浙江农业学报 ›› 2021, Vol. 33 ›› Issue (12): 2213-2223.DOI: 10.3969/j.issn.1004-1524.2021.12.01
董爱琴1,2(), 李建国1, 杨涛1,2, 陈院华1,2, 徐昌旭1,2, 万辉3, 彭志平1, 谢杰1,2,*(
)
收稿日期:
2021-05-08
出版日期:
2021-12-25
发布日期:
2022-01-10
通讯作者:
谢杰
作者简介:
* 谢杰,E-mail:jerous. xie@outlook.com基金资助:
DONG Aiqin1,2(), LI Jianguo1, YANG Tao1,2, CHEN Yuanhua1,2, XU Changxu1,2, WAN Hui3, PENG Zhiping1, XIE Jie1,2,*(
)
Received:
2021-05-08
Online:
2021-12-25
Published:
2022-01-10
Contact:
XIE Jie
摘要:
为了解金属硫酸盐浸种对水稻种子萌发和秧苗吸收Cd等元素的影响,以水稻品种五丰优286为试验材料,选择多种浓度的硫酸亚铁(FeSO4)、硫酸锌(ZnSO4)和硫酸锰(MnSO4)作为浸种剂进行室内催芽和水培试验,测定水稻胚根长、胚芽长、发芽率,以及秧苗中的Cd、Mg、B、P、K含量。结果显示,FeSO4和MnSO4浸种均可提高水稻的发芽率,促进胚根和胚芽生长,且能有效降低秧苗中的Cd含量;而ZnSO4浸种对水稻胚根和胚芽的生长表现出明显的抑制作用,且会增加秧苗中的Cd含量。FeSO4和MnSO4浸种对水稻秧苗Mg、B、P、K的吸收无明显抑制作用,且FeSO4浸种对秧苗B的吸收有促进作用。总的来看,FeSO4和MnSO4浸种具有较好的降低水稻Cd吸收的应用潜力,值得进一步深入研究。
中图分类号:
董爱琴, 李建国, 杨涛, 陈院华, 徐昌旭, 万辉, 彭志平, 谢杰. 金属硫酸盐浸种对水稻种子萌发和秧苗镉吸收的影响[J]. 浙江农业学报, 2021, 33(12): 2213-2223.
DONG Aiqin, LI Jianguo, YANG Tao, CHEN Yuanhua, XU Changxu, WAN Hui, PENG Zhiping, XIE Jie. Effects of different sulfate soaking agents on seed germination and cadmium uptake of rice seedlings[J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2213-2223.
浸种剂 Soaking agent | 浓度 Concentration/(mol·L-1) | 胚根长 Radicle length/cm | 胚芽长 Plumule length/cm | 根芽比 Radicle-plumule ratio |
---|---|---|---|---|
FeSO4 | 0 | 0.88±0.08 e | 0.47±0.10 c | 1.94±0.30 bcd |
0.05 | 1.93±0.12 cd | 1.17±0.20 ab | 1.70±0.35 cde | |
0.10 | 2.00±0.65 cd | 1.30±0.48 ab | 1.55±0.07 de | |
0.15 | 1.87±0.25 d | 1.12±0.19 b | 1.69±0.26 cde | |
0.20 | 2.28±0.25 cd | 1.53±0.03 a | 1.49±0.14 e | |
0.25 | 2.38±0.18 bc | 1.30±0.10 ab | 1.84±0.12 bcde | |
0.30 | 2.83±0.18 ab | 1.40±0.05 ab | 2.02±0.10 bc | |
0.35 | 2.87±0.16 ab | 1.35±0.15 ab | 2.13±0.14 ab | |
0.40 | 3.30±0.09 a | 1.36±0.05 ab | 2.44±0.16 a | |
ZnSO4 | 0 | 0.78±0.08 a | 0.43±0.07 c | 1.81±0.17 a |
0.05 | 0.51±0.07 b | 0.72±0.07 a | 0.71±0.09 b | |
0.10 | 0.41±0.08 b | 0.68±0.21 ab | 0.65±0.25 bc | |
0.15 | 0.29±0.07 c | 0.64±0.16 abc | 0.45±0.02 cd | |
0.20 | 0.21±0.11 c | 0.49±0.04 bc | 0.42±0.18 d | |
0.25 | 0.21±0.02 c | 0.53±0.06 abc | 0.40±0.01 d | |
0.30 | 0.24±0.05 c | 0.56±0.08 abc | 0.44±0.08 cd | |
0.35 | 0.22±0.04 c | 0.61±0.02 abc | 0.32±0.05 d | |
0.40 | 0.23±0.03 c | 0.54±0.14 abc | 0.45±0.17 cd | |
MnSO4 | 0 | 0.83±0.17 c | 0.43±0.09 c | 1.93±0.14 a |
0.05 | 1.16±0.41 bc | 0.59±0.17 c | 1.94±0.13 a | |
0.10 | 2.43±0.20 a | 1.48±0.10 a | 1.65±0.21 abc | |
0.15 | 2.02±0.35 a | 1.43±0.28 a | 1.41±0.03 cd | |
0.20 | 2.23±0.63 a | 1.45±0.09 a | 1.53±0.36 bcd | |
0.25 | 2.07±0.46 a | 1.33±0.19 ab | 1.55±0.30 bcd | |
0.30 | 1.90±0.35 a | 1.32±0.30 ab | 1.46±0.13 cd | |
0.35 | 2.17±0.53 a | 1.73±0.35 a | 1.24±0.05 d | |
0.40 | 1.80±0.33 ab | 0.97±0.21 b | 1.87±0.08 ab |
表1 不同处理下水稻的胚根长、胚芽长和根芽比
Table 1 Radicle length, plumule length, and radicle-plumule ratio of rice under different treatments
浸种剂 Soaking agent | 浓度 Concentration/(mol·L-1) | 胚根长 Radicle length/cm | 胚芽长 Plumule length/cm | 根芽比 Radicle-plumule ratio |
---|---|---|---|---|
FeSO4 | 0 | 0.88±0.08 e | 0.47±0.10 c | 1.94±0.30 bcd |
0.05 | 1.93±0.12 cd | 1.17±0.20 ab | 1.70±0.35 cde | |
0.10 | 2.00±0.65 cd | 1.30±0.48 ab | 1.55±0.07 de | |
0.15 | 1.87±0.25 d | 1.12±0.19 b | 1.69±0.26 cde | |
0.20 | 2.28±0.25 cd | 1.53±0.03 a | 1.49±0.14 e | |
0.25 | 2.38±0.18 bc | 1.30±0.10 ab | 1.84±0.12 bcde | |
0.30 | 2.83±0.18 ab | 1.40±0.05 ab | 2.02±0.10 bc | |
0.35 | 2.87±0.16 ab | 1.35±0.15 ab | 2.13±0.14 ab | |
0.40 | 3.30±0.09 a | 1.36±0.05 ab | 2.44±0.16 a | |
ZnSO4 | 0 | 0.78±0.08 a | 0.43±0.07 c | 1.81±0.17 a |
0.05 | 0.51±0.07 b | 0.72±0.07 a | 0.71±0.09 b | |
0.10 | 0.41±0.08 b | 0.68±0.21 ab | 0.65±0.25 bc | |
0.15 | 0.29±0.07 c | 0.64±0.16 abc | 0.45±0.02 cd | |
0.20 | 0.21±0.11 c | 0.49±0.04 bc | 0.42±0.18 d | |
0.25 | 0.21±0.02 c | 0.53±0.06 abc | 0.40±0.01 d | |
0.30 | 0.24±0.05 c | 0.56±0.08 abc | 0.44±0.08 cd | |
0.35 | 0.22±0.04 c | 0.61±0.02 abc | 0.32±0.05 d | |
0.40 | 0.23±0.03 c | 0.54±0.14 abc | 0.45±0.17 cd | |
MnSO4 | 0 | 0.83±0.17 c | 0.43±0.09 c | 1.93±0.14 a |
0.05 | 1.16±0.41 bc | 0.59±0.17 c | 1.94±0.13 a | |
0.10 | 2.43±0.20 a | 1.48±0.10 a | 1.65±0.21 abc | |
0.15 | 2.02±0.35 a | 1.43±0.28 a | 1.41±0.03 cd | |
0.20 | 2.23±0.63 a | 1.45±0.09 a | 1.53±0.36 bcd | |
0.25 | 2.07±0.46 a | 1.33±0.19 ab | 1.55±0.30 bcd | |
0.30 | 1.90±0.35 a | 1.32±0.30 ab | 1.46±0.13 cd | |
0.35 | 2.17±0.53 a | 1.73±0.35 a | 1.24±0.05 d | |
0.40 | 1.80±0.33 ab | 0.97±0.21 b | 1.87±0.08 ab |
浸种剂 Soaking agent | 浓度 Concentration/(mol·L-1) | Mg/(g·kg-1) | B/(mg·kg-1) | P/(g·kg-1) | K/(g·kg-1) |
---|---|---|---|---|---|
FeSO4 | 0 | 3.53±0.31 bc | 40.8±3.6 d | 6.08±0.31 ab | 23.5±0.8 bc |
0.05 | 3.80±0.25 ab | 47.4±6.1 c | 6.20±0.18 ab | 25.9±1.3 ab | |
0.10 | 3.35±0.14 c | 49.8±4.4 bc | 5.67±0.58 b | 25.6±1.8 abc | |
0.15 | 3.67±0.14 abc | 47.8±2.4 bc | 5.89±0.02 ab | 25.5±0.8 abc | |
0.20 | 3.94±0.15 a | 49.2±4.2 bc | 5.80±0.19 ab | 25.1±1.7 abc | |
0.25 | 3.38±0.09 c | 48.2±1.9 bc | 5.87±0.63 ab | 22.9±1.5 c | |
0.30 | 3.52±0.28 bc | 51.1±4.0 bc | 6.04±0.24 ab | 24.2±2.2 abc | |
0.35 | 3.45±0.20 bc | 55.2±4.6 b | 5.91±0.24 ab | 23.0±1.5 c | |
0.40 | 3.55±0.17 bc | 65.1±2.7 a | 6.46±0.17 a | 26.5±0.8 a | |
ZnSO4 | 0 | 3.23±0.22 a | 38.6±3.3 a | 6.39±0.21 b | 24.0±1.4 ab |
0.05 | 3.13±0.07 ab | 37.3±0.8 ab | 7.04±0.43 ab | 25.6±1.4 a | |
0.10 | 2.92±0.07 bc | 32.8±1.2 cd | 7.03±0.14 ab | 24.1±0.3 ab | |
0.15 | 2.85±0.06 c | 33.2±2.4 cd | 7.05±0.32 ab | 22.4±1.2 b | |
0.20 | 2.96±0.05 bc | 33.9±1.0 bcd | 6.94±0.19 ab | 24.4±1.2 ab | |
0.25 | 2.94±0.09 bc | 31.6±0.4 d | 6.86±0.07 ab | 25.6±0.5 a | |
0.30 | 2.95±0.14 bc | 31.7±2.0 d | 6.84±0.75 ab | 25.0±2.0 a | |
0.35 | 3.02±0.15 abc | 36.1±1.5 abc | 7.40±0.25 a | 26.2±1.9 a | |
0.40 | 3.02±0.19 abc | 35.4±3.4 abcd | 7.12±0.37 a | 25.5±1.4 a | |
MnSO4 | 0 | 3.16±0.13 bc | 42.0±6.6 ab | 6.47±0.34 c | 29.1±0.7 ab |
0.05 | 3.02±0.05 c | 42.9±4.1 ab | 6.52±0.02 bc | 27.3±2.2 bc | |
0.10 | 3.02±0.12 c | 37.0±1.3 b | 6.67±0.15 abc | 29.2±1.5 ab | |
0.15 | 3.10±0.25 c | 46.2±2.6 a | 6.77±0.20 abc | 31.6±0.5 a | |
0.20 | 3.02±0.10 c | 43.3±2.7 ab | 6.58±0.24 bc | 26.6±1.2 b | |
0.25 | 3.36±0.11 ab | 45.9±4.3 a | 6.72±0.20 abc | 31.0±2.3 a | |
0.30 | 3.52±0.08 a | 48.4±1.5 a | 6.76±0.18 abc | 26.8±0.7 b | |
0.35 | 3.40±0.08 ab | 43.7±2.5 a | 7.00±0.24 a | 27.7±0.9 b | |
0.40 | 3.05±0.11 c | 44.7±1.8 a | 6.88±0.10 ab | 25.5±0.8 b |
表2 不同处理下水稻秧苗的Mg、B、P、K含量
Table 2 Contents of Mg, B, P, K in rice seedings under different treatments
浸种剂 Soaking agent | 浓度 Concentration/(mol·L-1) | Mg/(g·kg-1) | B/(mg·kg-1) | P/(g·kg-1) | K/(g·kg-1) |
---|---|---|---|---|---|
FeSO4 | 0 | 3.53±0.31 bc | 40.8±3.6 d | 6.08±0.31 ab | 23.5±0.8 bc |
0.05 | 3.80±0.25 ab | 47.4±6.1 c | 6.20±0.18 ab | 25.9±1.3 ab | |
0.10 | 3.35±0.14 c | 49.8±4.4 bc | 5.67±0.58 b | 25.6±1.8 abc | |
0.15 | 3.67±0.14 abc | 47.8±2.4 bc | 5.89±0.02 ab | 25.5±0.8 abc | |
0.20 | 3.94±0.15 a | 49.2±4.2 bc | 5.80±0.19 ab | 25.1±1.7 abc | |
0.25 | 3.38±0.09 c | 48.2±1.9 bc | 5.87±0.63 ab | 22.9±1.5 c | |
0.30 | 3.52±0.28 bc | 51.1±4.0 bc | 6.04±0.24 ab | 24.2±2.2 abc | |
0.35 | 3.45±0.20 bc | 55.2±4.6 b | 5.91±0.24 ab | 23.0±1.5 c | |
0.40 | 3.55±0.17 bc | 65.1±2.7 a | 6.46±0.17 a | 26.5±0.8 a | |
ZnSO4 | 0 | 3.23±0.22 a | 38.6±3.3 a | 6.39±0.21 b | 24.0±1.4 ab |
0.05 | 3.13±0.07 ab | 37.3±0.8 ab | 7.04±0.43 ab | 25.6±1.4 a | |
0.10 | 2.92±0.07 bc | 32.8±1.2 cd | 7.03±0.14 ab | 24.1±0.3 ab | |
0.15 | 2.85±0.06 c | 33.2±2.4 cd | 7.05±0.32 ab | 22.4±1.2 b | |
0.20 | 2.96±0.05 bc | 33.9±1.0 bcd | 6.94±0.19 ab | 24.4±1.2 ab | |
0.25 | 2.94±0.09 bc | 31.6±0.4 d | 6.86±0.07 ab | 25.6±0.5 a | |
0.30 | 2.95±0.14 bc | 31.7±2.0 d | 6.84±0.75 ab | 25.0±2.0 a | |
0.35 | 3.02±0.15 abc | 36.1±1.5 abc | 7.40±0.25 a | 26.2±1.9 a | |
0.40 | 3.02±0.19 abc | 35.4±3.4 abcd | 7.12±0.37 a | 25.5±1.4 a | |
MnSO4 | 0 | 3.16±0.13 bc | 42.0±6.6 ab | 6.47±0.34 c | 29.1±0.7 ab |
0.05 | 3.02±0.05 c | 42.9±4.1 ab | 6.52±0.02 bc | 27.3±2.2 bc | |
0.10 | 3.02±0.12 c | 37.0±1.3 b | 6.67±0.15 abc | 29.2±1.5 ab | |
0.15 | 3.10±0.25 c | 46.2±2.6 a | 6.77±0.20 abc | 31.6±0.5 a | |
0.20 | 3.02±0.10 c | 43.3±2.7 ab | 6.58±0.24 bc | 26.6±1.2 b | |
0.25 | 3.36±0.11 ab | 45.9±4.3 a | 6.72±0.20 abc | 31.0±2.3 a | |
0.30 | 3.52±0.08 a | 48.4±1.5 a | 6.76±0.18 abc | 26.8±0.7 b | |
0.35 | 3.40±0.08 ab | 43.7±2.5 a | 7.00±0.24 a | 27.7±0.9 b | |
0.40 | 3.05±0.11 c | 44.7±1.8 a | 6.88±0.10 ab | 25.5±0.8 b |
[1] |
MEHARG A A, NORTON G, DEACON C, et al. Variation in rice cadmium related to human exposure[J]. Environmental Science & Technology, 2013, 47(11): 5613-5618.
DOI URL |
[2] | 戴雅婷, 傅开道, 杨阳, 等. 南方典型水稻土镉(Cd)累积规律模拟[J]. 环境科学, 2021, 42(1): 353-358. |
DAI Y T, FU K D, YANG Y, et al. Simulation cadmium (Cd) accumulation in typical paddy soils in south China[J]. Environmental Science, 2021, 42(1): 353-358.(in Chinese with English abstract) | |
[3] | 郑顺安, 刘代丽, 章明奎, 等. 长期秸秆还田对污染农田土壤与农产品重金属的影响[J]. 水土保持学报, 2020, 34(2): 354-359. |
ZHENG S A, LIU D L, ZHANG M K, et al. Effects of long-term straw returning on heavy metals of soil and agricultural products in the polluted farmland[J]. Journal of Soil and Water Conservation, 2020, 34(2): 354-359.(in Chinese with English abstract) | |
[4] | 文志琦, 赵艳玲, 崔冠男, 等. 水稻营养器官镉积累特性对稻米镉含量的影响[J]. 植物生理学报, 2015, 51(8): 1280-1286. |
WEN Z Q, ZHAO Y L, CUI G N, et al. Effects of cadmium accumulation characteristics in vegetative organs on cadmium content in grains of rice[J]. Plant Physiology Journal, 2015, 51(8): 1280-1286.(in Chinese with English abstract) | |
[5] |
LIU Y, ZHANG C B, ZHAO Y L, et al. Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grown in cadmium contaminated soil[J]. Science of the Total Environment, 2017, 579: 1282-1288.
DOI URL |
[6] | 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261-272. |
CHEN W P, YANG Y, XIE T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sinica, 2018, 55(2): 261-272.(in Chinese with English abstract) | |
[7] |
DE LIVERA J, MCLAUGHLIN M J, HETTIARACHCHI G M, et al. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions[J]. Science of the Total Environment, 2011, 409(8): 1489-1497.
DOI URL |
[8] |
URAGUCHI S, FUJIWARA T. Rice breaks ground for cadmium-free cereals[J]. Current Opinion in Plant Biology, 2013, 16(3): 328-334.
DOI URL |
[9] |
QASWAR M, HUSSAIN S, RENGEL Z. Zinc fertilisation increases grain zinc and reduces grain lead and cadmium concentrations more in zinc-biofortified than standard wheat cultivar[J]. Science of the Total Environment, 2017, 605/606: 454-460.
DOI URL |
[10] | 董如茵, 徐应明, 王林, 等. 土施和喷施锌肥对镉低积累油菜吸收镉的影响[J]. 环境科学学报, 2015, 35(8): 2589-2596. |
DONG R Y, XU Y M, WANG L, et al. Effects of soil application and foliar spray of zinc fertilizer on cadmium uptake in a pakchoi cultivar with low cadmium accumulation[J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2589-2596.(in Chinese with English abstract) | |
[11] | 李桃, 李军, 韩颖, 等. 磷对水稻镉的亚细胞分布及化学形态的影响[J]. 农业环境科学学报, 2017, 36(9): 1712-1718. |
LI T, LI J, HAN Y, et al. Effects of phosphorus on subcellular distribution and chemical speciation of cadmium in rice[J]. Journal of Agro-Environment Science, 2017, 36(9): 1712-1718.(in Chinese with English abstract) | |
[12] | 王世华, 罗群胜, 刘传平, 等. 叶面施硅对水稻籽实重金属积累的抑制效应[J]. 生态环境, 2007, 16(3): 875-878. |
WANG S H, LUO Q S, LIU C P, et al. Effects of leaf application of nanometer silicon to the accumulation of heavy metals in rice grains[J]. Ecology and Environment, 2007, 16(3): 875-878.(in Chinese with English abstract) | |
[13] | 方勇, 陈曦, 陈悦, 等. 外源硒对水稻籽粒营养品质和重金属含量的影响[J]. 江苏农业学报, 2013, 29(4): 760-765. |
FANG Y, CHEN X, CHEN Y, et al. Effects of exogenous selenium on nutritional quality and heavy metal content of rice grain[J]. Jiangsu Journal of Agricultural Sciences, 2013, 29(4): 760-765.(in Chinese with English abstract) | |
[14] |
SHAO G S, CHEN M X, WANG W X, et al. Iron nutrition affects cadmium accumulation and toxicity in rice plants[J]. Plant Growth Regulation, 2007, 53(1): 33-42.
DOI URL |
[15] | 李义纯, 陈勇, 唐明灯, 等. 硫酸亚铁和硝酸铁施用对根际土壤-水稻系统中镉运移的影响[J]. 环境科学, 2020, 41(11): 5143-5150. |
LI Y C, CHEN Y, TANG M D, et al. Effects of ferrous sulfate and ferric nitrate on cadmium transportation in the rhizosphere soil-rice system[J]. Environmental Science, 2020, 41(11): 5143-5150.(in Chinese with English abstract)
DOI URL |
|
[16] | 邵国胜, 陈铭学, 王丹英, 等. 稻米镉积累的铁肥调控[J]. 中国科学:C辑生命科学, 2008, 38(2): 180-187. |
SHAO G S, CHEN M X, WANG D Y, et al. Regulation of cadmium accumulation in rice by iron fertilizer[J]. Science in China: Series C Life Sciences, 2008, 38(2): 180-187.(in Chinese) | |
[17] | 吕光辉, 许超, 王辉, 等. 叶面喷施不同浓度锌对水稻锌镉积累的影响[J]. 农业环境科学学报, 2018, 37(7): 1521-1528. |
LÜ G H, XU C, WANG H, et al. Effect of foliar spraying zinc on the accumulation of zinc and cadmium in rice[J]. Journal of Agro-Environment Science, 2018, 37(7): 1521-1528.(in Chinese with English abstract) | |
[18] | 覃都, 陈铭学, 周蓉, 等. 锰-镉互作对水稻生长和植株镉、锰含量的影响[J]. 中国水稻科学, 2010, 24(2): 189-195. |
QIN D, CHEN M X, ZHOU R, et al. Effects of interaction between manganese and cadmium on plant growth and contents of cadmium and manganese in rice[J]. Chinese Journal of Rice Science, 2010, 24(2): 189-195.(in Chinese with English abstract) | |
[19] | 尹晓辉, 邹慧玲, 方雅瑜, 等. 施锰方式对水稻吸收积累镉的影响研究[J]. 环境科学与技术, 2017, 40(8): 8-12. |
YIN X H, ZOU H L, FANG Y Y, et al. Effects of manganese fertilizer on absorption and accumulation of Cd in rice[J]. Environmental Science & Technology, 2017, 40(8): 8-12. (in Chinese with English abstract)
DOI URL |
|
[20] | 李媛, 李武, 莫钊文, 等. 水杨酸和盐浸种对香稻和非香稻幼苗生理特性的影响[J]. 华北农学报, 2014, 29(5): 168-174. |
LI Y, LI W, MO Z W, et al. Effects of pre-soaking with salicylic acid and salt on some physiological characteristics of the aromatic and non-aromatic rice seedlings[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(5): 168-174.(in Chinese with English abstract) | |
[21] | 刘少华, 朱学伸, 闫敏, 等. NaCl浸种对盐胁迫下杂交稻幼苗根系生长特性的影响[J]. 西南大学学报(自然科学版), 2020, 42(8): 59-65. |
LIU S H, ZHU X S, YAN M, et al. Effect of NaCl seed soaking on the growth characteristics of hybrid rice seedling roots under salt stress[J]. Journal of Southwest University (Natural Science Edition), 2020, 42(8): 59-65.(in Chinese with English abstract) | |
[22] | 陈雅玲, 杜亚楠, 梅怡然, 等. 水铁矿对小麦和水稻种子萌发的影响[J]. 江苏农业学报, 2020, 36(4): 814-820. |
CHEN Y L, DU Y N, MEI Y R, et al. Effects of ferrihydrite on seed germination of wheat and rice[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(4): 814-820.(in Chinese with English abstract) | |
[23] | 殷宪强, 王国栋, 孙慧敏, 等. 干旱条件下锌、锰肥对玉米叶绿素含量的影响[J]. 中国农学通报, 2004, 20(6): 196-198. |
YIN X Q, WANG G D, SUN H M, et al. Effects of zinc and manganese fertilizers on maize growth and chlorophyllous contents under drought condition[J]. Chinese Agricultural Science Bulletin, 2004, 20(6): 196-198. (in Chinese with English abstract) | |
[24] |
OHKI K. Effect of zinc nutrition on photosynjournal and carbonic anhydrase activity in cotton[J]. Physiologia Plantarum, 1976, 38(4): 300-304.
DOI URL |
[25] |
KOMATSU A, TAKANOKURA Y, MORIGUCHI T, et al. Differential expression of three sucrose-phosphate synthase isoforms during sucrose accumulation in citrus fruits (Citrus unshiu Marc.)[J]. Plant Science, 1999, 140(2): 169-178.
DOI URL |
[26] | 饶玉春, 郑婷婷, 马伯军, 等. 微量元素铁、锰、铜对水稻生长的影响及缺素防治[J]. 中国稻米, 2012, 18(4): 31-35. |
RAO Y C, ZHENG T T, MA B J, et al. Effect of trace elements iron, manganese and copper on rice growth and their deficiency control[J]. China Rice, 2012, 18(4): 31-35.(in Chinese) | |
[27] | GRAHAM R D, HANNAM R J, UREN N C. Manganese in soils and plants[M]. Dordrecht: Springer Netherlands, 1988. |
[28] | 董丽平, 扶胜兰, 李淑梅, 等. 锰胁迫对两个水稻品种种子发芽的影响试验研究[J]. 种子科技, 2018, 36(7): 109-111. |
DONG L P, FU S L, LI S M, et al. Effects of manganese stress on seed germination of two rice varieties[J]. Seed Science & Technology, 2018, 36(7): 109-111.(in Chinese) | |
[29] | 王晓波, 宋凤斌. 锌对水稻种子萌发的影响[J]. 吉林农业大学学报, 2005, 27(2): 119-122. |
WANG X B, SONG F B. A study on the effects of zinc on germination of rice[J]. Journal of Jilin Agricultural University, 2005, 27(2): 119-122.(in Chinese with English abstract) | |
[30] | 郑小林, 赖雨玲. 水培锌浓度对水稻生长发育的影响[J]. 湛江师范学院学报, 1999(1): 63-66. |
ZHENG X L, LAI Y L. Effects of Zn concentration in solution culture on the growth and development of rice[J]. Journal of Zhanjiang Normal College, 1999(1): 63-66.(in Chinese with English abstract) | |
[31] | 董慕新, 张辉. 锌、镉在水稻植株吸收积累中的相互作用(简报)[J]. 植物生理学通讯, 1992, 28(2): 111-113. |
DONG M X, ZHANG H. Effects of zinc and cadmium on growth of rice and their interaction in absorption and accumulation of plants[J]. Plant Physiology Communications, 1992, 28(2): 111-113.(in Chinese) | |
[32] | 袁驰, 梁永霞, 刘静, 等. 复盐胁迫对不同水稻品种种子萌发和幼苗生长的影响[J]. 种子, 2018, 37(6): 78-81. |
YUAN C, LIANG Y X, LIU J, et al. Effect of compound saline stress on seed germination and seedling growth of different rice varieties[J]. Seed, 2018, 37(6): 78-81.(in Chinese) | |
[33] | 刘梅, 李祖然, 祖艳群. 植物吸收、转移镉相关的转运蛋白CAXs和HMAs的研究进展[J]. 中国农学通报, 2020, 36(30): 82-90. |
LIU M, LI Z R, ZU Y Q. Transport protein CAXs and HMAs related to cadmium absorbing and transferring of plant: a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 82-90.(in Chinese with English abstract) | |
[34] | 曹玉巧, 聂庆凯, 高云, 等. 植物中镉及其螯合物相关转运蛋白研究进展[J]. 作物杂志, 2018(3): 15-24. |
CAO Y Q, NIE Q K, GAO Y, et al. The studies on cadmium and its chelate related transporters in plants[J]. Crops, 2018(3): 15-24.(in Chinese with English abstract) | |
[35] |
SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2155-2167.
DOI URL |
[36] |
ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2: 286.
DOI URL |
[37] |
SATOH-NAGASAWA N, MORI M, NAKAZAWA N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant and Cell Physiology, 2012, 53(1): 213-224.
DOI URL |
[38] | TAKAHASHI R, ISHIMARU Y, SHIMO H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant, Cell & Environment, 2012, 35(11): 1948-1957. |
[39] |
ISHIMARU Y, SUZUKI M, TSUKAMOTO T, et al. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J]. The Plant Journal, 2006, 45(3): 335-346.
DOI URL |
[40] |
NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469.
DOI URL |
[41] | 李磊明, 张旭, 李劲, 等. 矿区农田施用木炭和硫酸亚铁对水稻吸收累积镉砷的影响[J]. 环境科学与技术, 2019, 42(4): 161-167. |
LI L M, ZHANG X, LI J, et al. Effects of charcoal and ferrous sulfate amendments on rice Cd and As uptake in a contaminated paddy soil in mining area[J]. Environmental Science & Technology, 2019, 42(4): 161-167.(in Chinese with English abstract) | |
[42] | 周坤华, 王子钰, 等. 组配改良剂联合锌肥对土壤-水稻系统镉迁移转运的影响[J]. 环境科学, 2021, 42(9): 4452-4461. |
ZHOU K H, ZHOU H, WANG Z Y, et al. Combined effects of soil amendment and zinc fertilizer on accumulation and transportation of cadmium in soil-rice system[J]. Environmental Science, 2021, 42(9): 4452-4461.(in Chinese with English abstract) | |
[43] |
DUAN M M, WANG S, HUANG D Y, et al. Effectiveness of simultaneous applications of lime and zinc/iron foliar sprays to minimize cadmium accumulation in rice[J]. Ecotoxicology and Environmental Safety, 2018, 165: 510-515.
DOI URL |
[44] |
HART J J, WELCH R M, NORVELL W A, et al. Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings[J]. Physiologia Plantarum, 2002, 116(1): 73-78.
DOI URL |
[45] |
YAMAJI N, XIA J X, MITANI-UENO N, et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2[J]. Plant Physiology, 2013, 162(2): 927-939.
DOI URL |
[46] |
YAN Y F, CHOI D H, KIM D S, et al. Absorption, translocation, and remobilization of cadmium supplied at different growth stages of rice[J]. Journal of Crop Science and Biotechnology, 2010, 13(2): 113-119.
DOI URL |
[47] |
DAVENPORT R J, TESTER M. A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat[J]. Plant Physiology, 2000, 122(3): 823-834.
DOI URL |
[48] | 迪安·J·A. 兰氏化学手册[M]. 13版. 尚久方, 译. 北京: 科学出版社, 1991. |
[49] | WALKER G, DUFFUS J. Magnesium as the fundamental regulator of the cell cycle[J]. Magnesium, 1983, 2: 1-16. |
[50] | BROWN P H, SHELP B J. Boron mobility in plants[M]//Boron in soils and plants: reviews. Dordrecht: Springer Netherlands, 1997: 85-101. |
[51] | 夏金婵, 何奕騉. 植物对硼元素的吸收转运机制[J]. 中国生物化学与分子生物学报, 2009, 25(8): 702-707. |
XIA J C, HE Y K. Mechanisms of boron transport in plants[J]. Chinese Journal of Biochemistry and Molecular Biology, 2009, 25(8): 702-707.(in Chinese with English abstract) | |
[52] |
RAVEN J A. Short-and long-distance transport of boric acid in plants[J]. New Phytologist, 1980, 84(2): 231-249.
DOI URL |
[53] | 徐壮, 王婉瑕, 徐磊, 等. 水稻磷素吸收与转运分子机制研究进展[J]. 植物营养与肥料学报, 2018, 24(5): 1378-1385. |
XU Z, WANG W X, XU L, et al. Research progress in molecular mechanism of rice phosphorus uptake and translocation[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1378-1385.(in Chinese with English abstract) |
[1] | 王灿, 付天岭, 龚思同, 娄飞, 周凯, 代良羽, 刘静, 林大松, 何腾兵. 叶面阻控剂对黔中喀斯特地区水稻Cd富集特征的影响[J]. 浙江农业学报, 2021, 33(9): 1710-1719. |
[2] | 刘如, 董畅茹, 张祎雯, 屈铭慧, 张伟, 洒海洋, 陈海燕, 叶文玲, 樊霆. 镉胁迫下黑曲霉TL-F2的促生特征及其对黑麦草种子萌发、幼苗生长和镉含量的影响[J]. 浙江农业学报, 2021, 33(2): 326-334. |
[3] | 谷建诚, 郭彬, 林义成, 傅庆林, 刘琛, 丁能飞, 李华, 李凝玉. 根表铁膜对水稻镉吸收的影响[J]. 浙江农业学报, 2020, 32(6): 963-970. |
[4] | 朱森林, 梅忠, 邢承华. 缺磷抑制拟南芥对镉的吸收[J]. 浙江农业学报, 2020, 32(5): 804-809. |
[5] | 邹传, 郭彬, 林义成, 傅庆林, 刘琛, 丁能飞, 李凝玉, 李华. 不同粒径腐殖酸颗粒对土壤有效态镉的影响[J]. 浙江农业学报, 2019, 31(4): 616-623. |
[6] | 丁小雪, 汪炳良, 海睿, 胡雨晴, 米月华, 叶红霞. 不同来源托鲁巴姆种子的发芽特性研究[J]. 浙江农业学报, 2019, 31(3): 420-427. |
[7] | 谢杰, 董爱琴, 徐昌旭, 苏金平, 范芳, 胡美蓉, 刘佳. 紫云英长期还田对稻田土壤Cd含量与形态的影响[J]. 浙江农业学报, 2019, 31(12): 2084-2094. |
[8] | 李永杰, 易时来, 高恒锦, 朱潇婷, 覃宇, 金国强. 不同有机肥对高接温州蜜柑衰弱树体生长、养分吸收和产品质量的影响[J]. 浙江农业学报, 2019, 31(11): 1871-1879. |
[9] | 姜武, 吴志刚, 陈松林, 陶正明. 镉胁迫对铁皮石斛叶片抗氧化酶活性的影响及动力学分析[J]. 浙江农业学报, 2017, 29(9): 1421-1429. |
[10] | 黄路平, 刘仑, 鲁黎明, 李立芹. 烟草NtKAT3基因克隆、序列和表达分析[J]. 浙江农业学报, 2017, 29(7): 1057-1063. |
[11] | 许力, 黄路平, 鲁黎明, 李立芹. 烟草钾离子通道基因NtTPK的克隆及表达分析[J]. 浙江农业学报, 2017, 29(3): 366-372. |
[12] | 尤方芳1,赵铭钦1,*,陈发元1,孙翠红1,许跃奇1,李慧2,金洪石3,金江华3. 生物炭与不同肥料配施对镉胁迫下烟株生长的影响[J]. 浙江农业学报, 2016, 28(3): 489-. |
[13] | 郭晓静1,2,胡承孝1,2,赵小虎1,2,*,谭启玲1,2,孙学成1,2. 不同种植模式下蔬菜吸收积累镉的差异[J]. 浙江农业学报, 2015, 27(8): 1387-. |
[14] | 周芳如,杨友才*,兰时乐. 高效去除镉污染真菌的筛选与鉴定[J]. 浙江农业学报, 2015, 27(4): 636-. |
[15] | 郭江波;唐炳;王建英;蔡禄;辛翠花*. 镉胁迫对烟草生理特性的影响[J]. , 2013, 25(6): 0-1283. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||