浙江农业学报 ›› 2025, Vol. 37 ›› Issue (9): 1991-2002.DOI: 10.3969/j.issn.1004-1524.20240807
祁慧博1,2(
), 季鹏1, 郑巧儿1, 赵婧1, 龙飞2,*(
)
收稿日期:2024-09-13
出版日期:2025-09-25
发布日期:2025-10-15
作者简介:龙飞,E-mail: longf2007@163.com通讯作者:
龙飞
基金资助:
QI Huibo1,2(
), JI Peng1, ZHENG Qiaoer1, ZHAO Jing1, LONG Fei2,*(
)
Received:2024-09-13
Online:2025-09-25
Published:2025-10-15
Contact:
LONG Fei
摘要:
掌握农村居民食物消费碳足迹的演变规律,对于从农村居民食物消费端探索减排路径具有积极意义。该文在梳理农村居民食物消费基本特征的基础上,核算2001—2022年中国除香港、澳门、台湾、西藏外的30个省份农村居民食物消费的直接和间接碳足迹,并采用空间计量模型分析其时空格局与驱动因素。研究发现:1)农村居民食物消费存在发展不平衡、不充分的问题,观测期内的直接碳足迹总量下降,但人均直接碳足迹量则先降后增。2)各省份农村居民食物消费的碳足迹存在显著的空间集聚特征与溢出效应,溢出效应主要集中在高-高、低-低集聚区。3)农村居民食物消费碳足迹的驱动因素包括人口、经济、技术、贸易和食物消费结构,不同省份农村居民食物消费碳足迹的影响机制存在较大差异。基于此,建议推出针对农村居民的兼顾营养与低碳的可持续食物消费政策,通过价格干预、消费补贴、科普宣传等手段全方位促进农村居民食物消费减碳。
中图分类号:
祁慧博, 季鹏, 郑巧儿, 赵婧, 龙飞. 中国农村居民食物消费碳足迹的时空格局与驱动因素[J]. 浙江农业学报, 2025, 37(9): 1991-2002.
QI Huibo, JI Peng, ZHENG Qiaoer, ZHAO Jing, LONG Fei. Carbon footprint of food consumption by rural residents in China: spatial-temporal pattern and driving factors[J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1991-2002.
| 类别 Category | 种类 Type | 综合碳折算系数 Comprehensive carbon conversion factor | 直接碳折算系数 Direct carbon conversion factor | 料肉转化比 Feed-meat conversion ratio | 烹饪加工碳折算系数 Carbon conversion factor for cooking processing |
|---|---|---|---|---|---|
| 植物性食物 | 粮食Grain | 0.326 8 | 0.326 8 | — | 0.109 0 |
| Plant-based food | 蔬菜Vegetables | 0.027 4 | 0.027 4 | — | 0.010 9 |
| 瓜果Fruits and melons | 0.049 8 | 0.049 8 | — | 0 | |
| 食糖Sugar | 0.396 5 | 0.396 5 | — | 0 | |
| 植物油Vegetable oil | 0.766 6 | 0.766 6 | — | 0.654 0 | |
| 动物性食物 | 猪肉Pork | 0.982 7 | 0.254 6 | 2.86 | 0.158 8 |
| Animal-based food | 牛肉Beef | 1.120 2 | 0.254 6 | 3.40 | 0.190 8 |
| 羊肉Mutton | 1.120 2 | 0.254 6 | 3.40 | 0.190 8 | |
| 禽类Poultry | 0.840 2 | 0.254 6 | 2.30 | 0.136 3 | |
| 蛋类Eggs | 0.498 3 | 0.151 0 | 2.30 | 0.054 5 | |
| 奶类Milk | 0.132 7 | 0.062 9 | 1.11 | 0.016 4 | |
| 水产品Aquatic products | 0.401 2 | 0.143 3 | 1.80 | 0.081 8 |
表1 不同食物的碳折算系数
Table 1 Carbon conversion factors for different foods
| 类别 Category | 种类 Type | 综合碳折算系数 Comprehensive carbon conversion factor | 直接碳折算系数 Direct carbon conversion factor | 料肉转化比 Feed-meat conversion ratio | 烹饪加工碳折算系数 Carbon conversion factor for cooking processing |
|---|---|---|---|---|---|
| 植物性食物 | 粮食Grain | 0.326 8 | 0.326 8 | — | 0.109 0 |
| Plant-based food | 蔬菜Vegetables | 0.027 4 | 0.027 4 | — | 0.010 9 |
| 瓜果Fruits and melons | 0.049 8 | 0.049 8 | — | 0 | |
| 食糖Sugar | 0.396 5 | 0.396 5 | — | 0 | |
| 植物油Vegetable oil | 0.766 6 | 0.766 6 | — | 0.654 0 | |
| 动物性食物 | 猪肉Pork | 0.982 7 | 0.254 6 | 2.86 | 0.158 8 |
| Animal-based food | 牛肉Beef | 1.120 2 | 0.254 6 | 3.40 | 0.190 8 |
| 羊肉Mutton | 1.120 2 | 0.254 6 | 3.40 | 0.190 8 | |
| 禽类Poultry | 0.840 2 | 0.254 6 | 2.30 | 0.136 3 | |
| 蛋类Eggs | 0.498 3 | 0.151 0 | 2.30 | 0.054 5 | |
| 奶类Milk | 0.132 7 | 0.062 9 | 1.11 | 0.016 4 | |
| 水产品Aquatic products | 0.401 2 | 0.143 3 | 1.80 | 0.081 8 |
图1 2001—2022年农村居民人均食物消费结构 由于牛、羊肉的消费比例较低,在图中暂将其合并为一大类。
Fig.1 Food consumption structure of rural residents per capita in 2001-2022 Due to the relatively low consumption, beef and mutton are classified into one type.
| 类型 Type | 推荐摄入量 Recommended intake amount | 2001年实际 摄入量 Actual intake amount in 2001 | 2007年实际 摄入量 Actual intake amount in 2007 | 2012年实际 摄入量 Actual intake amount in 2012 | 2016年实际 摄入量 Actual intake amount in 2016 | 2022年实际 摄入量 Actual intake amount in 2022 |
|---|---|---|---|---|---|---|
| 粮食Grain | 125~285 | 653.7 | 546.6 | 450.1 | 430.7 | 450.1 |
| 蔬菜Vegetables | 300~500 | 299.5 | 271.2 | 232.1 | 250.7 | 286.6 |
| 奶类Milk | 300~500 | 2.9 | 9.6 | 14.5 | 18.1 | 23.0 |
| 动物性食物Animal-based food | 120~200 | 72.1 | 79.2 | 87.9 | 122.2 | 181.4 |
| 瓜果Fruits and melons | 200~350 | 52.2 | 56.1 | 74.0 | 100.8 | 127.9 |
| 植物油Vegetable oil | 25~30 | 19.2 | 16.4 | 21.4 | 27.9 | 29.6 |
表2 农村居民实际食物消费量与平衡膳食模式推荐摄入量的对比
Table 2 Comparison of actual food consumption of rural residents and the recommended intake amount under balanced dietary patterns g·d-1
| 类型 Type | 推荐摄入量 Recommended intake amount | 2001年实际 摄入量 Actual intake amount in 2001 | 2007年实际 摄入量 Actual intake amount in 2007 | 2012年实际 摄入量 Actual intake amount in 2012 | 2016年实际 摄入量 Actual intake amount in 2016 | 2022年实际 摄入量 Actual intake amount in 2022 |
|---|---|---|---|---|---|---|
| 粮食Grain | 125~285 | 653.7 | 546.6 | 450.1 | 430.7 | 450.1 |
| 蔬菜Vegetables | 300~500 | 299.5 | 271.2 | 232.1 | 250.7 | 286.6 |
| 奶类Milk | 300~500 | 2.9 | 9.6 | 14.5 | 18.1 | 23.0 |
| 动物性食物Animal-based food | 120~200 | 72.1 | 79.2 | 87.9 | 122.2 | 181.4 |
| 瓜果Fruits and melons | 200~350 | 52.2 | 56.1 | 74.0 | 100.8 | 127.9 |
| 植物油Vegetable oil | 25~30 | 19.2 | 16.4 | 21.4 | 27.9 | 29.6 |
| 年份 Year | 直接碳足迹Direct carbon footprint | 间接碳足迹Indirect carbon footprint | 碳足迹Carbon footprint | ||||||
|---|---|---|---|---|---|---|---|---|---|
| I | Z值Z value | p值p value | I | Z值Z value | p值p value | I | Z值Z value | p值p value | |
| 2001 | 0.147 | 5.464 | <0.001 | 0.118 | 4.981 | <0.001 | 0.120 | 4.786 | <0.001 |
| 2002 | 0.121 | 4.917 | <0.001 | 0.083 | 3.764 | <0.001 | 0.076 | 3.464 | <0.001 |
| 2003 | 0.098 | 3.999 | <0.001 | 0.115 | 4.872 | <0.001 | 0.076 | 3.356 | <0.001 |
| 2004 | 0.098 | 4.017 | <0.001 | 0.121 | 4.970 | <0.001 | 0.075 | 3.296 | <0.001 |
| 2005 | 0.105 | 4.201 | <0.001 | 0.125 | 5.071 | <0.001 | 0.051 | 2.610 | 0.005 |
| 2006 | 0.122 | 4.729 | <0.001 | 0.147 | 5.719 | <0.001 | 0.092 | 3.889 | <0.001 |
| 2007 | 0.116 | 4.535 | <0.001 | 0.156 | 5.970 | <0.001 | 0.095 | 3.985 | <0.001 |
| 2008 | 0.091 | 3.802 | <0.001 | 0.148 | 5.715 | <0.001 | 0.088 | 3.777 | <0.001 |
| 2009 | 0.071 | 3.184 | 0.001 | 0.132 | 5.154 | <0.001 | 0.052 | 2.620 | 0.004 |
| 2010 | 0.060 | 2.853 | 0.002 | 0.112 | 4.512 | <0.001 | 0.047 | 2.474 | 0.007 |
| 2011 | 0.055 | 2.764 | 0.003 | 0.117 | 4.601 | <0.001 | 0.050 | 2.554 | 0.005 |
| 2012 | 0.021 | 1.707 | 0.044 | 0.119 | 4.655 | <0.001 | 0.046 | 2.441 | 0.007 |
| 2013 | 0.024 | 1.778 | 0.038 | 0.099 | 4.043 | <0.001 | 0.025 | 1.804 | 0.036 |
| 2014 | 0.115 | 4.514 | <0.001 | 0.046 | 2.418 | 0.008 | 0.055 | 2.671 | 0.004 |
| 2015 | 0.092 | 3.788 | <0.001 | 0.046 | 2.424 | 0.008 | 0.043 | 2.327 | 0.010 |
| 2016 | 0.059 | 2.828 | 0.002 | 0.044 | 2.365 | 0.009 | 0.023 | 1.724 | 0.042 |
| 2017 | 0.064 | 2.969 | 0.001 | 0.042 | 2.292 | 0.011 | 0.029 | 1.919 | 0.028 |
| 2018 | 0.057 | 2.749 | 0.003 | 0.064 | 2.946 | 0.002 | 0.036 | 2.124 | 0.017 |
| 2019 | 0.056 | 2.728 | 0.003 | 0.048 | 2.455 | 0.007 | 0.040 | 2.221 | 0.013 |
| 2020 | 0.046 | 2.437 | 0.007 | 0.043 | 2.312 | 0.010 | 0.033 | 2.037 | 0.021 |
| 2021 | 0.086 | 3.616 | <0.001 | 0.086 | 3.617 | <0.001 | 0.078 | 3.371 | <0.001 |
| 2022 | 0.079 | 3.415 | <0.001 | 0.042 | 2.631 | 0.004 | 0.068 | 3.140 | 0.001 |
表3 2001—2022年农村居民人均食物消费碳足迹的全局空间自相关
Table 3 Global spatial autocorrelation of carbon footprint of food consumption of rural residents per capita in 2001-2022
| 年份 Year | 直接碳足迹Direct carbon footprint | 间接碳足迹Indirect carbon footprint | 碳足迹Carbon footprint | ||||||
|---|---|---|---|---|---|---|---|---|---|
| I | Z值Z value | p值p value | I | Z值Z value | p值p value | I | Z值Z value | p值p value | |
| 2001 | 0.147 | 5.464 | <0.001 | 0.118 | 4.981 | <0.001 | 0.120 | 4.786 | <0.001 |
| 2002 | 0.121 | 4.917 | <0.001 | 0.083 | 3.764 | <0.001 | 0.076 | 3.464 | <0.001 |
| 2003 | 0.098 | 3.999 | <0.001 | 0.115 | 4.872 | <0.001 | 0.076 | 3.356 | <0.001 |
| 2004 | 0.098 | 4.017 | <0.001 | 0.121 | 4.970 | <0.001 | 0.075 | 3.296 | <0.001 |
| 2005 | 0.105 | 4.201 | <0.001 | 0.125 | 5.071 | <0.001 | 0.051 | 2.610 | 0.005 |
| 2006 | 0.122 | 4.729 | <0.001 | 0.147 | 5.719 | <0.001 | 0.092 | 3.889 | <0.001 |
| 2007 | 0.116 | 4.535 | <0.001 | 0.156 | 5.970 | <0.001 | 0.095 | 3.985 | <0.001 |
| 2008 | 0.091 | 3.802 | <0.001 | 0.148 | 5.715 | <0.001 | 0.088 | 3.777 | <0.001 |
| 2009 | 0.071 | 3.184 | 0.001 | 0.132 | 5.154 | <0.001 | 0.052 | 2.620 | 0.004 |
| 2010 | 0.060 | 2.853 | 0.002 | 0.112 | 4.512 | <0.001 | 0.047 | 2.474 | 0.007 |
| 2011 | 0.055 | 2.764 | 0.003 | 0.117 | 4.601 | <0.001 | 0.050 | 2.554 | 0.005 |
| 2012 | 0.021 | 1.707 | 0.044 | 0.119 | 4.655 | <0.001 | 0.046 | 2.441 | 0.007 |
| 2013 | 0.024 | 1.778 | 0.038 | 0.099 | 4.043 | <0.001 | 0.025 | 1.804 | 0.036 |
| 2014 | 0.115 | 4.514 | <0.001 | 0.046 | 2.418 | 0.008 | 0.055 | 2.671 | 0.004 |
| 2015 | 0.092 | 3.788 | <0.001 | 0.046 | 2.424 | 0.008 | 0.043 | 2.327 | 0.010 |
| 2016 | 0.059 | 2.828 | 0.002 | 0.044 | 2.365 | 0.009 | 0.023 | 1.724 | 0.042 |
| 2017 | 0.064 | 2.969 | 0.001 | 0.042 | 2.292 | 0.011 | 0.029 | 1.919 | 0.028 |
| 2018 | 0.057 | 2.749 | 0.003 | 0.064 | 2.946 | 0.002 | 0.036 | 2.124 | 0.017 |
| 2019 | 0.056 | 2.728 | 0.003 | 0.048 | 2.455 | 0.007 | 0.040 | 2.221 | 0.013 |
| 2020 | 0.046 | 2.437 | 0.007 | 0.043 | 2.312 | 0.010 | 0.033 | 2.037 | 0.021 |
| 2021 | 0.086 | 3.616 | <0.001 | 0.086 | 3.617 | <0.001 | 0.078 | 3.371 | <0.001 |
| 2022 | 0.079 | 3.415 | <0.001 | 0.042 | 2.631 | 0.004 | 0.068 | 3.140 | 0.001 |
| 变量 Variable | 样本量 Sample size | 平均值 Mean | 标准差 Standard deviation | 最小值 Minimum value | 最大值 Maximum value |
|---|---|---|---|---|---|
| ln C | 660 | 5.15 | 0.19 | 4.73 | 5.67 |
| ln P1 | 660 | 1.12 | 0.13 | 0.70 | 1.44 |
| ln P2 | 660 | 2.36 | 0.37 | 1.11 | 3.54 |
| ln E1 | 660 | 17.74 | 1.56 | 14.50 | 21.18 |
| ln E2 | 660 | 10.31 | 0.85 | 8.01 | 12.16 |
| ln T1 | 660 | 1.94 | 0.52 | 0.54 | 2.92 |
| ln T2 | 660 | 5.78 | 0.82 | 2.59 | 7.82 |
| ln Ip | 660 | 4.65 | 0.04 | 4.56 | 4.78 |
| ln S1 | 660 | 1.59 | 0.43 | 0.20 | 2.45 |
| ln S2 | 660 | 1.51 | 0.66 | -0.92 | 2.64 |
表4 变量的描述性统计
Table 4 Descriptive statistics of variables
| 变量 Variable | 样本量 Sample size | 平均值 Mean | 标准差 Standard deviation | 最小值 Minimum value | 最大值 Maximum value |
|---|---|---|---|---|---|
| ln C | 660 | 5.15 | 0.19 | 4.73 | 5.67 |
| ln P1 | 660 | 1.12 | 0.13 | 0.70 | 1.44 |
| ln P2 | 660 | 2.36 | 0.37 | 1.11 | 3.54 |
| ln E1 | 660 | 17.74 | 1.56 | 14.50 | 21.18 |
| ln E2 | 660 | 10.31 | 0.85 | 8.01 | 12.16 |
| ln T1 | 660 | 1.94 | 0.52 | 0.54 | 2.92 |
| ln T2 | 660 | 5.78 | 0.82 | 2.59 | 7.82 |
| ln Ip | 660 | 4.65 | 0.04 | 4.56 | 4.78 |
| ln S1 | 660 | 1.59 | 0.43 | 0.20 | 2.45 |
| ln S2 | 660 | 1.51 | 0.66 | -0.92 | 2.64 |
| 变量 Variable | 空间固定效应模型Space fixed model | 时间固定效应模型Time fixed model | 时空固定效应模型Space-time fixed model | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 回归系数 Regression coefficient | p值 p value | Z值 Z value | 回归系数 Regression coefficient | p值 p value | Z值 Z value | 回归系数 Regression coefficient | p值 p value | Z值 Z value | |
| ln P1 | -0.108 8 | 0.152 | -1.43 | -0.198 0*** | 0.001 | -3.27 | -0.112 3 | 0.127 | -1.53 |
| ln P2 | 0.058 3*** | 0.001 | 3.25 | 0.067 5*** | <0.001 | 3.98 | 0.056 2*** | 0.001 | 3.22 |
| ln E1 | 0.260 3*** | <0.001 | 3.94 | 0.225 7*** | <0.001 | 7.68 | 0.181 2*** | 0.009 | 2.62 |
| ln E2 | 0.051 9* | 0.051 | 1.95 | 0.051 9* | 0.051 | 1.95 | 0.056 1** | 0.036 | 2.09 |
| ln T1 | -0.030 6* | 0.054 | -1.93 | -0.010 3 | 0.301 | -1.04 | -0.032 1** | 0.035 | -2.11 |
| ln T2 | 0.062 6*** | <0.001 | 3.64 | 0.059 6*** | <0.001 | 9.55 | 0.065 1*** | <0.001 | 3.82 |
| ln Ip | -0.097 1 | 0.692 | -0.40 | -0.188 2 | 0.517 | -0.65 | 0.002 6 | 0.991 | 0.01 |
| ln S1 | -0.028 6 | 0.225 | -1.21 | 0.091 8*** | <0.001 | 6.93 | -0.029 3 | 0.209 | -1.25 |
| ln S2 | -0.015 0 | 0.385 | -0.87 | 0.064 3*** | <0.001 | 5.32 | 0.009 2 | 0.616 | 0.50 |
| Wln P1 | 0.021 2 | 0.827 | 0.22 | 0.183 8* | 0.068 | 1.83 | 0.028 4 | 0.807 | 0.24 |
| Wln P2 | 0.042 8 | 0.250 | 1.15 | 0.063 7* | 0.083 | 1.73 | 0.011 9 | 0.772 | 0.29 |
| Wln E1 | -0.333 3*** | <0.001 | -4.79 | -0.233 9*** | <0.001 | -4.41 | -0.500 4*** | <0.001 | -4.11 |
| Wln E2 | -0.230 1*** | <0.001 | -7.22 | -0.230 1*** | <0.001 | -7.22 | -0.185 6*** | <0.001 | -4.25 |
| Wln T1 | 0.086 2*** | 0.003 | 2.93 | 0.051 3** | 0.013 | 2.49 | 0.057 8* | 0.070 | 1.81 |
| Wln T2 | -0.032 9 | 0.232 | -1.19 | -0.047 0*** | <0.001 | -3.92 | 0.022 0 | 0.492 | 0.69 |
| Wln Ip | -0.107 7 | 0.672 | -0.42 | -0.006 3 | 0.989 | -0.01 | 0.114 0 | 0.766 | 0.30 |
| Wln S1 | 0.039 8 | 0.235 | 1.19 | 0.180 2*** | <0.001 | 6.30 | 0.073 9* | 0.092 | 1.68 |
| Wln S2 | -0.021 0 | 0.489 | -0.69 | 0.050 0* | 0.061 | 1.87 | 0.049 7 | 0.192 | 1.30 |
| Wln C | 0.230 3*** | <0.001 | 4.89 | 0.145 7*** | 0.006 | 2.74 | -0.002 1 | 0.971 | -0.04 |
表5 固定效应模型的回归结果
Table 5 Regression results of the fixed-effect models
| 变量 Variable | 空间固定效应模型Space fixed model | 时间固定效应模型Time fixed model | 时空固定效应模型Space-time fixed model | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 回归系数 Regression coefficient | p值 p value | Z值 Z value | 回归系数 Regression coefficient | p值 p value | Z值 Z value | 回归系数 Regression coefficient | p值 p value | Z值 Z value | |
| ln P1 | -0.108 8 | 0.152 | -1.43 | -0.198 0*** | 0.001 | -3.27 | -0.112 3 | 0.127 | -1.53 |
| ln P2 | 0.058 3*** | 0.001 | 3.25 | 0.067 5*** | <0.001 | 3.98 | 0.056 2*** | 0.001 | 3.22 |
| ln E1 | 0.260 3*** | <0.001 | 3.94 | 0.225 7*** | <0.001 | 7.68 | 0.181 2*** | 0.009 | 2.62 |
| ln E2 | 0.051 9* | 0.051 | 1.95 | 0.051 9* | 0.051 | 1.95 | 0.056 1** | 0.036 | 2.09 |
| ln T1 | -0.030 6* | 0.054 | -1.93 | -0.010 3 | 0.301 | -1.04 | -0.032 1** | 0.035 | -2.11 |
| ln T2 | 0.062 6*** | <0.001 | 3.64 | 0.059 6*** | <0.001 | 9.55 | 0.065 1*** | <0.001 | 3.82 |
| ln Ip | -0.097 1 | 0.692 | -0.40 | -0.188 2 | 0.517 | -0.65 | 0.002 6 | 0.991 | 0.01 |
| ln S1 | -0.028 6 | 0.225 | -1.21 | 0.091 8*** | <0.001 | 6.93 | -0.029 3 | 0.209 | -1.25 |
| ln S2 | -0.015 0 | 0.385 | -0.87 | 0.064 3*** | <0.001 | 5.32 | 0.009 2 | 0.616 | 0.50 |
| Wln P1 | 0.021 2 | 0.827 | 0.22 | 0.183 8* | 0.068 | 1.83 | 0.028 4 | 0.807 | 0.24 |
| Wln P2 | 0.042 8 | 0.250 | 1.15 | 0.063 7* | 0.083 | 1.73 | 0.011 9 | 0.772 | 0.29 |
| Wln E1 | -0.333 3*** | <0.001 | -4.79 | -0.233 9*** | <0.001 | -4.41 | -0.500 4*** | <0.001 | -4.11 |
| Wln E2 | -0.230 1*** | <0.001 | -7.22 | -0.230 1*** | <0.001 | -7.22 | -0.185 6*** | <0.001 | -4.25 |
| Wln T1 | 0.086 2*** | 0.003 | 2.93 | 0.051 3** | 0.013 | 2.49 | 0.057 8* | 0.070 | 1.81 |
| Wln T2 | -0.032 9 | 0.232 | -1.19 | -0.047 0*** | <0.001 | -3.92 | 0.022 0 | 0.492 | 0.69 |
| Wln Ip | -0.107 7 | 0.672 | -0.42 | -0.006 3 | 0.989 | -0.01 | 0.114 0 | 0.766 | 0.30 |
| Wln S1 | 0.039 8 | 0.235 | 1.19 | 0.180 2*** | <0.001 | 6.30 | 0.073 9* | 0.092 | 1.68 |
| Wln S2 | -0.021 0 | 0.489 | -0.69 | 0.050 0* | 0.061 | 1.87 | 0.049 7 | 0.192 | 1.30 |
| Wln C | 0.230 3*** | <0.001 | 4.89 | 0.145 7*** | 0.006 | 2.74 | -0.002 1 | 0.971 | -0.04 |
| 变量 Variable | 各变量在不同地区的回归系数Regression coefficient in different regions | |||
|---|---|---|---|---|
| 东部地区Eastern China | 中部地区Central China | 西部地区Western China | 东北地区Northeast China | |
| ln P1 | -0.191 2** | -0.284 0** | 0.096 7 | -1.589 1*** |
| ln P2 | 0.102 9*** | 0.012 5 | 0.082 8*** | -0.150 6 |
| ln E1 | 0.500 3*** | 0.686 5*** | 0.251 6*** | 0.823 8** |
| ln E2 | -0.053 5 | -0.231 9*** | -0.092 6*** | -0.042 6 |
| ln T1 | -0.060 2*** | 0.060 4** | 0.106 7*** | -0.215 7*** |
| ln T2 | 0.024 1* | -0.029 3 | -0.016 2 | -0.075 7 |
| ln Ip | -1.179 0*** | -0.559 9 | 0.394 6 | 1.983 2*** |
| ln S1 | -0.136 3*** | 0.097 9** | 0.075 8*** | 0.242 0*** |
| ln S2 | -0.105 7** | -0.122 0** | 0.043 6*** | -0.130 3 |
| Wln P1 | 0.166 4 | 0.324 1 | -0.505 4*** | -1.632 4*** |
| Wln P2 | 0.023 1 | 0.212 3 | 0.033 3 | -0.264 4 |
| Wln E1 | 0.101 0 | 1.633 2*** | -0.378 0*** | 0.313 0 |
| Wln E2 | -0.301 7*** | -0.383 4*** | -0.334 8*** | -0.055 5 |
| Wln T1 | 0.068 0** | 0.191 4*** | 0.252 2*** | -0.374 2*** |
| Wln T2 | -0.048 8** | -0.255 7** | -0.139 9*** | -0.076 9 |
| Wln Ip | 0.947 5 | -0.084 1 | -0.509 5 | 3.776 9*** |
| Wln S1 | -0.105 7*** | 0.095 7* | -0.184 7*** | 0.204 1* |
| Wln S2 | 0.166 4 | -0.071 9 | 0.197 5*** | 0.215 3 |
| Wln C | 0.054 8 | -0.461 5*** | -0.607 7*** | -0.443 0*** |
| 样本量Sample size | 220 | 132 | 242 | 66 |
| 决定系数 | 0.694 9 | 0.618 1 | 0.772 9 | 0.676 6 |
| Determination coefficient(R2) | ||||
表6 时间固定效应模型下的异质性检验结果
Table 6 Heterogeneity test results under the time fixed model
| 变量 Variable | 各变量在不同地区的回归系数Regression coefficient in different regions | |||
|---|---|---|---|---|
| 东部地区Eastern China | 中部地区Central China | 西部地区Western China | 东北地区Northeast China | |
| ln P1 | -0.191 2** | -0.284 0** | 0.096 7 | -1.589 1*** |
| ln P2 | 0.102 9*** | 0.012 5 | 0.082 8*** | -0.150 6 |
| ln E1 | 0.500 3*** | 0.686 5*** | 0.251 6*** | 0.823 8** |
| ln E2 | -0.053 5 | -0.231 9*** | -0.092 6*** | -0.042 6 |
| ln T1 | -0.060 2*** | 0.060 4** | 0.106 7*** | -0.215 7*** |
| ln T2 | 0.024 1* | -0.029 3 | -0.016 2 | -0.075 7 |
| ln Ip | -1.179 0*** | -0.559 9 | 0.394 6 | 1.983 2*** |
| ln S1 | -0.136 3*** | 0.097 9** | 0.075 8*** | 0.242 0*** |
| ln S2 | -0.105 7** | -0.122 0** | 0.043 6*** | -0.130 3 |
| Wln P1 | 0.166 4 | 0.324 1 | -0.505 4*** | -1.632 4*** |
| Wln P2 | 0.023 1 | 0.212 3 | 0.033 3 | -0.264 4 |
| Wln E1 | 0.101 0 | 1.633 2*** | -0.378 0*** | 0.313 0 |
| Wln E2 | -0.301 7*** | -0.383 4*** | -0.334 8*** | -0.055 5 |
| Wln T1 | 0.068 0** | 0.191 4*** | 0.252 2*** | -0.374 2*** |
| Wln T2 | -0.048 8** | -0.255 7** | -0.139 9*** | -0.076 9 |
| Wln Ip | 0.947 5 | -0.084 1 | -0.509 5 | 3.776 9*** |
| Wln S1 | -0.105 7*** | 0.095 7* | -0.184 7*** | 0.204 1* |
| Wln S2 | 0.166 4 | -0.071 9 | 0.197 5*** | 0.215 3 |
| Wln C | 0.054 8 | -0.461 5*** | -0.607 7*** | -0.443 0*** |
| 样本量Sample size | 220 | 132 | 242 | 66 |
| 决定系数 | 0.694 9 | 0.618 1 | 0.772 9 | 0.676 6 |
| Determination coefficient(R2) | ||||
| [1] | 孟繁盈, 许月卿, 张立金. 中国城乡居民食物消费演变及政策启示[J]. 资源科学, 2010, 32(7): 1333-1341. |
| MENG F Y, XU Y Q, ZHANG L J. Food consumption and policy implications of urban and rural residents in China[J]. Resources Science, 2010, 32(7): 1333-1341. (in Chinese with English abstract) | |
| [2] | 蒋璐, 汪瑞, 刘蓓蓓. 食品消费模式的碳足迹差异研究[J]. 中国环境科学, 2023, 43(12): 6755-6762. |
| JIANG L, WANG R, LIU B B. Differences in carbon footprint of food consumption patterns[J]. China Environmental Science, 2023, 43(12): 6755-6762. (in Chinese with English abstract) | |
| [3] | 姚亮, 刘晶茹, 袁野. 中国居民家庭消费碳足迹近20年增长情况及未来趋势研究[J]. 环境科学学报, 2017, 37(6): 2403-2408. |
| YAO L, LIU J R, YUAN Y. Growth of carbon footprint of Chinese household consumption during the recent two decades and its future trends[J]. Acta Scientiae Circumstantiae, 2017, 37(6): 2403-2408. (in Chinese with English abstract) | |
| [4] | SUNDIN N, BARTEK L, PERSSON OSOWSKI C, et al. Sustainability assessment of surplus food donation: a transfer system generating environmental, economic, and social values[J]. Sustainable Production and Consumption, 2023, 38: 41-54. |
| [5] | 张扬, 李涵, 赵正豪. 中国粮食作物种植变化对省际农业碳排放量的影响研究[J]. 中国农业资源与区划, 2023, 44(7): 29-38. |
| ZHANG Y, LI H, ZHAO Z H. Research on effects of grain crop planting changes on agricultural carbon emissions between provinces in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(7): 29-38. (in Chinese with English abstract) | |
| [6] | YE B, JIANG J J, MIAO L X, et al. Interprovincial allocation of China's national carbon emission allowance: an uncertainty analysis based on Monte-Carlo simulations[J]. Climate Policy, 2017, 17(4): 401-422. |
| [7] | 黄葳, 胡元超, 任艳, 等. 满足城市食物消费需求的农业生产碳排放研究: 以宁波为例[J]. 环境科学学报, 2015, 35(12): 4102-4111. |
| HUANG W, HU Y C, REN Y, et al. Carbon emission of agricultural production associated with urban food consumption: Ningbo as a case study[J]. Acta Scientiae Circumstantiae, 2015, 35(12): 4102-4111. (in Chinese with English abstract) | |
| [8] | OSEI-OWUSU A K, TOWA E, THOMSEN M. Exploring the pathways towards the mitigation of the environmental impacts of food consumption[J]. Science of The Total Environment, 2022, 806: 150528. |
| [9] | 吴燕, 王效科, 逯非. 北京市居民食物消费碳足迹[J]. 生态学报, 2012, 32(5): 1570-1577. |
| WU Y, WANG X K, LU F. The carbon footprint of food consumption in Beijing[J]. Acta Ecologica Sinica, 2012, 32(5): 1570-1577. (in Chinese with English abstract) | |
| [10] | 杨旺舟. 中国农村居民食品消费碳排放的时空格局及其影响因素[J]. 中国环境管理, 2022, 14(3): 112-117. |
| YANG W Z. Spatio-temporal pattern and its driving forces on carbon emission of food consumption from rural households in China[J]. Chinese Journal of Environmental Management, 2022, 14(3): 112-117. (in Chinese with English abstract) | |
| [11] | 曹志宏, 郝晋珉. 中国家庭居民饮食行为碳消费时空演变及其集聚特征分析[J]. 干旱区资源与环境, 2018, 32(12): 20-25. |
| CAO Z H, HAO J M. Spatial-temporal succession and agglomeration characteristics of diet carbon consumption for Chinese households[J]. Journal of Arid Land Resources and Environment, 2018, 32(12): 20-25. (in Chinese with English abstract) | |
| [12] | 黄和平, 李亚丽, 杨斯玲. 中国城镇居民食物消费碳排放的时空演变特征分析[J]. 中国环境管理, 2021, 13(1): 112-120. |
| HUANG H P, LI Y L, YANG S L. Spatio-temporal evolution characteristics of carbon emissions from food consumption of urban residents in China[J]. Chinese Journal of Environmental Management, 2021, 13(1): 112-120. (in Chinese with English abstract) | |
| [13] | TIMILSINA G R, SHRESTHA A. Factors affecting transport sector CO2 emissions growth in Latin American and Caribbean countries: an LMDI decomposition analysis[J]. International Journal of Energy Research, 2009, 33(4): 396-414. |
| [14] | 朱勤, 彭希哲, 陆志明, 等. 中国能源消费碳排放变化的因素分解及实证分析[J]. 资源科学, 2009, 31(12): 2072-2079. |
| ZHU Q, PENG X Z, LU Z M, et al. Factors decomposition and empirical analysis of variations in energy carbon emission in China[J]. Resources Science, 2009, 31(12): 2072-2079. (in Chinese with English abstract) | |
| [15] | 李婵娟, 王子敏, 马万里. 农村居民信息消费省际差异的影响因素与贡献测度: 基于Shapley值过程的实证分析[J]. 情报科学, 2017, 35(8): 146-152. |
| LI C J, WANG Z M, MA W L. Determinants and contributions of provincial differences of rural residents' information consumption: an empirical study by the method of shapley value decomposition[J]. Information Science, 2017, 35(8): 146-152. (in Chinese with English abstract) | |
| [16] | 赵玉焕, 李玮伦, 王淞. 北京市居民消费间接碳排放测算及影响因素[J]. 北京理工大学学报(社会科学版), 2018, 20(3): 33-44. |
| ZHAO Y H, LI W L, WANG S. Calculation and driving forces of indirect carbon emissions from household consumption in Beijing[J]. Journal of Beijing Institute of Technology(Social Sciences Edition), 2018, 20(3): 33-44. (in Chinese with English abstract) | |
| [17] | QI H B, SHEN X Y, LONG F, et al. Spatial-temporal characteristics and influencing factors of county-level carbon emissions in Zhejiang Province, China[J]. Environmental Science and Pollution Research International, 2023, 30(4): 10136-10148. |
| [18] | FAN Y, LIU L C, WU G, et al. Analyzing impact factors of CO2 emissions using the STIRPAT model[J]. Environmental Impact Assessment Review, 2006, 26(4): 377-395. |
| [19] | 陈萱, 李绍亭, 任彦军. 2000—2020年中国城乡食物消费碳-水足迹及其驱动因素分析[J]. 农业工程学报, 2024, 40(5): 287-296. |
| CHEN X, LI S T, REN Y J. Analysis of the carbon-water footprint of food consumption and its driving effect in urban and rural areas of China from 2000 to 2020[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(5): 287-296. (in Chinese with English abstract) | |
| [20] | 刘莉娜, 曲建升, 曾静静, 等. 基于文献计量的居民食物消费碳排放研究进展及发展态势[J]. 生态学报, 2023, 43(17): 7331-7340. |
| LIU L N, QU J S, ZENG J J, et al. Progress and development of bibliometric-based research on carbon emissions from residential food consumption[J]. Acta Ecologica Sinica, 2023, 43(17): 7331-7340. (in Chinese) | |
| [21] | 智静, 高吉喜. 中国城乡居民食品消费碳排放对比分析[J]. 地理科学进展, 2009, 28(3): 429-434. |
| ZHI J, GAO J X. Analysis of carbon emission caused by food consumption in urban and rural inhabitants in China[J]. Progress in Geography, 2009, 28(3): 429-434. (in Chinese with English abstract) | |
| [22] | 中国营养学会. 中国居民膳食指南: 2022[M]. 北京: 人民卫生出版社, 2022. |
| [23] | YEO M J, KIM Y P. Prediction of the carbon dioxide emission change resulting from the changes in bovine meat consumption behavior in Korea[J]. Journal of Korean Society for Atmospheric Environment, 2015, 31(4): 356-367. |
| [24] | XU X M, LAN Y. A comparative study on carbon footprints between plant-and animal-based foods in China[J]. Journal of Cleaner Production, 2016, 112: 2581-2592. |
| [25] | HUANG L Q, LONG Y, CHEN Z H, et al. Increasing single households challenges household decarbonization in Japan[J]. Global Environmental Change, 2024, 86: 102848. |
| [26] | LONG Y, YOSHIDA Y, HUANG L Q, et al. Demographic transitions hinder climate change mitigation for Japan's shrinking and aging households[J]. Cell Reports Sustainability, 2024, 1(3): 100053. |
| [27] | 付云鹏, 马树才, 宋宝燕. 中国城乡居民消费碳排放差异及影响因素: 基于面板数据的实证分析[J]. 经济问题探索, 2016(10): 43-50. |
| FU Y P, MA S C, SONG B Y. Differences in carbon emissions from consumption of urban and rural residents in China and influencing factors: an empirical analysis based on panel data[J]. Inquiry into Economic Issues, 2016(10): 43-50. (in Chinese) | |
| [28] | 申萌, 李凯杰, 曲如晓. 技术进步、经济增长与二氧化碳排放: 理论和经验研究[J]. 世界经济, 2012, 35(7): 83-100. |
| SHEN M, LI K J, QU R X. Technological progress, economic growth, and carbon dioxide emissions: a theoretical and empirical study[J]. The Journal of World Economy, 2012, 35(7): 83-100. (in Chinese) | |
| [29] | 齐红倩, 刘岩. 人口年龄结构变动与居民家庭消费升级: 基于CFPS数据的实证研究[J]. 中国人口·资源与环境, 2020, 30(12): 174-184. |
| QI H Q, LIU Y. Change of population age structure and the upgrading of household consumption: an empirical research based on CFPS data[J]. China Population, Resources and Environment, 2020, 30(12): 174-184. (in Chinese with English abstract) | |
| [30] | 田云, 尹忞昊. 技术进步促进了农业能源碳减排吗 : 基于回弹效应与空间溢出效应的检验[J]. 改革, 2021(12): 45-58. |
| TIAN Y, YIN M H. Does technological progress promote carbon emission reduction of agricultural energy test based on rebound effect and spatial spillover effect[J]. Reform, 2021(12): 45-58. (in Chinese with English abstract) | |
| [31] | 夏佳钰, 樊胜根, 丁心悦, 等. 中国可持续健康膳食发展思考[J]. 中国工程科学, 2023, 25(4): 120-127. |
| XIA J Y, FAN S G, DING X Y, et al. Development of sustainable healthy diets in China[J]. Strategic Study of CAE, 2023, 25(4): 120-127. (in Chinese with English abstract) |
| [1] | 崔宁波, 肖扬, 杨佳利, 王婷. 东北黑土区耕地生态承载力时空分异与可持续性分析[J]. 浙江农业学报, 2025, 37(4): 954-964. |
| [2] | 张惠云, 秦丽杰, 贾利. 吉林省水稻生产的碳足迹与水足迹时空变化特征[J]. 浙江农业学报, 2021, 33(6): 974-983. |
| [3] | 叶春辉, 卞伟, 卓妮, 张林秀. 中国农村居民代际社会流动研究——基于全国5省101村大样本问卷调查[J]. 浙江农业学报, 2017, 29(10): 1759-1768. |
| [4] | 李虹, 冯仲科, 唐秀美, 潘瑜春, 刘玉, 郝星耀. 基于STIRPAT模型的北京能源压力区域空间变化分析[J]. 浙江农业学报, 2016, 28(9): 1603-1608. |
| [5] | 黄聪1,2,赵小敏2,*,郭熙1,2,谢文1,2,张佳佳1,2,叶英聪1,2. 多维视角下江西省余江县农村居民点分布特征及其影响因素[J]. 浙江农业学报, 2016, 28(8): 1428-. |
| [6] | 赵素霞;张小虎;黄晓东. 基于熵值法的农村居民点整治潜力测算及整治分区研究——以鹤壁市为例[J]. , 2014, 26(3): 0-805810. |
| [7] | 王琪;张仁陟*;陈英. 成县农村居民点整理潜力测算[J]. , 2012, 24(6): 0-1163. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||