J]. Molecular Microbiology, 2006, 61(1): 61-75. |
[16] | MCTAGGART A R, JAMES T Y, IDNURM A, et al. Sexual reproduction is the null hypothesis for life cycles of rust fungi[J]. PLoS Pathogens, 2022, 18(5): e1010439. |
[17] | SIMONET J M, ZICKLER D. Mutations affecting meiosis in Podospora anserina. I. Cytological studies[J]. Chromosoma, 1972, 37(3): 327-351. |
[18] | SIMONET J M, ZICKLER D. Genes involved in caryogamy and meiosis in Podospora anserina[J]. Molecular and General Genetics MGG, 1978, 162(3): 237-242. |
[19] | BARTOSZEWSKA M, KIEL J A K W. The role of macroautophagy in development of filamentous fungi[J]. Antioxidants & Redox Signaling, 2011, 14(11): 2271-2287. |
[20] | WÖSTEN H A B, WESSELS J G H. The emergence of fruiting bodies in basidiomycetes[M]// Growth, Differentiation and Sexuality. Berlin/Heidelberg: Springer-Verlag, 2006: 393-414. |
[21] | MURPHY D J. The dynamic roles of intracellular lipid droplets: from Archaea to mammals[J]. Protoplasma, 2012, 249(3): 541-585. |
[22] | LIU J J, LU W, SHI B M, et al. Peroxisomal regulation of redox homeostasis and adipocyte metabolism[J]. Redox Biology, 2019, 24: 101167. |
[23] | BINNS D, JANUSZEWSKI T, CHEN Y, et al. An intimate collaboration between peroxisomes and lipid bodies[J]. The Journal of Cell Biology, 2006, 173(5): 719-731. |
[24] | FALTER C, REUMANN S. The essential role of fungal peroxisomes in plant infection[J]. Molecular Plant Pathology, 2022, 23(6): 781-794. |
[25] | GUENTHER J C, HALLEN-ADAMS H E, BÜCKING H, et al. Triacylglyceride metabolism by Fusarium graminearum during colonization and sexual development on wheat[J]. Molecular Plant-Microbe Interactions, 2009, 22(12): 1492-1503. |
[26] | ERENTAL A, DICKMAN M B, YARDEN O. Sclerotial development in Sclerotinia sclerotiorum: awakening molecular analysis of a “Dormant” structure[J]. Fungal Biology Reviews, 2008, 22(1): 6-16. |
[27] | LIBERTI D, ROLLINS J A, DOBINSON K F. Peroxysomal carnitine acetyl transferase influences host colonization capacity in Sclerotinia sclerotiorum[J]. Molecular Plant-Microbe Interactions, 2013, 26(7): 768-780. |
[28] | LACOURT I, DUPLESSIS S, ABBÀ S, et al. Isolation and characterization of differentially expressed genes in the mycelium and fruit body of Tuber borchii[J]. Applied and Environmental Microbiology, 2002, 68(9): 4574-4582. |
[29] | ABBA’S, BALESTRINI R, BENEDETTO A, et al. The role of the glyoxylate cycle in the symbiotic fungus Tuber borchii: expression analysis and subcellular localization[J]. Current Genetics, 2007, 52(3/4): 159-170. |
[30] | CECCAROLI P, BUFFALINI M, SALTARELLI R, et al. Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus Tuber melanosporum[J]. The New Phytologist, 2011, 189(3): 751-764. |
[31] | YOON J J, MUNIR E, MIYASOU H, et al. A possible role of the key enzymes of the glyoxylate and gluconeogenesis pathways for fruit-body formation of the wood-rotting basidiomycete Flammulina velutipes[J]. Mycoscience, 2002, 43(4): 327-332. |
[32] | YOON J J, HATTORI T, SHIMADA M. A metabolic role of the glyoxylate and tricarboxylic acid cycles for development of the copper-tolerant brown-rot fungus Fomitopsis palustris[J]. FEMS Microbiology Letters, 2002, 217(1): 9-14. |
[33] | MIN K, SON H, LEE J, et al. Peroxisome function is required for virulence and survival of Fusarium graminearum[J]. Molecular Plant-Microbe Interactions, 2012, 25(12): 1617-1627. |
[34] | BONNET C, ESPAGNE E, ZICKLER D, et al. The peroxisomal import proteins PEX2, PEX5 and PEX7 are differently involved in Podospora anserina sexual cycle[J]. Molecular Microbiology, 2006, 62(1): 157-169. |
[35] | HYNES M J, MURRAY S L, KHEW G S, et al. Genetic analysis of the role of peroxisomes in the utilization of acetate and fatty acids in Aspergillus nidulans[J]. Genetics, 2008, 178(3): 1355-1369. |
[36] | MANAGADZE D, WÜRTZ C, SICHTING M, et al. The peroxin PEX14 of Neurospora crassa is essential for the biogenesis of both glyoxysomes and Woronin bodies[J]. Traffic, 2007, 8(6): 687-701. |
[37] | KONG X J, ZHANG H, WANG X L, et al. FgPex3, a peroxisome biogenesis factor, is involved in regulating vegetative growth, conidiation, sexual development, and virulence in Fusarium graminearum[J]. Frontiers in Microbiology, 2019, 10: 2088. |
[38] | ZHANG L, LIU C J, WANG M Y, et al. Peroxin FgPEX22-like is involved in FgPEX4 tethering and Fusarium graminearum pathogenicity[J]. Frontiers in Microbiology, 2021, 12: 756292. |
[39] | WANG L N, ZHANG L, LIU C J, et al. The roles of FgPEX2 and FgPEX12 in virulence and lipid metabolism in Fusarium graminearum[J]. Fungal Genetics and Biology, 2020, 135: 103288. |
[40] | NAVARRO-ESPÍNDOLA R, TAKANO-ROJAS H, SUASTE-OLMOS F, et al. Distinct contributions of the peroxisome-mitochondria fission machinery during sexual development of the fungus Podospora anserina[J]. Frontiers in Microbiology, 2020, 11: 640. |
[41] | MENDOZA-MENDOZA A, BERNDT P, DJAMEI A, et al. Physical-chemical plant-derived signals induce differentiation in Ustilago maydis[J]. Molecular Microbiology, 2009, 71(4): 895-911. |
[42] | VOLLMEISTER E, SCHIPPER K, BAUMANN S, et al. Fungal development of the plant pathogen Ustilago maydis[J]. FEMS Microbiology Reviews, 2012, 36(1): 59-77. |
[43] | KLOSE J, KRONSTAD J W. The multifunctional beta-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis[J]. Eukaryotic Cell, 2006, 5(12): 2047-2061. |
[44] | KRETSCHMER M, KLOSE J, KRONSTAD J W. Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis[J]. Eukaryotic Cell, 2012, 11(8): 1055-1066. |
[45] | TSITSIGIANNIS D I, KELLER N P. Oxylipins as developmental and host-fungal communication signals[J]. Trends in Microbiology, 2007, 15(3): 109-118. |
[46] | MANJITHAYA R, ANJARD C, LOOMIS W F, et al. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation[J]. The Journal of Cell Biology, 2010, 188(4): 537-546. |
[47] | WATERHAM H R, DE VRIES Y, RUSSEL K A, et al. The Pichia pastoris PER6 gene product is a peroxisomal integral membrane protein essential for peroxisome biogenesis and has sequence similarity to the Zellweger syndrome protein PAF-1[J]. Molecular and Cellular Biology, 1996, 16(5): 2527-2536. |
[48] | PERAZA-REYES L, ARNAISE S, ZICKLER D, et al. The importomer peroxins are differentially required for peroxisome assembly and meiotic development in Podospora anserina: insights into a new peroxisome import pathway[J]. Molecular Microbiology, 2011, 82(2): 365-377. |
[49] | PERAZA-REYES L, ESPAGNE E, ARNAISE S, et al. The role of peroxisomes in the regulation of Podospora anserina sexual development[J]. Research Signpost, 2009: 61-68. |
[50] | PERAZA-REYES L, ESPAGNE E, ARNAISE S, et al. Peroxisomes in filamentous fungi[M]// BORKOVICHK A, EBBOLED J.Cellular and Molecular Biology of Filamentous Fungi. Washington, DC, USA: ASM Press, 2014: 191-206. |
[51] | BERTEAUX-LECELLIER V, PICARD M, THOMPSON-COFFE C, et al. A nonmammalian homolog of the PAF7 gene(Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina[J]. Cell, 1995, 81(7): 1043-1051. |
[52] | MOTLEY A M, HETTEMA E H. Yeast peroxisomes multiply by growth and division[J]. The Journal of Cell Biology, 2007, 178(3): 399-410. |
[53] | SEONG K Y, ZHAO X H, XU J R, et al. Conidial germination in the filamentous fungus Fusarium graminearum[J]. Fungal Genetics and Biology, 2008, 45(4): 389-399. |
[54] | GÓMEZ B L, NOSANCHUK J D. Melanin and fungi[J]. Current Opinion in Infectious Diseases, 2003, 16(2): 91-96. |
[55] | COPPIN E, SILAR P. Identification of PaPKS1, a polyketide synthase involved in melanin formation and its use as a genetic tool in Podospora anserina[J]. Mycological Research, 2007, 111(8): 901-908. |
[56] | WANG Z Y, SOANES D M, KERSHAW M J, et al. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection[J]. Molecular Plant-Microbe Interactions, 2007, 20(5): 475-491. |
[57] | BOISNARD S, ESPAGNE E, ZICKLER D, et al. Peroxisomal ABC transporters and β-oxidation during the life cycle of the filamentous fungus Podospora anserina[J]. Fungal Genetics and Biology, 2009, 46(1): 55-66. |
[58] | HYNES M J, MURRAY S L, ANDRIANOPOULOS A, et al. Role of carnitine acetyltransferases in acetyl coenzyme A metabolism in Aspergillus nidulans[J]. Eukaryotic Cell, 2011, 10(4): 547-555. |
[59] | TRAIL F. Fungal cannons: explosive spore discharge in the Ascomycota[J]. FEMS Microbiology Letters, 2007, 276(1): 12-18. |
[60] | SON H, MIN K, LEE J, et al. Mitochondrial carnitine-dependent acetyl coenzyme A transport is required for normal sexual and asexual development of the ascomycete Gibberella zeae[J]. Eukaryotic Cell, 2012, 11(9): 1143-1153. |
[1] | 李彦湘, 丁德东, 何静, 张金花, 赵吉桃, 赵倩, 候彩霞, 朱珠. 木醋液对几种植物病原真菌的抑菌活性与作用机制[J]. 浙江农业学报, 2023, 35(9): 2149-2159. |
[2] | 候彩霞, 丁德东, 何静, 赵吉桃, 李彦湘, 赵倩, 张崇庆, 李南. 枸杞内生真菌的筛选、鉴定及其生防作用[J]. 浙江农业学报, 2023, 35(7): 1662-1671. |
[3] | 朱诗君, 王丽丽, 金树权, 周金波, 汪峰, 卢晓红. 不同土壤消毒方式对土壤真菌多样性和群落结构的影响[J]. 浙江农业学报, 2023, 35(3): 639-646. |
[4] | 邱妹, 邓旗, 房志家, 王雅玲, 孙力军. 饲料中真菌毒素对养殖水产动物危害的研究进展[J]. 浙江农业学报, 2023, 35(3): 717-726. |
[5] | 高风, 文仕知, 韦铄星, 欧汉彪, 王智慧. 桂西北石漠化区不同植被恢复类型对土壤理化性质、酶活与真菌群落多样性的影响[J]. 浙江农业学报, 2023, 35(10): 2425-2435. |
[6] | 杜红, 李玉鹏, 程文, 肖荣英, 胡鹏. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J]. 浙江农业学报, 2022, 34(5): 1039-1048. |
[7] | 李玉婷, 李莎, 曹杰, 李骄杨, 张亮, 许晓风. 微塑料对外生菌根真菌生长和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(5): 1049-1060. |
[8] | 张晓波, 于春雷, 张文洋, 闫烨, 阮芳. 不同连作年限菊花根际土壤微生物多样性变化特征[J]. 浙江农业学报, 2022, 34(12): 2710-2719. |
[9] | 陈纪鹏, 刘小林, 李生强, 刘显军, 胡月清, 陈桃. 白菜型油菜黄芽白与甘蓝型油菜湘油15种间杂交及其杂种后代的遗传学特征[J]. 浙江农业学报, 2021, 33(7): 1170-1176. |
[10] | 江宇航, 辛维岗, 张棋麟, 邓先余, 王峰, 林连兵. 霉变饲用玉米真菌的分离、鉴定与乳酸菌素对其的防霉抑菌效果[J]. 浙江农业学报, 2021, 33(7): 1283-1291. |
[11] | 高汉峰, 刘雨芹, 程亮, 郭青云. 除草活性菌株HL-1产孢发酵条件研究[J]. 浙江农业学报, 2021, 33(6): 1042-1048. |
[12] | 赵华, 任晴雯, 王熙予, 李珍妮, 唐秀梅, 蒋丽慧, 刘鹏, 邢承华. 丛枝菌根真菌对盐胁迫下番茄抗氧化酶活性和光合特性的影响[J]. 浙江农业学报, 2021, 33(11): 2075-2084. |
[13] | 张亮, 李玉婷, 许晓风. 锰离子胁迫下外生菌根真菌对土壤钾释放的影响[J]. 浙江农业学报, 2020, 32(7): 1215-1222. |
[14] | 陈乾丽, 汪汉成, 梁永进, 蔡刘体, 黄宇, 周浩, 李忠, 韩洁. 烤后健康烟叶和霉烂烟叶真菌群落结构分析[J]. 浙江农业学报, 2020, 32(6): 1019-1028. |
[15] | 陶晶, 邬奇峰, 石江, 李松昊, 葛江飞, 陈俊辉, 徐秋芳, 梁辰飞, 秦华. 间作与接种丛枝菌根真菌对新垦山地玉米产量和土壤肥力的影响[J]. 浙江农业学报, 2020, 32(1): 115-123. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 444
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 217
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||