浙江农业学报 ›› 2025, Vol. 37 ›› Issue (11): 2340-2353.DOI: 10.3969/j.issn.1004-1524.20250009
沈佳瑜1,2(
), 邓燕3, 张姬雯4, 彭国方5, 吴群6, 朱齐超3, 张卫峰1,2,3, 李贝3,*(
)
收稿日期:2024-12-31
出版日期:2025-11-25
发布日期:2025-12-08
作者简介:沈佳瑜(1999—),女,江苏海门人,硕士研究生,研究方向为果园碳排放。E-mail:3256495855@qq.com
通讯作者:
*李贝,E-mail: libei90@cau.edu.cn
基金资助:
SHEN Jiayu1,2(
), DENG Yan3, ZHANG Jiwen4, PENG Guofang5, WU Qun6, ZHU Qichao3, ZHANG Weifeng1,2,3, LI Bei3,*(
)
Received:2024-12-31
Online:2025-11-25
Published:2025-12-08
摘要: 为给柑橘园的低碳发展提供科学依据,本文以浙江省衢州市柑橘园为研究对象,采用生命周期评价方法,针对投入品生产运输、田间施肥管理和果园固碳等建立柑橘园碳核算方法,并对衢州市柑橘园的碳排放和碳储量现状进行评价。结果表明:衢州市柑橘园以≥20年树龄为主,平均产量为43.35 t·hm-2;单位面积碳排放总量(以CO2当量计)为7.61 t ·hm-2,其中,氮肥生产运输排放的占比最大,为41.66%;单位面积碳储量为66.18 t·hm-2。0~30 cm土层的土壤碳储量是碳汇的主体,占87.43%。不同树龄柑橘园的碳排放和碳储量有所差异,主要与不同树龄果园的施肥和管理差异有关。未来,应进一步优化果园管理,通过减少化肥施用和增加有机肥替代比例,进一步提升柑橘园的减排固碳能力。
中图分类号:
沈佳瑜, 邓燕, 张姬雯, 彭国方, 吴群, 朱齐超, 张卫峰, 李贝. 衢州市柑橘园碳排放与碳储量现状评价[J]. 浙江农业学报, 2025, 37(11): 2340-2353.
SHEN Jiayu, DENG Yan, ZHANG Jiwen, PENG Guofang, WU Qun, ZHU Qichao, ZHANG Weifeng, LI Bei. Evaluation of carbon emissions and storage status of citrus orchard in Quzhou City, China[J]. Acta Agriculturae Zhejiangensis, 2025, 37(11): 2340-2353.
| 基径 Base diameter/cm | 树干占比 Proportion of trunk | 树根占比 Proportion of roots | 树枝占比 Proportion of branches | 树叶占比 Proportion of leaves | 果实占比 Proportion of fruits |
|---|---|---|---|---|---|
| 4~<12 | 31.90 | 25.70 | 18.91 | 12.40 | 11.09 |
| 12~<20 | 36.09 | 29.98 | 13.26 | 6.37 | 14.30 |
| 20~<24 | 37.56 | 32.21 | 12.63 | 3.82 | 13.78 |
表1 不同基径柑橘树体各部分干基生物量占全株干基生物量的比例
Table 1 Proportion of dry biomass of different parts of citrus trees in the total dry biomass with varied base diameters %
| 基径 Base diameter/cm | 树干占比 Proportion of trunk | 树根占比 Proportion of roots | 树枝占比 Proportion of branches | 树叶占比 Proportion of leaves | 果实占比 Proportion of fruits |
|---|---|---|---|---|---|
| 4~<12 | 31.90 | 25.70 | 18.91 | 12.40 | 11.09 |
| 12~<20 | 36.09 | 29.98 | 13.26 | 6.37 | 14.30 |
| 20~<24 | 37.56 | 32.21 | 12.63 | 3.82 | 13.78 |
| 样本 Sample | 样本量 Sample size | 面积 Area/hm2 | 树龄 Tree-age | 种植密度 Planting density/hm-2 | 基径 Base diameter/cm | 产量 Yield/(t·hm-2) |
|---|---|---|---|---|---|---|
| G1 | 11 | 3.34±6.32 a | 3.1±1.0 b | 867.3±171.9 a | 3.14±0.95 c | 25.98±18.95 b |
| G2 | 11 | 0.10±0.07 a | 6.9±2.0 b | 737.7±154.4 ab | 6.91±1.97 b | 41.25±15.91 a |
| G3 | 73 | 1.07±5.47 a | 23.3±7.7 a | 702.3±197.3 b | 14.77±2.05 a | 45.69±20.44 a |
| 全部All | 95 | 1.22±5.28 | 19.1±10.3 | 725.5±195.7 | 12.51±4.65 | 43.35±20.24 |
表2 调研柑橘园的基本特征
Table 2 Basic characteristics of the surveyed citrus orchards
| 样本 Sample | 样本量 Sample size | 面积 Area/hm2 | 树龄 Tree-age | 种植密度 Planting density/hm-2 | 基径 Base diameter/cm | 产量 Yield/(t·hm-2) |
|---|---|---|---|---|---|---|
| G1 | 11 | 3.34±6.32 a | 3.1±1.0 b | 867.3±171.9 a | 3.14±0.95 c | 25.98±18.95 b |
| G2 | 11 | 0.10±0.07 a | 6.9±2.0 b | 737.7±154.4 ab | 6.91±1.97 b | 41.25±15.91 a |
| G3 | 73 | 1.07±5.47 a | 23.3±7.7 a | 702.3±197.3 b | 14.77±2.05 a | 45.69±20.44 a |
| 全部All | 95 | 1.22±5.28 | 19.1±10.3 | 725.5±195.7 | 12.51±4.65 | 43.35±20.24 |
| 指标 Index | 不同样本的用量Usage in different samples | |||
|---|---|---|---|---|
| G1 | G2 | G3 | 全部All | |
| 化肥N用量 | 150.30±118.81 b | 297.20±161.15 ab | 428.45±236.40 a | 381.05±236.37 |
| Usage of N in chemical fertilizer/(kg·hm-2) | ||||
| 化肥P2O5用量 | 153.93±134.54 b | 266.52±132.88 ab | 420.49±237.26 a | 371.80±235.83 |
| Usage of P2O5 in chemical fertilizer/(kg·hm-2) | ||||
| 化肥K2O用量 | 186.40±179.45 b | 297.20±161.15 ab | 422.66±229.75 a | 380.78±230.70 |
| Usage of K2O in chemical fertilizer/(kg·hm-2) | ||||
| 有机肥N用量 | 69.84±70.55 a | 49.70±117.95 a | 41.91±108.73 a | 46.04±105.57 |
| Usage of N in organic fertilizer/(kg·hm-2) | ||||
| 有机肥P用量 | 30.27±28.23 a | 21.44±49.02 a | 25.60±92.04 a | 25.66±82.67 |
| Usage of P in organic fertilizer/(kg·hm-2) | ||||
| 有机肥K用量 | 31.83±48.98 a | 18.29±41.55 a | 23.00±93.47 a | 23.48±84.51 |
| Usage of K in organic fertilizer/(kg·hm-2) | ||||
| 有机肥C用量 | 861.49±1 112.75 a | 566.55±1 236.52 a | 508.90±1 561.92 a | 556.40±1 475.01 |
| Usage of C in organic fertilizer/(kg·hm-2) | ||||
| 除草剂用量Usage of herbicide/(kg·hm-2) | 2.84±3.40 a | 2.13±1.88 a | 1.73±1.70 a | 1.90±1.99 |
| 杀虫剂用量Usage of pesticide/(kg·hm-2) | 0.89±0.42 a | 1.05±0.31 a | 1.11±0.64 a | 1.08±0.59 |
| 杀菌剂用量Usage of fungicide/(kg·hm-2) | 0.97±0.76 a | 0.61±0.82 a | 0.81±1.09 a | 0.80±1.02 |
| 耗油量Fuel consumption/(kg·hm-2) | 64.55±58.76 a | 54.55±31.66 a | 62.23±43.44 a | 61.61±43.89 |
| 耗电量Electricity consumption/(kW·h·hm-2) | 323.18±274.94 b | 548.18±236.92 a | 361.23±273.26 ab | 378.47±274.17 |
表3 调研柑橘园的投入品用量
Table 3 Consumption of inputs of surveyed citrus orchards
| 指标 Index | 不同样本的用量Usage in different samples | |||
|---|---|---|---|---|
| G1 | G2 | G3 | 全部All | |
| 化肥N用量 | 150.30±118.81 b | 297.20±161.15 ab | 428.45±236.40 a | 381.05±236.37 |
| Usage of N in chemical fertilizer/(kg·hm-2) | ||||
| 化肥P2O5用量 | 153.93±134.54 b | 266.52±132.88 ab | 420.49±237.26 a | 371.80±235.83 |
| Usage of P2O5 in chemical fertilizer/(kg·hm-2) | ||||
| 化肥K2O用量 | 186.40±179.45 b | 297.20±161.15 ab | 422.66±229.75 a | 380.78±230.70 |
| Usage of K2O in chemical fertilizer/(kg·hm-2) | ||||
| 有机肥N用量 | 69.84±70.55 a | 49.70±117.95 a | 41.91±108.73 a | 46.04±105.57 |
| Usage of N in organic fertilizer/(kg·hm-2) | ||||
| 有机肥P用量 | 30.27±28.23 a | 21.44±49.02 a | 25.60±92.04 a | 25.66±82.67 |
| Usage of P in organic fertilizer/(kg·hm-2) | ||||
| 有机肥K用量 | 31.83±48.98 a | 18.29±41.55 a | 23.00±93.47 a | 23.48±84.51 |
| Usage of K in organic fertilizer/(kg·hm-2) | ||||
| 有机肥C用量 | 861.49±1 112.75 a | 566.55±1 236.52 a | 508.90±1 561.92 a | 556.40±1 475.01 |
| Usage of C in organic fertilizer/(kg·hm-2) | ||||
| 除草剂用量Usage of herbicide/(kg·hm-2) | 2.84±3.40 a | 2.13±1.88 a | 1.73±1.70 a | 1.90±1.99 |
| 杀虫剂用量Usage of pesticide/(kg·hm-2) | 0.89±0.42 a | 1.05±0.31 a | 1.11±0.64 a | 1.08±0.59 |
| 杀菌剂用量Usage of fungicide/(kg·hm-2) | 0.97±0.76 a | 0.61±0.82 a | 0.81±1.09 a | 0.80±1.02 |
| 耗油量Fuel consumption/(kg·hm-2) | 64.55±58.76 a | 54.55±31.66 a | 62.23±43.44 a | 61.61±43.89 |
| 耗电量Electricity consumption/(kW·h·hm-2) | 323.18±274.94 b | 548.18±236.92 a | 361.23±273.26 ab | 378.47±274.17 |
图1 调研柑橘园的单位面积上游碳排放量 柱上无相同字母的表示差异显著(p<0.05)。下同。
Fig.1 Upstream carbon emissions per unit area of surveyed citrus orchards Data marked without the same letters indicate significant difference at p<0.05. The same as below.
| [1] | 彭奎, 郑煜, 何蓉, 等. 重庆市烟草玉米轮作系统碳足迹研究: 基于生命周期评价[J]. 农业资源与环境学报, 2025, 42(1): 228-236. |
| PENG K, ZHENG Y, HE R, et al. Carbon footprint of the tobacco-maize cropping system in Chongqing: based on life cycle assessment[J]. Journal of Agricultural Resources and Environment, 2025, 42(1): 228-236. (in Chinese with English abstract) | |
| [2] | World Meteorological Organization. State of the Climate 2024 Update for COP29[R/OL]. [2024-12-31]. https://library.wmo.int/viewer/69075/downloadfile=State-Climate-2024-Update-COP29_en.pdf&type=pdf&navigator=1. |
| [3] | 石岳, 杨晨, 朱江玲, 等. 中国及省域碳排放、陆地碳汇及其相对减排贡献, 1980—2020[J]. 中国科学: 生命科学, 2024, 54(12): 2459-2478. |
| SHI Y, YANG C, ZHU J L, et al. Estimation of national and provincial carbon emissions, terrestrial carbon sinks and their relative contribution to emission reductions during 1980-2020[J]. Scientia Sinica(Vitae), 2024, 54(12): 2459-2478. (in Chinese with English abstract) | |
| [4] | PIERRE F, MICHAEL O, JONES MATTHEW W, et al. Global carbon budget 2022[J]. Earth System Science Data, 2022, 14(11): 4811-4900. |
| [5] | 商燕, 奥布力·塔力普, 娜迪拉·阿不都热苏力。 中国省域能源消费碳排放强度的时空演变及影响因素研究[J]. 新疆师范大学学报(自然科学版), 2025, 44(1): 11-17. |
| SHANG Y, AOBULI T, NADILA A. Spatial and temporal evolution of carbon emission intensity of energy consumption in provincial areas of China and the influencing factors[J]. Journal of Xinjiang Normal University(Natural Sciences Edition), 2025, 44(1): 11-17. (in Chinese with English abstract) | |
| [6] | 温源远, 张建宇, 于晓龙, 等. 全球碳排放碳市场现状趋势及对我国的影响[J]. 中国投资(中英文), 2024(S5): 70-74. |
| WEN Y Y, ZHANG J Y, YU X L, et al. Trend of global carbon emission market and its impact on China[J]. China Investment, 2024(S5): 70-74. (in Chinese) | |
| [7] | 范紫月, 齐晓波, 曾麟岚, 等. 中国农业系统近40年温室气体排放核算[J]. 生态学报, 2022, 42(23): 9470-9482. |
| FAN Z Y, QI X B, ZENG L L, et al. Accounting of greenhouse gas emissions in the Chinese agricultural system from 1980 to 2020[J]. Acta Ecologica Sinica, 2022, 42(23): 9470-9482. (in Chinese with English abstract) | |
| [8] | CHEN X H, MA C C, ZHOU H M, et al. Identifying the main crops and key factors determining the carbon footprint of crop production in China, 2001-2018[J]. Resources, Conservation and Recycling, 2021, 172: 105661. |
| [9] | HU G W, MU X Z, XU M, et al. Potentials of GHG emission reductions from cold chain systems: case studies of China and the United States[J]. Journal of Cleaner Production, 2019, 239: 118053. |
| [10] | 王少剑, 周诗洁, 方创琳. 1980—2020年中国陆地生态系统碳储量时空格局与演进规律[J]. 中国科学: 地球科学, 2024, 54(10): 3323-3339. |
| WANG S J, ZHOU S J, FANG C L. Spatial-temporal patterns and evolution of carbon storage in China’s terrestrial ecosystems from 1980 to 2020[J]. Scientia Sinica(Terrae), 2024, 54(10): 3323-3339. (in Chinese with English abstract) | |
| [11] | 周广胜, 周梦子, 周莉, 等. 中国陆地生态系统增汇潜力研究展望[J]. 科学通报, 2022, 67(31): 3625-3632. |
| ZHOU G S, ZHOU M Z, ZHOU L, et al. Advances in the carbon sink potential of terrestrial ecosystems in China[J]. Chinese Science Bulletin, 2022, 67(31): 3625-3632. (in Chinese with English abstract) | |
| [12] | XU L, YU G R, HE N P, et al. Carbon storage in China’s terrestrial ecosystems: a synthesis[J]. Scientific Reports, 2018, 8: 2806. |
| [13] | 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学: 生命科学, 2022, 52(4): 534-574. |
| YANG Y H, SHI Y, SUN W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica(Vitae), 2022, 52(4): 534-574. (in Chinese with English abstract) | |
| [14] | 童荣鑫, 梁迅, 关庆锋, 等. 2000—2020年中国陆地土壤碳储量及土地管理碳汇核算[J]. 地理学报, 2023, 78(9): 2209-2222. |
| TONG R X, LIANG X, GUAN Q F, et al. Estimation of soil carbon storage change from land use and management at a high spatial resolution in China during 2000-2020[J]. Acta Geographica Sinica, 2023, 78(9): 2209-2222. (in Chinese with English abstract) | |
| [15] | 林清山. 柑橘林碳汇潜力和生态服务价值研究[D]. 福州: 福建农林大学, 2010. |
| LIN Q S. A study on carbon sink potential of tangerine plantation and its ecological service value[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. (in Chinese with English abstract) | |
| [16] | 刘世荣, 王晖, 李海奎, 等. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径[J]. 林业科学, 2024, 60(4): 157-172. |
| LIU S R, WANG H, LI H K, et al. Projections of China’s forest carbon storage and sequestration and ways of their potential capacity enhancement[J]. Scientia Silvae Sinicae, 2024, 60(4): 157-172. (in Chinese with English abstract) | |
| [17] | 中国国际发展知识中心. 生态系统碳汇发展的国际进展与中国展望[R/OL]. [2024-12-31]. https://zhongguoguojifazhanzhishizhongxin0514.pdf. |
| [18] | 国家统计局. 中国第三产业统计年鉴[M]. 北京: 中国统计出版社, 2023. |
| [19] | 黄国华, 宁心怡, 卢玉鹏, 等. 基于果园生草模式的固碳潜力及影响研究进展[J]. 北方园艺, 2023(14): 146-153. |
| HUANG G H, NING X Y, LU Y P, et al. Research progress on carbon sequestration potential and its effects based on grass planting model in the orchard[J]. Northern Horticulture, 2023(14): 146-153. (in Chinese with English abstract) | |
| [20] | YANG X, HOU H J, XU Y J, et al. Divergent pattern of soil CO2, CH4 and N2O emissions in 18-year citrus orchard and Camellia oleifera plantations converted from natural shrub forests[J]. Applied Soil Ecology, 2022, 175: 104447. |
| [21] | 马艳婷, 赵志远, 冯天宇, 等. 有机无机肥配施对苹果园温室气体排放的影响[J]. 农业环境科学学报, 2021, 40(9): 2039-2048. |
| MA Y T, ZHAO Z Y, FENG T Y, et al. Greenhouse gas emissions from an apple orchard with the mixed application of organic and chemical fertilizers[J]. Journal of Agro-Environment Science, 2021, 40(9): 2039-2048. (in Chinese with English abstract) | |
| [22] | PENG X L, CHEN D Y, ZHEN J B, et al. Greenhouse gas emissions and drivers of the global warming potential of vineyards under different irrigation and fertilizer management practices[J]. Science of The Total Environment, 2024, 950: 175447. |
| [23] | YANG Y Y, QI C J, GU Y M, et al. Use efficiency, reduction potential, and effects of fertilizers on carbon emissions in China’s major citrus regions[J]. Agriculture, 2024, 14(11): 1971. |
| [24] | 金相乐. 农田和果园不同施肥措施下作物产量、土壤N2O排放的模拟与碳足迹计量评价[D]. 杨凌: 西北农林科技大学, 2023. |
| JIN X L. Simulation of crop yield and soil N2O emissions under different fertilization regimes and carbon footprint measurement evaluation in farmland and orchard[D]. Yangling: Northwest A & F University, 2023. (in Chinese with English abstract) | |
| [25] | 张雅诗, 刘立生, 任凤玲, 等. 幼龄果园套种西瓜施肥模式碳足迹评价[J]. 环境工程技术学报, 2024, 14(5): 1479-1487. |
| ZHANG Y S, LIU L S, REN F L, et al. Evaluation of the carbon footprint of watermelon fertilization regimes in young orchards[J]. Journal of Environmental Engineering Technology, 2024, 14(5): 1479-1487. (in Chinese with English abstract) | |
| [26] | XU P S, LI Z T, WANG J Y, et al. Fertilizer-induced nitrous oxide emissions from global orchards and its estimate of China[J]. Agriculture, Ecosystems & Environment, 2022, 328: 107854. |
| [27] | LIU H F, LIU G H, LI Y, et al. Effects of land use conversion and fertilization on CH4 and N2O fluxes from typical hilly red soil[J]. Environmental Science and Pollution Research, 2016, 23(20): 20269-20280. |
| [28] | 康福蓉. 氮肥运筹对柑橘园氨挥发与氮素淋洗的影响研究[D]. 重庆: 西南大学, 2022. |
| KANG F R. Study on the effects of nitrogen management on ammonia volatilization and nitrogen leaching in citrus orchard[D]. Chongqing: Southwest University, 2022. (in Chinese with English abstract) | |
| [29] | ZHANG B G, LI Q, CAO J, et al. Reducing nitrogen leaching in a subtropical vegetable system[J]. Agriculture, Ecosystems & Environment, 2017, 241: 133-141. |
| [30] | 吴志丹, 王义祥, 翁伯琦, 等. 福州地区7年生柑橘果园生态系统的碳氮储量[J]. 福建农林大学学报(自然科学版), 2008, 37(3): 316-319. |
| WU Z D, WANG Y X, WENG B Q, et al. Organic carbon and nitrogen storage in 7 years old citrus orchard ecosystem in Fuzhou, China[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2008, 37(3): 316-319. (in Chinese with English abstract) | |
| [31] | 林清山, 洪伟, 吴承祯, 等. 永春县柑橘林生态系统的碳储量及其动态变化[J]. 生态学报, 2010, 30(2): 309-316. |
| LIN Q S, HONG W, WU C Z, et al. Organic carbon storage and its dynamic change in citrus ecosystem in Yongchun, China[J]. Acta Ecologica Sinica, 2010, 30(2): 309-316. (in Chinese with English abstract) | |
| [32] | WU T, WANG Y, YU C J, et al. Carbon sequestration by fruit trees: Chinese apple orchards as an example[J]. PLoS One, 2012, 7(6): e38883. |
| [33] | ROSEMARY A. Carbon storage in orchards[D]. Bangor, Wales, UK: Bangor University, 2013 |
| [34] | WANG Y X, WENG B Q, YE J, et al. Carbon sequestration in a nectarine orchard as affected by green manure in China[J]. European Journal of Horticultural Science, 2015, 80(5): 208-215. |
| [35] | 衢州市统计局, 国家统计局衢州调查队. 衢州统计年鉴: 2022[M]. 北京: 中国统计出版社, 2023. |
| [36] | 朱晓龙, 周明强, 孙灵. 衢州市柑橘绿色高效栽培管理技术[J]. 果农之友, 2024(5): 68-70. |
| ZHU X L, ZHOU M Q, SUN L. Green and efficient cultivation and management techniques of citrus in Quzhou City[J]. Fruit Growers’ Friend, 2024(5): 68-70. (in Chinese) | |
| [37] | XIANG Y Z, LI Y, LIU Y, et al. Factors shaping soil organic carbon stocks in grass covered orchards across China: a meta-analysis[J]. Science of The Total Environment, 2022, 807: 150632. |
| [38] | 衢州市统计局, 国家统计局衢州调查队. 衢州市统计年鉴: 2020[M]. 北京: 中国统计出版社, 2021. |
| [39] | 张明洁, 张京红, 李文韬, 等. 热带果类农产品碳足迹核算研究: 以海南芒果为例[J]. 热带农业科学, 2023, 43(4): 57-62. |
| ZHANG M J, ZHANG J H, LI W T, et al. Estimate of carbon footprint accounting of tropical fruit agricultural products: taking Hainan mango as an example[J]. Chinese Journal of Tropical Agriculture, 2023, 43(4): 57-62. (in Chinese with English abstract) | |
| [40] | 吴海燕, 仇欢欢, 周倩. 基于生命周期评价法的我国油菜碳足迹核算与时空变化分析[J]. 南方农业学报, 2024, 56(4): 1341-1350. |
| WU H Y, QIU H H, ZHOU Q. Carbon footprint accounting and spatiotemporal changes of Chinese rapeseed by province based on life cycle assessment method[J]. Journal of Southern Agriculture, 2025, 56(4): 1341-1350. (in Chinese with English abstract) | |
| [41] | ZHANG W F, DOU Z X, HE P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8375-8380. |
| [42] | 陈舜, 逯非, 王效科. 中国主要农作物种植农药施用温室气体排放估算[J]. 生态学报, 2016, 36(9): 2560-2569. |
| CHEN S, LU F, WANG X K. Estimate of greenhouse gases emission from pesticides usage in China’s major crops[J]. Acta Ecologica Sinica, 2016, 36(9): 2560-2569. (in Chinese with English abstract) | |
| [43] | CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486-489. |
| [44] | 袁京, 刘燕, 唐若兰, 等. 畜禽粪便堆肥过程中碳氮损失及温室气体排放综述[J]. 农业环境科学学报, 2021, 40(11): 2428-2438, 2590. |
| YUAN J, LIU Y, TANG R L, et al. A review of carbon and nitrogen losses and greenhouse gas emissions during livestock manure composting[J]. Journal of Agro-Environment Science, 2021, 40(11): 2428-2438, 2590. (in Chinese with English abstract) | |
| [45] | 陈中督, 徐春春, 纪龙, 等. 长江中游地区稻麦生产系统碳足迹及氮足迹综合评价[J]. 植物营养与肥料学报, 2019, 25(7): 1125-1133. |
| CHEN Z D, XU C C, JI L, et al. Comprehensive evaluation for carbon and nitrogen footprints of rice-wheat rotation system in Middle Yangtze River Basin[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1125-1133. (in Chinese with English abstract) | |
| [46] | 国家应对气候变化战略研究和国际合作中心. 2011年和2012年中国区域电网平均二氧化碳排放因子[R]. 北京: 国家应对气候变化战略研究和国际合作中心, 2014. |
| [47] | ZHANG X Y, FANG Q C, ZHANG T, et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: a meta-analysis[J]. Global Change Biology, 2020, 26(2): 888-900. |
| [48] | 吴晓莲, 程玥晴, 罗友进, 等. 重庆三峡库区柑橘果园系统碳储量及碳汇潜能研究[J]. 西南农业学报, 2014, 27(2): 693-698. |
| WU X L, CHENG Y Q, LUO Y J, et al. Carbon sequestration and storage of citrus orchard system in Three Gorges Reservoir Region of Chongqing[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(2): 693-698. (in Chinese with English abstract) | |
| [49] | The Intergovernmental Panel on Climate Change (IPCC). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[EB/OL]. [2024-12-31]. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories. |
| [50] | CHEN X H, XU X Z, LU Z Y, et al. Carbon footprint of a typical pomelo production region in China based on farm survey data[J]. Journal of Cleaner Production, 2020, 277: 124041. |
| [51] | 王文赞, 韩建, 倪玉雪, 等. 有机肥替代化肥氮对苹果产量、品质及温室气体排放的影响[J]. 植物营养与肥料学报, 2023, 29(3): 437-448. |
| WANG W Z, HAN J, NI Y X, et al. Effects of substituting chemical nitrogen fertilizer with organic fertilizer on apple yield, quality, and greenhouse gas emissions[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(3): 437-448. (in Chinese with English abstract) | |
| [52] | XUN Z F, XU T Y, REN B H, et al. Nitrogen fertilization of lawns enhanced soil nitrous oxide emissions by increasing autotrophic nitrification[J]. Frontiers in Environmental Science, 2022, 10: 943920. |
| [53] | 赵健宇, 杨开静, 王凤新. 滴头流量对土壤甲烷吸收扩散转化及马铃薯产量的影响[J]. 农业工程学报, 2024, 40(13): 97-106. |
| ZHAO J Y, YANG K J, WANG F X. Effects of emitter flow rates of drip irrigation on methane uptake, diffusion, transformation in the soil and potato yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(13): 97-106. (in Chinese with English abstract) | |
| [54] | 赵环宇. 我国柑橘生产的环境代价及氮素优化措施研究[D]. 重庆: 西南大学, 2023. |
| ZHAO H Y. Study on environmental cost and nitrogen optimization measures of Chinese citrus production[D]. Chongqing: Southwest University, 2023. (in Chinese with English abstract) | |
| [55] | 许修柱. 琯溪蜜柚生产中的碳排放及优化施肥的综合效应评价[D]. 福州: 福建农林大学, 2019. |
| XU X Z. Comprehensive evaluation of carbon emission and optimum fertilization in Guanxi pomelo production[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. (in Chinese with English abstract) | |
| [56] | 詹鹏杰. 三峡库区典型柑橘园土壤有机碳固持潜力及碳足迹分析[D]. 重庆: 西南大学, 2022. |
| ZHAN P J. Analysis of soil organic carbon sequestration potential and carbon footprint of citrus orchards in the three gorges reservoir area[D]. Chongqing: Southwest University, 2022. (in Chinese with English abstract) | |
| [57] | 李志坚, 李燕青, 李壮. 柑橘园养分管理技术[J]. 果树实用技术与信息, 2023(10): 19-22. |
| LI Z J, LI Y Q, LI Z. Nutrient management techniques in citrus orchards[J]. Guoshu Shiyong Jishu Yu Xinxi, 2023(10): 19-22. (in Chinese) | |
| [58] | 李旭. 减氮施肥对柑橘树体氮素含量、果实品质产量和氮肥利用的影响[D]. 武汉: 华中农业大学, 2020. |
| LI X. Effects of reduced nitrogen fertilization on nitrogen content, fruit yield and nitrogen fertilizer utilization of citrus trees[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract) | |
| [59] | 朱志军. 渭北苹果园施肥制度对氨挥发和温室气体排放的影响[D]. 杨凌: 西北农林科技大学, 2019. |
| ZHU Z J. Effects of fertilization system on ammonia volatilization and greenhouse gas emission in Weibei apple orchard[D]. Yangling: Northwest A & F University, 2019. (in Chinese with English abstract) | |
| [60] | 张卫强, 许修柱, 陈晓辉, 等. 优化施肥对琯溪蜜柚产量、品质和碳排放的影响[J]. 中国土壤与肥料, 2022(6): 82-90. |
| ZHANG W Q, XU X Z, CHEN X H, et al. Effect of optimized fertilization on Guanxi pomelo’s yield, quality, and carbon emission[J]. Soil and Fertilizer Sciences in China, 2022(6): 82-90. (in Chinese with English abstract) | |
| [61] | 罗自威, 陶晶霞, 侯凯捷, 等. 养分优化管理实现蜜柚高产高效和降低碳排放[J]. 植物营养与肥料学报, 2022, 28(4): 688-700. |
| LUO Z W, TAO J X, HOU K J, et al. Optimized nutrient management improves fruit yield and fertilizer use efficiency and reduces carbon emissions in pomelo production[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 688-700. (in Chinese with English abstract) | |
| [62] | 朱教君, 高添, 于立忠, 等. 森林生态系统碳汇: 概念、时间效应与提升途径[J]. 应用生态学报, 2024, 35(9): 2313-2321. |
| ZHU J J, GAO T, YU L Z, et al. Carbon sink of forest ecosystems: concept, time effect and improvement approaches[J]. Chinese Journal of Applied Ecology, 2024, 35(9): 2313-2321. (in Chinese with English abstract) | |
| [63] | 胡彦婷, 管东生, 王浩, 等. 广州常绿阔叶林和果园生态系统碳储量[J]. 生态学杂志, 2014, 33(11): 2873-2879. |
| HU Y T, GUAN D S, WANG H, et al. Carbon storage of evergreen broad-leaved forest and orchard ecosystems in Guangzhou[J]. Chinese Journal of Ecology, 2014, 33(11): 2873-2879. (in Chinese with English abstract) | |
| [64] | 叶小曼, 魏天兴, 于欢, 等. 黄土丘陵区典型森林生态系统碳储量及其影响因素[J]. 生态学杂志, 2025, 44(5): 1409-1416. |
| YE X M, WEI T X, YU H, et al. Carbon storage and influencing factors of typical forest ecosystems in loess hilly region[J]. Chinese Journal of Ecology, 2025, 44(5): 1409-1416. (in Chinese with English abstract) | |
| [65] | 朱苑维, 罗婧, 陈玉娟, 等. 广州市海珠区万亩果园主要生态系统的碳密度及其分配特征[J]. 生态学杂志, 2016, 35(1): 164-169. |
| ZHU Y W, LUO J, CHEN Y J, et al. Carbon density and distribution of main ecosystems in Ten-Thousand-Mu Orchard at Haizhu District, Guangzhou[J]. Chinese Journal of Ecology, 2016, 35(1): 164-169. (in Chinese with English abstract) | |
| [66] | 陈绍民, 杨硕欢, 张保成, 等. 不同水肥条件下夏玉米/冬小麦农田生态系统碳平衡研究[J]. 农业机械学报, 2021, 52(5): 229-238. |
| CHEN S M, YANG S H, ZHANG B C, et al. Carbon balance in summer maize/winter wheat farmland ecosystem under different water and fertilizer conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 229-238. (in Chinese with English abstract) | |
| [67] | 赵牧秋, 史云峰. 三亚地区芒果园生态系统碳储量及其分布特征[J]. 安徽农业科学, 2014, 42(4): 1088-1090. |
| ZHAO M Q, SHI Y F. Carbon storage and distribution in mango plantation ecosystems in Sanya[J]. Journal of Anhui Agricultural Sciences, 2014, 42(4): 1088-1090. (in Chinese with English abstract) | |
| [68] | 张佳佳, 雷蕾, 肖文发, 等. 三峡库区经济林土壤有机碳特征[J]. 陆地生态系统与保护学报, 2022(1): 22-30. |
| ZHANG J J, LEI L, XIAO W F, et al. Soil organic carbon characteristics of economic forest in Three Gorges Reservoir area[J]. Terrestrial Ecosystem and Conservation, 2022(1): 22-30. (in Chinese with English abstract) | |
| [69] | 刘春荣, 王登亮, 胡燕芳, 等. 衢州市柑橘园土壤养分调查[J]. 浙江农业科学, 2019, 60(2): 234-236, 240. |
| LIU C R, WANG D L, HU Y F, et al. Status of soil nutrients in citrus orchards of Quzhou City[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(2): 234-236, 240. (in Chinese with English abstract) | |
| [70] | 马创举, 刘春荣, 吴雪珍, 等. 衢州市桔园土壤管理现状与改进提升对策[J]. 中国果业信息, 2023, 40(3): 65-69. |
| MA C J, LIU C R, WU X Z, et al. Present situation and improvement countermeasures of soil management in orange orchard in Quzhou City[J]. China Fruit News, 2023, 40(3): 65-69. (in Chinese) | |
| [71] | 尹献远, 张鑫, 徐霄, 等. 有机肥料对衢州市不同类型土壤肥力的影响效果[J]. 南方农业, 2024, 18(4): 82-84. |
| YIN X Y, ZHANG X, XU X, et al. The effect of organic fertilizer on different soil fertility in Quzhou City[J]. South China Agriculture, 2024, 18(4): 82-84. (in Chinese with English abstract) | |
| [72] | 王高起, 袁丹, 吴萍, 等. 深层土壤有机碳储量、稳定性以及对人类活动响应的研究进展[J]. 中国生态农业学报(中英文), 2025, 33(3): 435-448. |
| WANG G Q, YUAN D, WU P, et al. Research advances on deep soil organic carbon storage, stability and responses to human activities[J]. Chinese Journal of Eco-Agriculture, 2025, 33(3): 435-448. (in Chinese with English abstract) | |
| [73] | WRIGHT A L, HONS F M. Tillage impacts on soil aggregation and carbon and nitrogen sequestration under wheat cropping sequences[J]. Soil and Tillage Research, 2005, 84(1): 67-75. |
| [74] | 李景, 吴会军, 武雪萍, 等. 长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用[J]. 植物营养与肥料学报, 2015, 21(2): 378-386. |
| LI J, WU H J, WU X P, et al. Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carbon contents[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 378-386. (in Chinese with English abstract) | |
| [75] | 李景, 吴会军, 武雪萍, 等. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量[J]. 中国农业科学, 2021, 54(2): 334-344. |
| LI J, WU H J, WU X P, et al. Long-term conservation tillage enhanced organic carbon and nitrogen contents of particulate organic matter in soil aggregates[J]. Scientia Agricultura Sinica, 2021, 54(2): 334-344. (in Chinese with English abstract) | |
| [76] | 李文慧, 陈浩楠, 南雄雄, 等. 宁夏旱区枸杞/覆盖作物种植体系对土壤活性有机碳库的影响[J]. 生态学杂志, 2024, 43(5): 1324-1332. |
| LI W H, CHEN H N, NAN X X, et al. Effects of cropping system of Lycium barbarum L. and cover crops on soil labile organic carbon pool in an arid region of Ningxia[J]. Chinese Journal of Ecology, 2024, 43(5): 1324-1332. (in Chinese with English abstract) | |
| [77] | 马小雯, 顾艾节, 李丹, 等. 奉贤区不同树龄桃树的碳汇价值分析[J]. 上海农业科技, 2022(3): 22-23. |
| MA X W, GU A J, LI D, et al. Analysis of carbon sequestration value of peach trees with different age in Fengxian District[J]. Shanghai Agricultural Science and Technology, 2022(3): 22-23. (in Chinese) | |
| [78] | 刘伟, 罗玲, 钟奇, 等. 生草和地布覆盖对攀枝花地区芒果园土壤性质及果实品质的影响[J]. 应用与环境生物学报, 2021, 27(2): 261-270. |
| LIU W, LUO L, ZHONG Q, et al. Effects of grass planting and ground fabric mulching on soil properties and fruit quality in mango orchards in Panzhihua, China[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(2): 261-270. (in Chinese with English abstract) | |
| [79] | 秦秦, 宋科, 孙丽娟, 等. 猕猴桃园行间生草对土壤养分的影响及有效性评价[J]. 果树学报, 2020, 37(1): 68-76. |
| QIN Q, SONG K, SUN L J, et al. Effect of inter-row sod system on the contents and availability of soil nutrients in a kiwifruit orchard[J]. Journal of Fruit Science, 2020, 37(1): 68-76. (in Chinese with English abstract) | |
| [80] | 杨露, 毛云飞, 胡艳丽, 等. 生草改善果园土壤肥力和苹果树体营养的效果[J]. 植物营养与肥料学报, 2020, 26(2): 325-337. |
| YANG L, MAO Y F, HU Y L, et al. Effects of orchard grass on soil fertility and apple tree nutrition[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 325-337. (in Chinese with English abstract) | |
| [81] | 吴东, 黄志霖, 肖文发, 等. 三峡库区典型退耕还林模式水土保持功能研究[J]. 中国水土保持, 2017(1): 33-37. |
| WU D, HUANG Z L, XIAO W F, et al. Soil and water conservation functions of typical returning farmland to forest mode of the three-gorge reservoir area[J]. Soil and Water Conservation in China, 2017(1): 33-37. (in Chinese with English abstract) |
| [1] | 周聃, 刘梅, 张政, 邹松保, 倪蒙, 原居林. 虾蟹混养池塘的温室气体排放及其影响因子[J]. 浙江农业学报, 2025, 37(9): 1872-1880. |
| [2] | 易明, 孙宏, 沈琦, 汤江武. 异位发酵床技术在畜禽粪污处理中的研究进展[J]. 浙江农业学报, 2025, 37(6): 1390-1396. |
| [3] | 龚娜, 刘国丽, 陈珣, 马晓颖, 肇莹, 肖军. 一株野生肺形侧耳的鉴定及其液体发酵培养基的优化[J]. 浙江农业学报, 2024, 36(11): 2535-2545. |
| [4] | 董捷, 曾咪. 基于碳汇收益和木材收益损失的碳汇造林补偿标准研究[J]. 浙江农业学报, 2022, 34(4): 790-800. |
| [5] | 陈丽荣, 陈丽娟, 朱震锋, 韩丽晶, 曹玉昆. 基于交易视角的天然林资源保护工程区林业碳汇项目开发潜力——以黑龙江森工天保工程区为例[J]. 浙江农业学报, 2021, 33(5): 944-954. |
| [6] | 甄伟, 庄鸿源, 米松华. 中国农业中间投入温室气体排放与减排潜力[J]. 浙江农业学报, 2021, 33(11): 2185-2194. |
| [7] | 梁林波, 王仕玉, 杨建华, 张雨思. 杯鞘石斛链格孢病菌生物学特性[J]. 浙江农业学报, 2017, 29(11): 1862-1867. |
| [8] | 孙仲奇1,裘娟萍1,陆建卫2,赵春田1,*. 碳源对多粘类芽孢杆菌生长和多粘菌素E合成的影响[J]. 浙江农业学报, 2016, 28(8): 1343-. |
| [9] | 米松华1,黄祖辉2,*,朱奇彪1,黄河啸1,李宝值1 . 稻田温室气体减排成本收益分析[J]. 浙江农业学报, 2016, 28(4): 707-. |
| [10] | 金群力, 范丽军, 冯伟林, 宋婷婷, 沈颖越, 田芳芳, 蔡为明. 不同栽培原料配方及装瓶容重对金针菇生长发育的影响[J]. 浙江农业学报, 2016, 28(11): 1874-1880. |
| [11] | 赵佩文, 王新, 吴逸飞, 姚晓红, 柳永, 孙宏, 葛向阳, 汤江武. 不同碳源促进污染水体氮素转化的微生态过程[J]. 浙江农业学报, 2016, 28(11): 1915-1921. |
| [12] | 车阳,赵春田,裘娟萍. 碳源对加纳链霉菌合成默诺霉素的影响[J]. 浙江农业学报, 2015, 27(8): 1355-. |
| [13] | 黄锦法;王国峰;石艳平;*;倪雄伟 . 嘉兴市农业碳汇及低碳农业技术应用策略[J]. , 2012, 24(2): 0-274. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||