浙江农业学报 ›› 2024, Vol. 36 ›› Issue (8): 1920-1933.DOI: 10.3969/j.issn.1004-1524.20230749
收稿日期:
2023-06-08
出版日期:
2024-08-25
发布日期:
2024-09-06
作者简介:
师帅(1982—),女,黑龙江哈尔滨人,博士,副教授,研究方向为农业经济管理。E-mail: ss@neau.edu.cn
基金资助:
Received:
2023-06-08
Online:
2024-08-25
Published:
2024-09-06
摘要:
精准评估农业碳中和水平是实现我国“双碳”目标的前提。在厘清学术界对农业碳中和研究脉络的基础上,阐释农业碳中和的内涵,并从碳源与碳汇两个维度论述农业碳中和评价的理论架构,设置农业碳中和评价指标体系,采用熵权-TOPSIS法实证评价中国30个省份2010—2020年的农业碳中和水平。结果表明:样本期内农业碳中和水平总体经历了“下降-上升”两个阶段的变化,2010—2016年农业碳中和水平年均下降6.97%,2017—2020年年均增长19.43%。农业碳中和水平呈现出明显的区域差异性,具体表现为东北地区>西部地区>中部地区>东部地区。据此建议各地结合区域农业碳源、碳汇的结构特征、自然特性与经济发展水平,统筹兼顾,从“减排”与“增汇”两手发力,协同推进农业碳中和进程。
中图分类号:
师帅, 周林庆. 中国农业碳中和评价——以2010—2020年为例[J]. 浙江农业学报, 2024, 36(8): 1920-1933.
SHI Shuai, ZHOU Linqing. Evaluation of agricultural carbon neutrality level in China: case study of 2010-2020[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1920-1933.
一级指标 First-level indicators | 二级指标 Second-level indicators | 三级指标 Third-level indicators | 属性 Attribute | 权重 Weight/% |
---|---|---|---|---|
碳源 Carbon source | 农业能源 Agricultural energy | 单位面积原煤碳排放 Carbon emission of raw coal per unit area | - | 3.97 |
单位面积汽油碳排放Carbon emission of gasoline per unit area | - | 4.82 | ||
单位面积柴油碳排放Carbon emission of diesel oil per unit area | - | 3.18 | ||
单位面积农业用电碳排放 Carbon emission from agricultural electricity consumption per unit area | - | 2.82 | ||
人均土地翻耕碳排放Carbon emission per capita land ploughing | - | 10.18 | ||
农用物资投入 Investment in | 单位面积农膜碳排放 Carbon emission of agricultural membrane per unit area | - | 6.56 | |
agricultural materials | 单位面积农药碳排放 Carbon emission of pesticides per unit area | - | 11.72 | |
单位面积化肥碳排放 Carbon emission of chemical fertilizer per unit area | - | 9.08 | ||
动植物生长及废弃物处理 Animal and plant growth | 单位面积粮食作物碳排放 Carbon emission from food crops per unit area | - | 2.90 | |
and waste disposal | 单位牲畜肠道发酵碳排放 Carbon emission from each unit of livestock intestinal fermentation | - | 3.69 | |
单位畜禽粪便碳排放 Carbon emission from each unit of livestock and poultry manure | - | 2.91 | ||
单位面积秸秆焚烧碳排放 Carbon emission from straw burning per unit area | - | 4.16 | ||
碳汇(C) Carbon sink (C) | 农地 Cropland | 单位面积农作物碳汇量 Carbon sink amount of farmland vegetation per unit area | + | 3.23 |
单位面积土壤碳汇量Soil carbon sink capacity per unit area | + | 6.62 | ||
其他用地Other land | 人均草地碳汇量Carbon sink amount per capita grassland | + | 9.12 | |
人均湿地碳汇量Carbon sink amount per capita wetland | + | 5.07 | ||
人均果园碳汇量Carbon sink amount per capita orchard | + | 3.50 | ||
人均森林碳汇量Carbon sink amount per capita forest | + | 6.48 |
表1 农业碳中和水平评价指标体系
Table 1 Evaluation index system of agricultural carbon neutrality i
一级指标 First-level indicators | 二级指标 Second-level indicators | 三级指标 Third-level indicators | 属性 Attribute | 权重 Weight/% |
---|---|---|---|---|
碳源 Carbon source | 农业能源 Agricultural energy | 单位面积原煤碳排放 Carbon emission of raw coal per unit area | - | 3.97 |
单位面积汽油碳排放Carbon emission of gasoline per unit area | - | 4.82 | ||
单位面积柴油碳排放Carbon emission of diesel oil per unit area | - | 3.18 | ||
单位面积农业用电碳排放 Carbon emission from agricultural electricity consumption per unit area | - | 2.82 | ||
人均土地翻耕碳排放Carbon emission per capita land ploughing | - | 10.18 | ||
农用物资投入 Investment in | 单位面积农膜碳排放 Carbon emission of agricultural membrane per unit area | - | 6.56 | |
agricultural materials | 单位面积农药碳排放 Carbon emission of pesticides per unit area | - | 11.72 | |
单位面积化肥碳排放 Carbon emission of chemical fertilizer per unit area | - | 9.08 | ||
动植物生长及废弃物处理 Animal and plant growth | 单位面积粮食作物碳排放 Carbon emission from food crops per unit area | - | 2.90 | |
and waste disposal | 单位牲畜肠道发酵碳排放 Carbon emission from each unit of livestock intestinal fermentation | - | 3.69 | |
单位畜禽粪便碳排放 Carbon emission from each unit of livestock and poultry manure | - | 2.91 | ||
单位面积秸秆焚烧碳排放 Carbon emission from straw burning per unit area | - | 4.16 | ||
碳汇(C) Carbon sink (C) | 农地 Cropland | 单位面积农作物碳汇量 Carbon sink amount of farmland vegetation per unit area | + | 3.23 |
单位面积土壤碳汇量Soil carbon sink capacity per unit area | + | 6.62 | ||
其他用地Other land | 人均草地碳汇量Carbon sink amount per capita grassland | + | 9.12 | |
人均湿地碳汇量Carbon sink amount per capita wetland | + | 5.07 | ||
人均果园碳汇量Carbon sink amount per capita orchard | + | 3.50 | ||
人均森林碳汇量Carbon sink amount per capita forest | + | 6.48 |
图1 2010—2020年全国及各地区的农业碳中和水平 全国系30个样本省份的平均值。东部、中部、西部、东北地区系各地区所含省份的平均值。其中,东部地区包括北京、天津、河北、上海、江苏、浙江、福建、山东、广东、海南,中部地区包括山西、安徽、江西、河南、湖北、湖南,西部地区包括内蒙古、广西、重庆、四川、贵州、云南、陕西、甘肃、青海、宁夏、新疆,东北地区包括黑龙江、吉林、辽宁。
Fig.1 Agricultural carbon neutrality level in China and four regions from 2010 to 2020 National refers to the average of 30 sample provincial administrative regions. The eastern region, central region, western region and northeast region refer to the average of sample provincial administrative regions, respectively. Specifically, the easter region consists of Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan. The central region consists of Shanxi, Anhui, Jiangxi, Henan, Hubei, Hunan. The western region consists of Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang. The northeast region consists of Heilongjiang, Jilin, Liaoning.
图2 东部、中部、西部、东北地区省份2010—2020年的农业碳中和水平演变
Fig.2 Evolution trend of agricultural carbon neutrality level of provincial administrative regions in the eastern, central, western and northeast regions from 2010 to 2020
省份 Provincial administrative regions | 2010 | 2016 | 2020 | 省份 Provincial administrative region | 2010 | 2016 | 2020 |
---|---|---|---|---|---|---|---|
北京Beijing | 0.626 | 0.260 | 0.425 | 湖南Hunan | 0.579 | 0.193 | 0.507 |
天津Tianjin | 0.211 | 0.189 | 0.574 | 内蒙古Inner Mongolia | 0.512 | 0.417 | 0.601 |
河北Hebei | 0.506 | 0.170 | 0.571 | 广西Guangxi | 0.487 | 0.296 | 0.545 |
上海Shanghai | 0.311 | 0.227 | 0.746 | 重庆Chongqing | 0.494 | 0.383 | 0.516 |
江苏Jiangsu | 0.260 | 0.285 | 0.773 | 四川Sichuan | 0.325 | 0.370 | 0.707 |
浙江Zhejiang | 0.324 | 0.192 | 0.701 | 贵州Guizhou | 0.611 | 0.278 | 0.445 |
福建Fujian | 0.315 | 0.272 | 0.706 | 云南Yunnan | 0.463 | 0.299 | 0.437 |
山东Shandong | 0.267 | 0.332 | 0.739 | 陕西Shaanxi | 0.586 | 0.402 | 0.390 |
广东Guangdong | 0.408 | 0.261 | 0.638 | 甘肃Gansu | 0.479 | 0.268 | 0.521 |
海南Hainan | 0.448 | 0.385 | 0.539 | 青海Qinghai | 0.149 | 0.165 | 0.850 |
山西Shanxi | 0.594 | 0.219 | 0.474 | 宁夏Ningxia | 0.611 | 0.206 | 0.471 |
安徽Anhui | 0.494 | 0.294 | 0.586 | 新疆Xinjiang | 0.666 | 0.279 | 0.483 |
江西Jiangxi | 0.386 | 0.226 | 0.619 | 黑龙江Heilongjiang | 0.590 | 0.387 | 0.626 |
河南Henan | 0.341 | 0.282 | 0.700 | 吉林Jilin | 0.582 | 0.342 | 0.604 |
湖北Hubei | 0.379 | 0.457 | 0.584 | 辽宁Liaoning | 0.463 | 0.392 | 0.679 |
表2 2010、2016、2020年各省份的农业碳中和水平
Table 2 Agricultural carbon neutrality level of provincial administrative regions in 2010, 2016, 2020
省份 Provincial administrative regions | 2010 | 2016 | 2020 | 省份 Provincial administrative region | 2010 | 2016 | 2020 |
---|---|---|---|---|---|---|---|
北京Beijing | 0.626 | 0.260 | 0.425 | 湖南Hunan | 0.579 | 0.193 | 0.507 |
天津Tianjin | 0.211 | 0.189 | 0.574 | 内蒙古Inner Mongolia | 0.512 | 0.417 | 0.601 |
河北Hebei | 0.506 | 0.170 | 0.571 | 广西Guangxi | 0.487 | 0.296 | 0.545 |
上海Shanghai | 0.311 | 0.227 | 0.746 | 重庆Chongqing | 0.494 | 0.383 | 0.516 |
江苏Jiangsu | 0.260 | 0.285 | 0.773 | 四川Sichuan | 0.325 | 0.370 | 0.707 |
浙江Zhejiang | 0.324 | 0.192 | 0.701 | 贵州Guizhou | 0.611 | 0.278 | 0.445 |
福建Fujian | 0.315 | 0.272 | 0.706 | 云南Yunnan | 0.463 | 0.299 | 0.437 |
山东Shandong | 0.267 | 0.332 | 0.739 | 陕西Shaanxi | 0.586 | 0.402 | 0.390 |
广东Guangdong | 0.408 | 0.261 | 0.638 | 甘肃Gansu | 0.479 | 0.268 | 0.521 |
海南Hainan | 0.448 | 0.385 | 0.539 | 青海Qinghai | 0.149 | 0.165 | 0.850 |
山西Shanxi | 0.594 | 0.219 | 0.474 | 宁夏Ningxia | 0.611 | 0.206 | 0.471 |
安徽Anhui | 0.494 | 0.294 | 0.586 | 新疆Xinjiang | 0.666 | 0.279 | 0.483 |
江西Jiangxi | 0.386 | 0.226 | 0.619 | 黑龙江Heilongjiang | 0.590 | 0.387 | 0.626 |
河南Henan | 0.341 | 0.282 | 0.700 | 吉林Jilin | 0.582 | 0.342 | 0.604 |
湖北Hubei | 0.379 | 0.457 | 0.584 | 辽宁Liaoning | 0.463 | 0.392 | 0.679 |
省份 Provincial administrative regions | 农业碳中和水平 Agricultural carbon neutral level | 排名 Ranking | 阶段 Stage | 省份 Provincial administrative regions | 农业碳中和水平 Agricultural carbon neutral level | 排名 Ranking | 阶段 Stage |
---|---|---|---|---|---|---|---|
内蒙古Inner Mongolia | 0.476 | 1 | 中绿Medium green | 广东Guangdong | 0.409 | 16 | 中绿Medium green |
吉林Jilin | 0.475 | 2 | 中绿Medium green | 北京Beijing | 0.407 | 17 | 中绿Medium green |
重庆Chongqing | 0.466 | 3 | 中绿Medium green | 福建Fujian | 0.401 | 18 | 中绿Medium green |
辽宁Liaoning | 0.463 | 4 | 中绿Medium green | 河北Hebei | 0.395 | 19 | 浅绿Light green |
新疆Xinjiang | 0.456 | 5 | 中绿Medium green | 山东Shandong | 0.392 | 20 | 浅绿Light green |
海南Hainan | 0.456 | 6 | 中绿Medium green | 湖南Hunan | 0.392 | 21 | 浅绿Light green |
湖北Hubei | 0.454 | 7 | 中绿Medium green | 山西Shanxi | 0.385 | 22 | 浅绿Light green |
广西Guangxi | 0.449 | 8 | 中绿Medium green | 云南Yunnan | 0.377 | 23 | 浅绿Light green |
黑龙江Heilongjiang | 0.446 | 9 | 中绿Medium green | 河南Henan | 0.369 | 24 | 浅绿Light green |
四川Sichuan | 0.437 | 10 | 中绿Medium green | 天津Tianjin | 0.353 | 25 | 浅绿Light green |
贵州Guizhou | 0.434 | 11 | 中绿Medium green | 江苏Jiangsu | 0.352 | 26 | 浅绿Light green |
甘肃Gansu | 0.429 | 12 | 中绿Medium green | 上海Shanghai | 0.350 | 27 | 浅绿Light green |
安徽Anhui | 0.426 | 13 | 中绿Medium green | 江西Jiangxi | 0.345 | 28 | 浅绿Light green |
陕西Shaanxi | 0.420 | 14 | 中绿Medium green | 浙江Zhejiang | 0.333 | 29 | 浅绿Light green |
宁夏Ningxia | 0.416 | 15 | 中绿Medium green | 青海Qinghai | 0.228 | 30 | 微绿Microgreen |
表3 各省份2010—2020年农业碳中和水平(平均值)
Table 3 Agricultural carbon neutrality level of provincial administrative regions in 2010-2020 (the mean value)
省份 Provincial administrative regions | 农业碳中和水平 Agricultural carbon neutral level | 排名 Ranking | 阶段 Stage | 省份 Provincial administrative regions | 农业碳中和水平 Agricultural carbon neutral level | 排名 Ranking | 阶段 Stage |
---|---|---|---|---|---|---|---|
内蒙古Inner Mongolia | 0.476 | 1 | 中绿Medium green | 广东Guangdong | 0.409 | 16 | 中绿Medium green |
吉林Jilin | 0.475 | 2 | 中绿Medium green | 北京Beijing | 0.407 | 17 | 中绿Medium green |
重庆Chongqing | 0.466 | 3 | 中绿Medium green | 福建Fujian | 0.401 | 18 | 中绿Medium green |
辽宁Liaoning | 0.463 | 4 | 中绿Medium green | 河北Hebei | 0.395 | 19 | 浅绿Light green |
新疆Xinjiang | 0.456 | 5 | 中绿Medium green | 山东Shandong | 0.392 | 20 | 浅绿Light green |
海南Hainan | 0.456 | 6 | 中绿Medium green | 湖南Hunan | 0.392 | 21 | 浅绿Light green |
湖北Hubei | 0.454 | 7 | 中绿Medium green | 山西Shanxi | 0.385 | 22 | 浅绿Light green |
广西Guangxi | 0.449 | 8 | 中绿Medium green | 云南Yunnan | 0.377 | 23 | 浅绿Light green |
黑龙江Heilongjiang | 0.446 | 9 | 中绿Medium green | 河南Henan | 0.369 | 24 | 浅绿Light green |
四川Sichuan | 0.437 | 10 | 中绿Medium green | 天津Tianjin | 0.353 | 25 | 浅绿Light green |
贵州Guizhou | 0.434 | 11 | 中绿Medium green | 江苏Jiangsu | 0.352 | 26 | 浅绿Light green |
甘肃Gansu | 0.429 | 12 | 中绿Medium green | 上海Shanghai | 0.350 | 27 | 浅绿Light green |
安徽Anhui | 0.426 | 13 | 中绿Medium green | 江西Jiangxi | 0.345 | 28 | 浅绿Light green |
陕西Shaanxi | 0.420 | 14 | 中绿Medium green | 浙江Zhejiang | 0.333 | 29 | 浅绿Light green |
宁夏Ningxia | 0.416 | 15 | 中绿Medium green | 青海Qinghai | 0.228 | 30 | 微绿Microgreen |
[1] | 金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型:中国农业碳排放特征及其减排路径[J]. 改革, 2021(5): 29-37. |
JIN S Q, LIN Y, NIU K Y. Driving green transformation of agriculture with low carbon: characteristics of agricultural carbon emissions and its emission reduction path in China[J]. Reform, 2021(5): 29-37. (in Chinese with English abstract) | |
[2] | 邓路, 袁圣博, 白萍, 等. 基于机器学习算法的新疆农业碳排放评估及驱动因素分析[J]. 中国生态农业学报(中英文), 2023, 31(2): 265-279. |
DENG L, YUAN S B, BAI P, et al. Evaluation of agricultural carbon emissions in Xinjiang and analysis of driving factors based on machine learning algorithms[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 265-279. (in Chinese) | |
[3] | 潘根兴, 赵其国. 我国农田土壤碳库演变研究: 全球变化和国家粮食安全[J]. 地球科学进展, 2005, 20(4): 384-393. |
PAN G X, ZHAO Q G. Study on evolution of organic carbon stock in agricultural soils of China: facing the challenge of global change and food security[J]. Advance in Earth Sciences, 2005, 20(4): 384-393. (in Chinese with English abstract) | |
[4] | 刘雪琪, 李波. 碳中和目标下中国农地利用效率的影响因素及时空异质性[J]. 华中农业大学学报(社会科学版), 2023(1): 197-209. |
LIU X Q, LI B. Spatio-temporal heterogeneity and influencing factors of agricultural land use efficiency in China from the goal of carbon neutrality[J]. Journal of Huazhong Agricultural University(Social Sciences Edition), 2023(1): 197-209. (in Chinese with English abstract) | |
[5] | 崔俊富, 苗建军, 陈金伟. 低碳经济与中国碳汇发展研究: 基于森林碳汇、土壤碳汇和地质碳汇的讨论[J]. 华北电力大学学报(社会科学版), 2015(4): 1-6. |
CUI J F, MIAO J J, CHEN J W. Research on China low carbon economy and carbon sinks: discussion on forest, soil and geological sequestration[J]. Journal of North China Electric Power University(Social Sciences), 2015(4): 1-6. (in Chinese) | |
[6] | 陈炜, 殷田园, 李红兵. 1997—2015年中国种植业碳排放时空特征及与农业发展的关系[J]. 干旱区资源与环境, 2019, 33(2): 37-44. |
CHEN W, YIN T Y, LI H B. Spatiotemporal distribution characteristics of carbon emission from plant industry and the relationship with agriculture development in China from 1997 to 2015[J]. Journal of Arid Land Resources and Environment, 2019, 33(2): 37-44. (in Chinese) | |
[7] | 姚成胜, 钱双双, 李政通, 等. 中国省际畜牧业碳排放测度及时空演化机制[J]. 资源科学, 2017, 39(4): 698-712. |
YAO C S, QIAN S S, LI Z T, et al. Provincial animal husbandry carbon emissions in China and temporal-spatial evolution mechanism[J]. Resources Science, 2017, 39(4): 698-712. (in Chinese with English abstract) | |
[8] | 田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价: 基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395-410. |
TIAN C S, CHEN Y. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395-410. (in Chinese) | |
[9] | 王雅楠, 张琪琳, 陈伟. 基于碳汇功能的省域农业碳排放及减排潜力研究: 以中国三种主要粮食作物为例[J]. 重庆社会科学, 2022(5): 58-75. |
WANG Y N, ZHANG Q L, CHEN W. Study on provincial agricultural carbon emission and emission reduction potential based on carbon sink function: taking China’s three main grain crops as an example[J]. Chongqing Social Sciences, 2022(5): 58-75. (in Chinese with English abstract) | |
[10] | 吴昊玥, 周蕾, 何艳秋, 等. 中国种植业碳排放达峰进程初判及脱钩分析[J]. 中国生态农业学报(中英文), 2023, 31(8): 1275-1286. |
WU H Y, ZHOU L, HE Y Q, et al. Peaking process and decoupling analysis of carbon emissions of crop production in China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1275-1286. (in Chinese with English abstract) | |
[11] | 李俊杰. 民族地区农地利用碳排放测算及影响因素研究[J]. 中国人口·资源与环境, 2012, 22(9): 42-47. |
LI J J. Research on characteristics and driving factors of agricultural land carbon emission in provinces of minorities in China[J]. China Population, Resources and Environment, 2012, 22(9): 42-47. (in Chinese) | |
[12] | 马光辉, 张迎春, 姚芳斌. 中国渔业经济碳排放驱动因素研究: 基于LMDI和脱钩模型的双视角分析[J]. 青岛大学学报(自然科学版), 2022, 35(1): 117-123. |
MA G H, ZHANG Y C, YAO F B. Study on the driving factors of carbon emission of fishery economy in China: dual perspective analysis based on LMDI and decoupling model[J]. Journal of Qingdao University(Natural Science Edition), 2022, 35(1): 117-123. (in Chinese) | |
[13] | 刘奕宏, 张震, 陈虹玮, 等. 江苏省未来植被变化对“碳达峰、碳中和” 的影响评价[J]. 气象与减灾研究, 2022, 45(1): 46-52. |
LIU Y H, ZHANG Z, CHEN H W, et al. Impact assessment of vegetation change on “carbon peak” and “carbon neutrality” in Jiangsu Province[J]. Meteorology and Disaster Reduction Research, 2022, 45(1): 46-52. (in Chinese) | |
[14] | 严圣吉, 邓艾兴, 尚子吟, 等. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941. |
YAN S J, DENG A X, SHANG Z Y, et al. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production[J]. Acta Agronomica Sinica, 2022, 48(4): 930-941. (in Chinese) | |
[15] | 田云, 张俊飚. 中国农业生产净碳效应分异研究[J]. 自然资源学报, 2013, 28(8): 1298-1309. |
TIAN Y, ZHANG J B. Regional differentiation research on net carbon effect of agricultural production in China[J]. Journal of Natural Resources, 2013, 28(8): 1298-1309. (in Chinese with English abstract) | |
[16] | 薛彩霞, 李园园, 胡超, 等. 中国保护性耕作净碳汇的时空格局[J]. 自然资源学报, 2022, 37(5): 1164-1182. |
XUE C X, LI Y Y, HU C, et al. Study on spatio-temporal pattern of conservation tillage on net carbon sink in China[J]. Journal of Natural Resources, 2022, 37(5): 1164-1182. (in Chinese) | |
[17] | BLANCO-CANQUI H, RUIS S J. No-tillage and soil physical environment[J]. Geoderma, 2018, 326: 164-200. |
[18] | 薛龙飞, 罗小锋, 李兆亮, 等. 中国森林碳汇的空间溢出效应与影响因素: 基于大陆31个省(市、区)森林资源清查数据的空间计量分析[J]. 自然资源学报, 2017, 32(10): 1744-1754. |
XUE L F, LUO X F, LI Z L, et al. Spatial spillover effects and influencing factors of forest carbon sink in China: spatial econometric analysis based on forest resources inventory in 31 provinces of the mainland of China[J]. Journal of Natural Resources, 2017, 32(10): 1744-1754. (in Chinese with English abstract) | |
[19] | 于伟咏, 漆雁斌, 明辉, 等. 中国农业系统碳汇和碳源的省域差异及影响因素[J]. 西部林业科学, 2016, 45(5): 1-7. |
YU W Y, QI Y B, MING H, et al. Provincial difference and influence factors of carbon source and sink of agricultural system in China[J]. Journal of West China Forestry Science, 2016, 45(5): 1-7. (in Chinese) | |
[20] | 李铜山, 王艳蕊. 基于熵权TOPSIS模型的区域农业碳中和能力评价研究[J]. 区域经济评论, 2022(3): 92-98. |
LI T S, WANG Y R. Evaluation of regional agricultural carbon neutralization capacity based on entropy weight TOPSIS model[J]. Regional Economic Review, 2022(3): 92-98. (in Chinese) | |
[21] | 田云, 尹忞昊. 中国农业碳排放再测算:基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104-127. |
TIAN Y, YIN M H. Re-evaluation of China’s agricultural carbon emissions: basic status, dynamic evolution and spatial spillover effects[J]. Chinese Rural Economy, 2022(3): 104-127. (in Chinese with English abstract) | |
[22] | 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21-27. |
MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China[J]. China Population, Resources and Environment, 2012, 22(7): 21-27. (in Chinese with English abstract) | |
[23] | 李绵德, 周冬梅, 朱小燕, 等. 河西走廊2000—2020年农业碳排放时空特征及其影响因素[J]. 农业资源与环境学报, 2023, 40(4): 940-952. |
LI M D, ZHOU D M, ZHU X Y, et al. Spatial-temporal characteristics of agricultural carbon emissions and influencing factors in the Hexi Corridor from 2000 to 2020[J]. Journal of Agricultural Resources and Environment, 2023, 40(4): 940-952. (in Chinese) | |
[24] | 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学:D辑地球科学, 2007, 37(6): 804-812. |
FANG J Y, GUO Z D, PIAO S L, et al. Estimation of terrestrial vegetation carbon sinks in China from 1981 to 2000[J]. Scientia Sinica: Terrae, 2007, 37(6): 804-812. (in Chinese) | |
[25] | 李明琦, 刘世梁, 武雪, 等. 云南省农田生态系统碳足迹时空变化及其影响因素[J]. 生态学报, 2018, 38(24): 8822-8834. |
LI M Q, LIU S L, WU X, et al. Temporal and spatial dynamics in the carbon footprint and its influencing factors of farmland ecosystems in Yunnan Province[J]. Acta Ecologica Sinica, 2018, 38(24): 8822-8834. (in Chinese with English abstract) | |
[26] | 刘文平, 潘影, 肖玉, 等. 中国耕地固碳增汇潜力与建议[J]. 中国农业综合开发, 2022(5): 6-10. |
LIU W P, PAN Y, XIAO Y, et al. Potential and suggestions for carbon sequestration and sink increase of cultivated land in China[J]. Agricultural Comprehensive Development in China, 2022(5): 6-10. (in Chinese) | |
[27] | 张保留, 吕连宏, 吴静, 等. 农村居民生活碳达峰路径及对策[J]. 环境科学研究, 2021, 34(9): 2065-2075. |
ZHANG B L, LÜ L H, WU J, et al. Rural household carbon-peak path and countermeasures[J]. Research of Environmental Sciences, 2021, 34(9): 2065-2075. (in Chinese with English abstract) | |
[28] | 彭立群, 张强, 贺克斌. 基于调查的中国秸秆露天焚烧污染物排放清单[J]. 环境科学研究, 2016, 29(8): 1109-1118. |
PENG L Q, ZHANG Q, HE K B. Emissions inventory of atmospheric pollutants from open burning of crop residues in China based on a national questionnaire[J]. Research of Environmental Sciences, 2016, 29(8): 1109-1118. (in Chinese with English abstract) | |
[29] | 王修兰. 全球农作物对大气CO2及其倍增的吸收量估算[J]. 气象学报, 1996, 54(4): 466-473. |
WANG X L. The estimation on crop absorbing CO2 under current and double CO2 conditions in the world[J]. Acta Meteorologica Sinica, 1996, 54(4): 466-473. (in Chinese) | |
[30] | 韩召迎, 孟亚利, 徐娇, 等. 区域农田生态系统碳足迹时空差异分析: 以江苏省为案例[J]. 农业环境科学学报, 2012, 31(5): 1034-1041. |
HAN Z Y, MENG Y L, XU J, et al. Temporal and spatial difference in carbon footprint of regional farmland ecosystem: taking Jiangsu Province as a case[J]. Journal of Agro-Environment Science, 2012, 31(5): 1034-1041. (in Chinese with English abstract) | |
[31] | 张颖, 吴丽莉, 苏帆, 等. 我国森林碳汇核算的计量模型研究[J]. 北京林业大学学报, 2010, 32(2): 194-200. |
ZHANG Y, WU L L, SU F, et al. An accounting model for forest carbon sinks in China[J]. Journal of Beijing Forestry University, 2010, 32(2): 194-200. (in Chinese with English abstract) |
[1] | 魏超, 陈盛伟, 牛浩, 李政. 农业保险保障水平与农业收入的“倒U型”关系——基于农业产业融合视角[J]. 浙江农业学报, 2024, 36(1): 225-234. |
[2] | 孙永朋, 徐萍, 毛文琳, 王美青, 王宇晗. 浙江农民收入结构优化、均衡增长的对策研究——基于县域数据的实证分析[J]. 浙江农业学报, 2023, 35(11): 2742-2750. |
[3] | 张文斐. 农业自然资源资产监管模式的法经济学分析[J]. 浙江农业学报, 2023, 35(9): 2265-2274. |
[4] | 韦小良, 王英. 基于旅游凝视理论的共同富裕背景下乡村旅游资源开发研究[J]. 浙江农业学报, 2023, 35(8): 1950-1959. |
[5] | 张婉君, 朱利中, 陈丁江, 吴东雷, 王飞儿, 张清宇. 乡村环境治理现代化水平评价:以2019年为例[J]. 浙江农业学报, 2023, 35(4): 913-921. |
[6] | 曾小春, 李随成, 史官清, 邢泽宇. “双碳”目标背景下基于熵权TOPSIS法的区域农业高质量发展水平综合评价——基于变化速度特征视角[J]. 浙江农业学报, 2023, 35(4): 962-972. |
[7] | 张艳彬, 耿槟, 梁颖, 许调娟, 徐保根, 曾新, 张悦悦. “标准地”政策促进现代农业产业高质量发展的作用机制研究[J]. 浙江农业学报, 2023, 35(3): 688-697. |
[8] | 王宁柯, 张瑞, 章胜勇. 机械化服务程度和农地经营规模对玉米生产效率的影响[J]. 浙江农业学报, 2023, 35(3): 698-707. |
[9] | 王萍萍. 土地确权对农业生产率的影响——基于中国家庭金融调查(CHFS)的双重差分研究[J]. 浙江农业学报, 2023, 35(2): 455-467. |
[10] | 王博, 陈秋霖, 万晶晶. 新发展阶段乡村发展的时空逻辑与突破方向[J]. 浙江农业学报, 2023, 35(2): 468-476. |
[11] | 罗海平, 潘柳欣, 胡学英, 刘祖光. 我国粮食主产区耕地利用变化的粮食与生态效应研究[J]. 浙江农业学报, 2023, 35(1): 226-237. |
[12] | 李宝值, 卓妮, 黄河啸, 朱奇彪. 基于绿色发展理念的浙江“26县”政策对城乡收入差距的影响[J]. 浙江农业学报, 2023, 35(1): 238-248. |
[13] | 魏政, 曹光乔. 城市化有利于农业机械化吗?——基于中国县域面板数据的实证分析[J]. 浙江农业学报, 2022, 34(12): 2778-2788. |
[14] | 刘恩玲, 罗小锋, 杜三峡, 闫阿倩, 王祥礼. 老龄化、种植目的与稻农化学农药减量[J]. 浙江农业学报, 2022, 34(12): 2789-2799. |
[15] | 高雪萍, 张予涵, 张梦玲, 廖文梅. 互联网信息技术使用对农业生产率的影响分析——以江西省水稻种植户为例[J]. 浙江农业学报, 2022, 34(12): 2809-2822. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||