浙江农业学报 ›› 2021, Vol. 33 ›› Issue (12): 2254-2263.DOI: 10.3969/j.issn.1004-1524.2021.12.05
收稿日期:2020-09-01
出版日期:2021-12-25
发布日期:2022-01-10
作者简介:* 杨化强,E-mail: yangh@scau.edu.cn通讯作者:
杨化强
基金资助:
ZHANG Mao1(
), ZHAO Xin2, CAI Gengyuan2, YANG Huaqiang2,*(
)
Received:2020-09-01
Online:2021-12-25
Published:2022-01-10
Contact:
YANG Huaqiang
摘要:
精原干细胞(spermatogonial stem cells,SSCs)是雄性哺乳动物精子发生及具有生育能力的保障。精原干细胞的体外培养不仅为精子发生的研究提供材料,还有助于开发新的家畜保种方法和动物遗传修饰。为了探索猪精原干细胞体外培养体系的建立方法,本研究采用胶原酶Ⅳ-胰酶两步酶法对3~7日龄大白仔猪睾丸进行消化得到单细胞悬液,利用不同时间程序的差速贴壁对精原干细胞进行纯化,选择大白仔猪睾丸支持细胞作为饲养层,添加不同细胞因子研究精原干细胞的增殖情况以期得到最佳的培养体系。结果显示,通过差速贴壁得到的UCHL-1阳性生殖细胞比例最高为18.59%±0.94%;不同细胞因子组合添加试验发现精原干细胞添加20 ng·mL-1 GDNF、10 ng·mL-1 IGF和20 ng·mL-1 bFGF的增殖效果最佳;以支持细胞作为饲养层、在DMEM/F12中添加1%FBS以及上述细胞因子组合对精原干细胞进行培养15 d后可见大量的精原干细胞集落,通过免疫荧光、AKP染色、荧光定量PCR等试验证明精原干细胞进行了大量增殖。本研究初步建立了猪精原干细胞的体外培养体系,可通过体外培养大量增殖精原干细胞,为后续精原干细胞的研究奠定基础。
中图分类号:
张茂, 赵鑫, 蔡更元, 杨化强. 精原干细胞体外培养体系的建立[J]. 浙江农业学报, 2021, 33(12): 2254-2263.
ZHANG Mao, ZHAO Xin, CAI Gengyuan, YANG Huaqiang. Establishment of in vitro culture system of pig spermatogonial stem cells[J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2254-2263.
| 基因 Gene | 引物 Primer (5'→3') | 产物 Product/bp | Tm/ ℃ |
|---|---|---|---|
| GAPDH | F:AGGGCTGCTTTTAACTCTGGCAA | 180 | 56 |
| R:GATGGTGATGGCCTTTCCATTG | |||
| UCHL-1 | F:TCCGGAAGACAGAGCAAAATGC | 150 | 56 |
| R:AGTTCATAGAGGTGGCCATCCA | |||
| Thy-1 | F:GTGCTCTTGGGCACTGTGGG | 178 | 57 |
| R:TCTTGCTGGAGATGCTGGGC | |||
| Gfra-1 | F:GAACGGAGGCGGCAGACCAT | 242 | 57 |
| R:AAGCCCAGAGTAGGCGAGGAG | |||
| C-kit | F:GATGCCTTCAAGGATTTGGA | 181 | 53 |
| R:ATGGAATCTGAGGCCTTCCT | |||
| Oct4 | F:CGCGAAGCTGGACAAGGAGA | 151 | 56 |
| R:CAAAGTGAGCCCCACATCGG | |||
| Nanog | F:AACCAAACCTGGAACAGCCAGAC | 152 | 56 |
| R:GTTTCCAAGACGGCCTCCAAAT | |||
| Dazl | F:ACAGTGGCCTGCTGGGGAAC | 153 | 56 |
| R:TGTGGGCCATTTCCAGAGGA |
表1 引物设计
Table 1 Primers design
| 基因 Gene | 引物 Primer (5'→3') | 产物 Product/bp | Tm/ ℃ |
|---|---|---|---|
| GAPDH | F:AGGGCTGCTTTTAACTCTGGCAA | 180 | 56 |
| R:GATGGTGATGGCCTTTCCATTG | |||
| UCHL-1 | F:TCCGGAAGACAGAGCAAAATGC | 150 | 56 |
| R:AGTTCATAGAGGTGGCCATCCA | |||
| Thy-1 | F:GTGCTCTTGGGCACTGTGGG | 178 | 57 |
| R:TCTTGCTGGAGATGCTGGGC | |||
| Gfra-1 | F:GAACGGAGGCGGCAGACCAT | 242 | 57 |
| R:AAGCCCAGAGTAGGCGAGGAG | |||
| C-kit | F:GATGCCTTCAAGGATTTGGA | 181 | 53 |
| R:ATGGAATCTGAGGCCTTCCT | |||
| Oct4 | F:CGCGAAGCTGGACAAGGAGA | 151 | 56 |
| R:CAAAGTGAGCCCCACATCGG | |||
| Nanog | F:AACCAAACCTGGAACAGCCAGAC | 152 | 56 |
| R:GTTTCCAAGACGGCCTCCAAAT | |||
| Dazl | F:ACAGTGGCCTGCTGGGGAAC | 153 | 56 |
| R:TGTGGGCCATTTCCAGAGGA |
图1 纯化后精原干细胞的检测 A,免疫荧光检测(200×),a1-a3,方法A纯化后免疫荧光;b1-b3,方法B纯化后免疫荧光;c1-c3,方法C纯化后免疫荧光。B,AKP 染色,红色箭头为AKP染色阳性细胞(400×)。C,定量PCR分析,**表示差异极显著。
Fig. 1 Detection of purified SSCs A, Immunofluorescence detection (200×), a1-a3, Immunofluorescence after purification by method A; b1-b3, Immunofluorescence after purification by method B; c1-c3, Immunofluorescence after purification by method C. B, AKP staining, the red arrow indicates AKP staining positive cells (400×). C, Quantitative PCR analysis, ** represented the difference was significant at P<0.01.
图2 不同浓度丝裂霉素C对支持细胞的影响(上)和不同细胞因子组合添加对精原干细胞增殖的影响(下) 柱上没有相同小写字母的表示差异显著(P<0.05)。
Fig. 2 Effect of different concentrations of mitomycin C on Sertoli cells (up) and effect of different cytokine combinations on proliferation of spermatogonial stem cells (down) Bars marked without the same letters indicated that the difference was significant at P<0.05.
图3 SSCs的体外培养 A,接种的精原干细胞(200×);B,培养6 d的精原干细胞(200×);C,培养15 d的精原干细胞(100×);D,培养15 d的精原干细胞集落(200×)。
Fig. 3 In vitro culture of SSCs A, Inoculated spermatogonial stem cells (200×); B, Spermatogonial stem cells cultured for 6 days(200×); C, Spermatogonial stem cells cultured for 15 days(100×); D,Spermatogonial stem cell colonies cultured for 15 days(200×).
图4 增殖精原干细胞的检测 A,UCHL-1免疫荧光(200×),a1,常光,a2,UCHL-1染色。B,AKP染色(200×)。C,定量PCR检测,**表示差异极显著。D,RT-PCR检测,M,DL2000;泳道1~7分别为GAPDH、UCHL-1、Gfra-1、C-kit、Thy-1、Oct-4、Nanog基因。
Fig. 4 Detection of proliferating SSCs A, Immunofluorescence of UCHL-1 (200×), a1, white light, a2, UCHL-1 antibody staining. B, AKP staining (200×). C, Quantitative PCR detection, ** meaned the difference is extremely significant. D, RT-PCR detection, M, DL2000; lanes 1-7 are GAPDH, UCHL-1, Gfra-1, C-kit, Thy-1, Oct-4, Nanog genes, respectively.
| [1] |
SATO T, KATAGIRI K, YOKONISHI T, et al. In vitro production of fertile sperm from murine spermatogonial stem cell lines[J]. Nature Communications, 2011, 2: 472.
DOI URL |
| [2] | 范翠花, 兰风华, 张朵. 非灵长类动物精原干细胞及其多潜能性的研究进展[J]. 解放军医学杂志, 2016, 41(2): 168-174. |
| FAN C H, LAN F H, ZHANG D. Research development of spermatogonial stem cell and their pluripotency in non-primate mammals[J]. Medical Journal of Chinese PLA, 2016, 41(2): 168-174.(in Chinese with English abstract) | |
| [3] |
SATO T, KATAGIRI K, GOHBARA A, et al. In vitro production of functional sperm in cultured neonatal mouse testes[J]. Nature, 2011, 471(7339): 504-507.
DOI URL |
| [4] |
ZHENG Y, ZHANG Y Q, QU R F, et al. Spermatogonial stem cells from domestic animals: progress and prospects[J]. Reproduction (Cambridge, England), 2014, 147(3): R65-R74.
DOI URL |
| [5] | 徐远飞, 侯彬, 周继昌. 精原干细胞分离、鉴定、培养及其应用进展[J]. 生命科学, 2017, 29(5): 443-449. |
| XU Y F, HOU B, ZHOU J C. Advances in isolation, identification and culture of spermatogonial stem cells and their applications[J]. Chinese Bulletin of Life Sciences, 2017, 29(5): 443-449.(in Chinese with English abstract) | |
| [6] | 朱文倩, 姜禹, 蔡宁宁, 等. 精原干细胞技术研究进展[J]. 中国细胞生物学学报, 2020, 42(2): 342-347. |
| ZHU W Q, JIANG Y, CAI N N, et al. Advances in the research of spermatogonial stem cell techniques[J]. Chinese Journal of Cell Biology, 2020, 42(2): 342-347.(in Chinese with English abstract) | |
| [7] |
ZHENG Y, TIAN X E, ZHANG Y Q, et al. In vitro propagation of male germline stem cells from piglets[J]. Journal of Assisted Reproduction and Genetics, 2013, 30(7): 945-952.
DOI URL |
| [8] |
IZADYAR F, SPIERENBERG G T, CREEMERS L B, et al. Isolation and purification of type A spermatogonia from the bovine testis[J]. Reproduction (Cambridge, England), 2002, 124(1): 85-94.
DOI URL |
| [9] | HEIDARI B, GIFANI M, SHIRAZI A, et al. Enrichment of undifferentiated type a spermatogonia from goat testis using discontinuous percoll density gradient and differential plating[J]. Avicenna Journal of Medical Biotechnology, 2014, 6(2): 94-103. |
| [10] | KUBOTA H, AVARBOCK M R, BRINSTER R L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(47): 16489-16494. |
| [11] | CONRAD S, AZIZI H, HATAMI M, et al. Differential gene expression profiling of enriched human spermatogonia after short-and long-term culture[J]. BioMed Research International, 2014, 2014: 138350. |
| [12] |
BUAGEAW A, SUWANI M, BEN-YEHUDAH A, et al. GDNF family receptor alpha1 phenotype of spermatogonial stem cells in immature mouse testes[J]. Biology of Reproduction, 2005, 73(5): 1011-1016.
DOI URL |
| [13] |
KUBOTA H, AVARBOCK M R, BRINSTER R L. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells[J]. Biology of Reproduction, 2004, 71(3): 722-731.
DOI URL |
| [14] |
KANATSU-SHINOHARA M, TOYOKUNI S, SHINOHARA T. CD9 is a surface marker on mouse and rat male germline stem cells[J]. Biology of Reproduction, 2004, 70(1): 70-75.
DOI URL |
| [15] |
BUAAS F W, KIRSH A L, SHARMA M, et al. Plzf is required in adult male germ cells for stem cell self-renewal[J]. Nature Genetics, 2004, 36(6): 647-652.
DOI URL |
| [16] |
SADA A, HASEGAWA K, PIN P H, et al. NANOS2 Acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells[J]. Stem Cells, 2012, 30(2): 280-291.
DOI URL |
| [17] |
LUO J P, MEGEE S, RATHI R, et al. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia[J]. Molecular Reproduction and Development, 2006, 73(12): 1531-1540.
DOI URL |
| [18] |
TANG L, BONDAREVA A, GONZÁLEZ R, et al. TALEN-mediated gene targeting in porcine spermatogonia[J]. Molecular Reproduction and Development, 2018, 85(3): 250-261.
DOI URL |
| [19] |
ZHAO H M, YANG H, LUO F H, et al. Isolation, proliferation, and induction of Bama mini-pig spermatogonial stem cells in vitro[J]. Genetics and Molecular Research, 2016, 15(3): DOI: 10.4238/gmr.15038602.
DOI |
| [20] | ZHENG Y, HE Y, AN J H, et al. THY1 is a surface marker of porcine gonocytes[J]. Reproduction, Fertility, and Development, 2014, 26(4): 533-539. |
| [21] |
MENG X, LINDAHL M, HYVÖNEN M E, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF[J]. Science, 2000, 287(5457): 1489-1493.
DOI URL |
| [22] |
KANATSU-SHINOHARA M, OGONUKI N, INOUE K, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells[J]. Biology of Reproduction, 2003, 69(2): 612-616.
DOI URL |
| [23] |
KUIJK E W, COLENBRANDER B, ROELEN B A J. The effects of growth factors on in vitro-cultured porcine testicular cells[J]. Reproduction (Cambridge, England), 2009, 138(4): 721-731.
DOI URL |
| [24] |
HEIDARI B, RAHMATI-AHMADABADI M, AKHONDI M M, et al. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers[J]. Journal of Assisted Reproduction and Genetics, 2012, 29(10): 1029-1038.
DOI URL |
| [25] |
BAHADORANI M, HOSSEINI S M, ABEDI P, et al. Short-term in-vitro culture of goat enriched spermatogonial stem cells using different serum concentrations[J]. Journal of Assisted Reproduction and Genetics, 2012, 29(1): 39-46.
DOI URL |
| [26] | YANG Y F, YARAHMADI M, HONARAMOOZ A. Development of novel strategies for the isolation of piglet testis cells with a high proportion of gonocytes[J]. Reproduction, Fertility, and Development, 2010, 22(7): 1057-1065. |
| [27] |
FUJIHARA M, KIM S M, MINAMI N, et al. Characterization and in vitro culture of male germ cells from developing bovine testis[J]. The Journal of Reproduction and Development, 2011, 57(3): 355-364.
DOI URL |
| [28] |
HU J H, XI H M, REN Y J, et al. Recent advances in isolation, identification, and culture of mammalian spermatogonial stem cells[J]. Asian Journal of Andrology, 2021,23: DOI: 10.4103/aja.aja_41_21.
DOI |
| [29] | 王配, 王丽娜, 霍海龙, 等. 猪类无精症缺失基因DAZL 的cDNA全长克隆、组织表达和亚细胞定位[J]. 畜牧兽医学报, 2021, 52(3): 683-692. |
| WANG P, WANG L N, HUO H L, et al. cDNA full-length clonging,tissue expression and subcellular location of DAZL gene in pig[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 683-692.(in Chinese with English abstract) | |
| [30] |
HERRID M, DAVEY R J, HILL J R. Characterization of germ cells from pre-pubertal bull calves in preparation for germ cell transplantation[J]. Cell and Tissue Research, 2007, 330(2): 321-329.
DOI URL |
| [31] |
HONARAMOOZ A, MEGEE S O, RATHI R, et al. Building a testis: formation of functional testis tissue after transplantation of isolated porcine (Sus scrofa) testis cells[J]. Biology of Reproduction, 2007, 76(1): 43-47.
DOI URL |
| [32] |
KALA S, KAUSHIK R, SINGH K P, et al. In vitro culture and morphological characterization of prepubertal buffalo (Bubalus bubalis) putative spermatogonial stem cell[J]. Journal of Assisted Reproduction and Genetics, 2012, 29(12): 1335-1342.
DOI URL |
| [33] |
PARK M H, PARK J E, KIM M S, et al. Development of a high-yield technique to isolate spermatogonial stem cells from porcine testes[J]. Journal of Assisted Reproduction and Genetics, 2014, 31(8): 983-991.
DOI URL |
| [34] |
AOSHIMA K, AI B B, MAKINO Y, et al. Establishment of alternative culture method for spermatogonial stem cells using knockout serum replacement[J]. PLoS One, 2013, 8(10): e77715.
DOI URL |
| [1] | 张若楠, 门小明, 秦凯鹏, 王彬彬, 吴杰, 丁向彬, 徐子伟, 齐珂珂. 绿嘉黑猪的不同杂交组合生长性能、胴体品质、产肉性能和收益比较研究[J]. 浙江农业学报, 2025, 37(6): 1203-1211. |
| [2] | 孙仁杰, 徐慧玲, 孙思琪, 柴娟, 虞一聪, 谢荣辉, 李肖梁, 赵灵燕, 张传亮. 非洲猪瘟病毒基因Ⅰ型和Ⅱ型PCR-RFLP鉴别方法的建立[J]. 浙江农业学报, 2025, 37(5): 1017-1028. |
| [3] | 陆南洋, 赵婷蕾, 周瑛, 姚燕来, 李鹏昊, 洪春来, 朱为静, 洪磊东, 张涛, 朱凤香. 蝇蛆转化赤霉素发酵滤渣的工艺研究[J]. 浙江农业学报, 2025, 37(4): 901-908. |
| [4] | 张楚妮, 徐计东, 高钦, 单颖, 方维焕, 李肖梁. 丁酸抑制猪流行性腹泻病毒体外复制的分子机制[J]. 浙江农业学报, 2025, 37(3): 579-590. |
| [5] | 赵嘉豪, 徐杏, 周卫东, 杨华, 赵喜红, 汪雯. 猪场废水与周边水环境中细菌和耐药基因的特征[J]. 浙江农业学报, 2025, 37(3): 621-632. |
| [6] | 诸绿寒, 方堃, 吴晓丽, 姚青, 谢淑丽, 郑雷, 敖月, 陈黎洪, 赵珂, 魏俊, 张晋. 微波辅助过热蒸汽加热对猪肉糜理化特性和感官品质的影响[J]. 浙江农业学报, 2025, 37(3): 679-688. |
| [7] | 王彬彬, 齐珂珂, 门小明, 徐子伟. 基因组选择技术在猪肉质育种中的应用与展望[J]. 浙江农业学报, 2025, 37(3): 726-735. |
| [8] | 向进, 王春源, 吴燕, 谭元成, 杨酸, 张依裕. 柯乐猪CRISP3基因SNP鉴定及其对繁殖性状的影响[J]. 浙江农业学报, 2024, 36(6): 1270-1278. |
| [9] | 秦凯鹏, 门小明, 徐子伟. 猪肉鲜味物质及其形成机理研究进展[J]. 浙江农业学报, 2024, 36(3): 719-728. |
| [10] | 吴兴凤, 章啸君, 朱江, 余敏洁, 徐娥, 马灵燕, 肖英平. 腹泻仔猪肠道菌群结构特征及肠道炎症因子、腺苷酸环化酶和鸟苷酸环化酶mRNA表达变化研究[J]. 浙江农业学报, 2024, 36(11): 2465-2475. |
| [11] | 刘伟东, 周素茵, 徐爱俊, 叶俊华. 生猪虹膜快速定位算法研究[J]. 浙江农业学报, 2024, 36(11): 2617-2626. |
| [12] | 华涛, 常晨, 李倩文, 张道华, 唐波. 猪细小病毒1~7型全基因组遗传变异[J]. 浙江农业学报, 2024, 36(10): 2193-2203. |
| [13] | 潘梓博, 周昕, 徐杏, 刘凯歌, 吉洪湖, 路伏增, 叶春林, 周卫东. 基于激光-视觉融合的配怀猪舍内导航建图技术研究[J]. 浙江农业学报, 2024, 36(10): 2358-2367. |
| [14] | 李颀, 李煜哲. 弱光条件下猪舍清洗目标检测[J]. 浙江农业学报, 2023, 35(9): 2240-2249. |
| [15] | 潘亚杰, 常会庆, 宋盼盼. 规模化猪场粪便养分特征与堆肥过程中填料添加的影响[J]. 浙江农业学报, 2023, 35(7): 1690-1698. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||